首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Over time, populations of species can expand, contract, fragment and become isolated, creating subpopulations that must adapt to local conditions. Understanding how species maintain variation after divergence as well as adapt to these changes in the face of gene flow is of great interest, especially as the current climate crisis has caused range shifts and frequent migrations for many species. Here, we characterize how a mycophageous fly species, Drosophila innubila, came to inhabit and adapt to its current range which includes mountain forests in south‐western USA separated by large expanses of desert. Using population genomic data from more than 300 wild‐caught individuals, we examine four populations to determine their population history in these mountain forests, looking for signatures of local adaptation. In this first extensive study, establishing D. innubila as a key genomic "Sky Island" model, we find D. innubila spread northwards during the previous glaciation period (30–100 KYA) and have recently expanded even further (0.2–2 KYA). D. innubila shows little evidence of population structure, consistent with a recent establishment and genetic variation maintained since before geographic stratification. We also find some signatures of recent selective sweeps in chorion proteins and population differentiation in antifungal immune genes suggesting differences in the environments to which flies are adapting. However, we find little support for long‐term recurrent selection in these genes. In contrast, we find evidence of long‐term recurrent positive selection in immune pathways such as the Toll signalling system and the Toll‐regulated antimicrobial peptides.  相似文献   

2.
Assessing species phenology provides useful understanding about their autecology, to contribute to management strategies. We monitored reproductive phenology of Mimusops andongensis and Mimusops kummel, and its relationship with climate, tree diameter and canopy position. We sampled trees in six diameter classes and noted their canopy position. For both species flowering began in the dry season through to the rainy season, but peaked in the dry season, whilst fruiting occurred in the rainy season and peaked during the most humid period. Flowering was positively correlated with temperature. Conversely, fruiting was negatively correlated with temperature and positively with rainfall, only in the Guineo‐Sudanian zone. For Mandongensis, flowering and fruiting prevalences were positively linked to stem diameter, while only flowering was significantly related to canopy position. For Mkummel, the relationship with stem diameter was significant for flowering prevalence only and in the Guineo‐Sudanian zone. Results suggest that phylogenetic membership is an important factor restricting Mimusops species phenology. Flowering and fruiting of both species are influenced by climate, and consequently climate change might shift their phenological patterns. Long‐term investigations, considering flowering and fruiting abortion, will help to better understand the species phenology and perhaps predict demographic dynamics.  相似文献   

3.
Biodiversity hotspots understandably attract considerable conservation attention. However, deserts are rarely viewed as conservation priority areas, due to their relatively low productivity, yet these systems are home to unique species, adapted to harsh and highly variable environments. While global attention has been focused on hotspots, the world's largest tropical desert, the Sahara, has suffered a catastrophic decline in megafauna. Of 14 large vertebrates that have historically occurred in the region, four are now extinct in the wild, including the iconic scimitar‐horned oryx (Oryx dammah). The majority has disappeared from more than 90% of their Saharan range, including addax (Addax nasomaculatus), dama gazelle (Nanger dama) and Saharan cheetah (Acinonyx jubatus hecki) – all now on the brink of extinction. Greater conservation support and scientific attention for the region might have helped to avert these catastrophic declines. The Sahara serves as an example of a wider historical neglect of deserts and the human communities who depend on them. The scientific community can make an important contribution to conservation in deserts by establishing baseline information on biodiversity and developing new approaches to sustainable management of desert species and ecosystems. Such approaches must accommodate mobility of both people and wildlife so that they can use resources most efficiently in the face of low and unpredictable rainfall. This is needed to enable governments to deliver on their commitments to halt further degradation of deserts and to improve their status for both biodiversity conservation and human well‐being. Only by so‐doing will deserts be able to support resilient ecosystems and communities that are best able to adapt to climate change.  相似文献   

4.
Moving hybrid zones provide compelling examples of evolution in action, yet long‐term studies that test the assumptions of hybrid zone stability are rare. Using replicated transect samples collected over a 10‐year interval from 2002 to 2012, we find evidence for concerted movement of genetic clines in a plateau fence lizard hybrid zone (Sceloporus tristichus) in Arizona. Cline‐fitting analyses of SNP and mtDNA data both provide evidence that the hybrid zone shifted northward by approximately 2 km during the 10‐year interval. For each sampling period, the mtDNA cline centre is displaced from the SNP cline centre and maintaining an introgression distance of approximately 3 km. The northward expansion of juniper trees into the Little Colorado River Basin in the early 1900s provides a plausible mechanism for hybrid zone formation and movement, and a broadscale quantification of recent land cover change provides support for increased woody species encroachment at the southern end of the hybrid zone. However, population processes can also contribute to hybrid zone movement, and the current stability of the ecotone habitats in the centre of the hybrid zone suggests that movement could decelerate in the future.  相似文献   

5.
Ecotypic variation among populations may become associated with widespread genomic differentiation, but theory predicts that this should happen only under particular conditions of gene flow, selection and population size. In closely related species, we might expect the strength of host‐associated genomic differentiation (HAD) to be correlated with the degree of phenotypic differentiation in host‐adaptive traits. Using microsatellite and Amplified Fragment Length Polymorphism (AFLP) markers, and controlling for isolation by distance between populations, we sought HAD in two congeneric species of butterflies with different degrees of host plant specialization. Prior work on Euphydryas editha had shown strong interpopulation differentiation in host‐adapted traits, resulting in incipient reproductive isolation among host‐associated ecotypes. We show here that Euphydryas aurinia had much weaker host‐associated phenotypic differentiation. Contrary to our expectations, we detected HAD in Euphydryas aurinia, but not in E. editha. Even within an E. aurinia population that fed on both hosts, we found weak but significant sympatric HAD that persisted in samples taken 9 years apart. The finding of significantly stronger HAD in the system with less phenotypic differentiation may seem paradoxical. Our findings can be explained by multiple factors, ranging from differences in dispersal or effective population size, to spatial variation in genomic or phenotypic traits and to structure induced by past histories of host‐adapted populations. Other infrequently measured factors, such as differences in recombination rates, may also play a role. Our result adds to recent work as a further caution against assumptions of simple relationships between genomic and adaptive phenotypic differentiation.  相似文献   

6.
7.
8.
While ecological effects on short‐term population dynamics are well understood, their effects over millennia are difficult to demonstrate and convincing evidence is scant. Using coalescent methods, we analysed past population dynamics of three lizard species (Psammodromus hispanicus, P. edwardsianus, P. occidentalis) and linked the results with climate change data covering the same temporal horizon (120 000 years). An increase in population size over time was observed in two species, and in P. occidentalis, no change was observed. Temporal changes in temperature seasonality and the maximum temperature of the warmest month were congruent with changes in population dynamics observed for the three species and both variables affected population density, either directly or indirectly (via a life‐history trait). These results constitute the first solid link between ecological change and long‐term population dynamics. The results moreover suggest that ecological change leaves genetic signatures that can be retrospectively traced, providing evidence that ecological change is a crucial driver of genetic diversity and speciation.  相似文献   

9.
Drought entails important effects on tree physiology, which may result in short‐ to long‐term radial growth decreases. While the majority of studies have focused on annual drought‐related variability of growth, relatively little is known about sustained growth decreases following drought years. We apply a statistical framework to identify climatic factors that induce abrupt growth decreases and may eventually result in tree mortality. We used tree‐ring data from almost 500 standing dead trees and 200 living trees in eight sites of the Swiss network of strict forest reserves, including four of the most important Central European tree species (Abies alba, Picea abies, Fagus sylvatica and Quercus spp.). First, to assess short‐term growth responses to drought under various climate and site conditions, we calculated correlations and linear mixed‐effects models between ring‐width indices (RWIs) and drought based on the Standardized Precipitation Evapotranspiration Index (SPEI). Second, to quantify drought effects on abrupt growth decreases, we applied distributed lag nonlinear models (DLNMs), which account for both delayed effects and the nonlinear relationship between the SPEI and the occurrence of abrupt growth decreases. Positive correlations between RWIs and the SPEI indicated short‐term growth responses of all species, particularly at arid sites. Results of the DLNMs revealed species‐specific growth responses to drought. For Quercus spp., abrupt growth decreases were more likely to occur several years following severe drought, whereas for P. abies, A. alba, and F. sylvatica abrupt growth decreases started frequently immediately in the drought year. We conclude that the statistical framework allows for quantifying the effects of drought intensity on the probability of abrupt growth decreases, which ultimately contributes to an improved understanding of climate impacts on forest community dynamics.  相似文献   

10.
Population viability analysis (PVA) has been applied to the management of many threatened populations. The objective of this study was, therefore, to estimate the PVA of Walia ibex at the Simen Mountains National Park, in the north‐central highlands of Ethiopia, with respect to population growth parameters, the probability of the population reaching a lower extinction threshold and the mean time to extinction. Direct census of the population was carried out in 2009. Secondary census data were also collected from park authorities and the literature reviews. The result revealed that the estimates of the infinitesimal mean, μ (0.04117) was greater than the infinitesimal variance, σ2 (0.0219). The probability that the population reaches the extinction threshold was very low (0.15%). The mean time required for the counts to decline from the existing population size to one individual animal was 160 years. But threatened species are adversely affected by changes in landscape. These changes can be brought by short‐ and long‐term human and climate change impacts, respectively. Therefore, with the absence of environmental and demographic stochasticity and, with the application of appropriate reproductions and habitat management, the population of Walia ibex will be viable and reaches its mean time of extinctions after 160 years.  相似文献   

11.
Melengestrol acetate (MGA) implants were used for contraception in three addax and three Arabian oryx females housed at the Saint Louis Zoo. Serum estradiol and progesterone or fecal estrogen and progestin analysis and ultrasonography of reproductive tracts were used for monitoring changes before, during, and after MGA treatment. Follicular development and irregular uterine fluid accumulation were detected in all females during MGA treatment. Although housed with an intact male for all or most of the contraceptive period, no pregnancies occurred. One female addax may have ovulated, based on sustained elevated progesterone levels, and another showed continued follicle development, as seen by fluctuating estradiol concentrations. Reversibility was documented in two of the three addax that resumed reproductive cycles post‐MGA‐implant removal, whereas the third, a peripubertal female, did not cycle before, during, or after treatment. Addax females were lost to further follow‐up after transfer to another institution, so the possibility of subsequent pregnancies is not known. All three Arabian oryx ovulated during the initial MGA treatment, but two of the three females had implants past the typical 2‐year efficacy period. They had regular ovulatory cycles after implant removal, with mean cycle length of 27.5±1.5 days and mean luteal phase duration of 15.2±0.7 days. Reversibility was further shown in all three oryx by pregnancies after placement with a male approximately 2 years after MGA implant removal. Two produced healthy calves, but the third died owing to an unrelated terminal illness in the mother. Zoo Biol 26:299–310, 2007. © 2007 Wiley‐Liss, Inc.  相似文献   

12.
The emerging infectious disease chytridiomycosis, caused by the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), is implicated in widespread population declines, extirpations, and extinctions of amphibians throughout the world. In the Neotropics, most amphibian declines have occurred in cool mid‐ to high‐elevation sites (> 400 m asl), and it is hypothesized that high temperatures limit the growth of Bd in lowland tropical sites, despite few data available on the distribution of Bd in lowland forests. Here, we report the results of a 12‐mo pathogen surveillance program for three common species of frogs at a warm lowland site in northeastern Costa Rica. We combine standard non‐invasive skin swabbing techniques with a quantitative polymerase chain reaction assay to analyze the infection prevalence and Bd load across a 1‐yr period. Our data indicate an overall Bd infection rate of 6.1 percent, but prevalence varies from < 5 percent in warmer months to a peak of 34.7 percent in the coolest months of the year. Despite very little seasonal variation in temperature (< 4°C), our data indicate strong seasonal variation in the prevalence of Bd, with highest prevalence of infection in months with coolest air temperatures. While it has been suggested that Bd is primarily a riparian fungus, we find no difference in prevalence of infection among our species despite considerable differences in affiliation of these species with water. Our study provides further evidence that infection by Bd is regulated by temperature and shows that warm temperatures in lowland forests may restrict, but not prevent, infection by Bd.  相似文献   

13.
Many species of the subgenus Agrodiaetus have dotlike distribution ranges, and the delimitation of the majority of species is only possible on the basis of chromosomal and/or molecular data. In our research, we used a combination of chromosomal and molecular mitochondrial and nuclear markers to analyse the taxonomic identity and to study the phylogeographic history of an enigmatic Agrodiaetus population from South Poland. We discovered this population to be chromosomally and genetically indistinguishable from the widely distributed West Palaearctic species Polyommatus ripartii (Freyer, 1830). Moreover, this population was found to be genetically homogenous and to share the single identified COI+COII haplotype with populations from remote localities in Spain, Bulgaria and Ukraine. Coalescence‐based dating with COI+COII marker estimated that the Polish population originated most likely 10 600–14 300 years ago. This estimation corresponds well to the age (11 700–12 000 years) of palaeontological remnant of Onobrychis arenaria, a food plant of P. ripartii, found in Poland. Generally, the data obtained support the hypotheses that (1) the common ancestor of the Central European populations originated in a refugium in the North Balkan, (2) after the last glacial maximum, this ancestor became broadly distributed in Europe and (3) the Nida population in Poland represents a relict of this ancient distribution.  相似文献   

14.
Recently, molecular analyses revealed that African and Eurasian golden jackals are distinct species. This finding suggests re‐investigation of the phylogenetic relationships and taxonomy of other African members of the Canidae. Here, we provide a study on the phylogenetic relationship between populations of African jackals Lupulella mesomelas and L. adusta inferred from 962 bp of the mitochondrial cytochrome b (cytb) gene. As expected from its disjunct distribution, with one population in eastern Africa and the other one in southern Africa, we found two mitochondrial lineages within L. mesomelas, which diverged about 2.5 million years ago (Ma). In contrast, in L. adusta with its more continuous distribution in sub‐Saharan Africa, we found only a shallower genetic diversification, with the exception of the West African population, which diverged around 1.4 Ma from the Central and East African populations. Both divergence ages are older than, for example the 1.1–0.9 million years between the grey wolf Canis lupus and the African golden wolf C. lupaster. One taxonomic implication of our findings might be that the two L. mesomelas populations warrant species status. However, genome‐wide data with adequate geographical sampling are needed to substantiate our results.  相似文献   

15.
16.
Global climatic fluctuations governed the ancestral demographic histories of species and contributed to place the current population status into a more extensive ecological and evolutionary context. Genetic variations will leave unambiguous signatures in the patterns of intraspecific genetic variation in extant species since the genome of each individual is an imperfect mosaic of the ancestral genomes. Here, we report the genome sequences of 20 Branchiostoma individuals by whole‐genome resequencing strategy. We detected over 140 million genomic variations for each Branchiostoma individual. In particular, we applied the pairwise sequentially Markovian coalescent (PSMC) method to estimate the trajectories of changes in the effective population size (Ne) of Branchiostoma population during the Pleistocene. We evaluated the threshold of sequencing depth for proper inference of demographic histories using PSMC was ≥25×. The PSMC results highlight the role of historical global climatic fluctuations in the long‐term population dynamics of Branchiostoma. The inferred ancestral Ne of the Branchiostoma belcheri populations from Zhanjiang and Xiamen (China) seawaters was different in amplitude before the first (mutation rate = 3 × 10?9) or third glaciation (mutation rate = 9 × 10?9) of the Pleistocene, indicating that the two populations most probably started to evolve in isolation in their respective seas after the first or third glaciation of the Pleistocene. A pronounced population bottleneck coinciding with the last glacial maximum was observed in all Branchiostoma individuals, followed by a population expansion occurred during the late Pleistocene. Species that have experienced long‐term declines may be especially vulnerable to recent anthropogenic activities. Recently, the industrial pollution and the exploitation of sea sand have destroyed the harmonious living environment of amphioxus species. In the future, we need to protect the habitat of Branchiostoma and make full use of these detected genetic variations to facilitate the functional study of Branchiostoma for adaptation to local environments.  相似文献   

17.
Both mean group size (MGS) and mean group density (MGD) are critical indices to characterize a population of cooperatively breeding birds. When a population reaches its carrying capacity, both long‐term MGS and long‐term MGD will remain relatively stable. However, there has been little study of how these two variables relate. The Masked laughingthrush Garrulax perspicillatus is a cooperatively breeding bird living in fragmented habitats. During 2010 and 2012‐2016, we used song playback to observe and confirm the group sizes and territory ranges of the birds and the data of bird presence to determine habitat suitability. By grouping the nearest territories according to their geographical coordinates, we divided the whole study area into 12 subareas and the whole population into 12 subpopulations. Then, we calculated both MGS and MGD for different time durations for each subpopulation. Finally, using MGD as independent variable and MGS as the dependent variable, we explored the correlations between MGS and MGD by fitting quadratic functions and modeling quadratic regression. Both MGS and MGD were averaged for different time durations and were cross‐related. Our results show that the MGS for more than 2 years significantly correlated with MGD for more than 3 years in a reverse parabolic shape, differing from that of short‐term effects. Our findings suggest that long‐term MGD is a better predictor of long‐term habitat quality and that long‐term MGS is determined by long‐term habitat quality in Masked Laughingthrushes. Based on above findings, we can infer that: (1) Long‐term habitat quality determines the long‐term MGS, but it sets no prerequisite for the status and source of group members; (2) Long‐term MGS in certain populations is adapted to the corresponding level of long‐term habitat quality, it facilitates us to predict the helper effects on current or future survival or reproduction in different situations. These findings and inferences are both helpful for us to understand the evolution of cooperative breeding.  相似文献   

18.
Evaluation of population dynamics for rare and declining species is often limited to data that are sparse and/or of poor quality. Frequently, the best data available for rare bird species are based on large‐scale, population count data. These data are commonly based on sampling methods that lack consistent sampling effort, do not account for detectability, and are complicated by observer bias. For some species, short‐term studies of demographic rates have been conducted as well, but the data from such studies are typically analyzed separately. To utilize the strengths and minimize the weaknesses of these two data types, we developed a novel Bayesian integrated model that links population count data and population demographic data through population growth rate (λ) for Gunnison sage‐grouse (Centrocercus minimus). The long‐term population index data available for Gunnison sage‐grouse are annual (years 1953–2012) male lek counts. An intensive demographic study was also conducted from years 2005 to 2010. We were able to reduce the variability in expected population growth rates across time, while correcting for potential small sample size bias in the demographic data. We found the population of Gunnison sage‐grouse to be variable and slightly declining over the past 16 years.  相似文献   

19.
An increasingly important practical application of the analysis of spatial genetic structure within plant species is to help define the extent of local provenance seed collection zones that minimize negative impacts in ecological restoration programs. Here, we derive seed sourcing guidelines from a novel range‐wide assessment of spatial genetic structure of 24 populations of Banksia menziesii (Proteaceae), a widely distributed Western Australian tree of significance in local ecological restoration programs. An analysis of molecular variance (AMOVA) of 100 amplified fragment length polymorphism (AFLP) markers revealed significant genetic differentiation among populations (ΦPT = 0.18). Pairwise population genetic dissimilarity was correlated with geographic distance, but not environmental distance derived from 15 climate variables, suggesting overall neutrality of these markers with regard to these climate variables. Nevertheless, Bayesian outlier analysis identified four markers potentially under selection, although these were not correlated with the climate variables. We calculated a global R‐statistic using analysis of similarities (ANOSIM) to test the statistical significance of population differentiation and to infer a threshold seed collection zone distance of ~60 km (all markers) and 100 km (outlier markers) when genetic distance was regressed against geographic distance. Population pairs separated by >60 km were, on average, twice as likely to be significantly genetically differentiated than population pairs separated by <60 km, suggesting that habitat‐matched sites within a 30‐km radius around a restoration site genetically defines a local provenance seed collection zone for B. menziesii. Our approach is a novel probability‐based practical solution for the delineation of a local seed collection zone to minimize negative genetic impacts in ecological restoration.  相似文献   

20.
Among most species of birds, survival from hatching throughout the first year of life is generally lower than subsequent survival rates. Survival of young birds during their first year may depend on a combination of selection, learning, unpredictable resources, and environmental events (i.e., post‐fledging factors). However, knowledge about post‐fledging development in long‐lived species is usually limited due to a lengthy immature stage when individuals are generally unobservable. Therefore, pre‐fledging characteristics are often used to predict the survival of young birds. We assessed effects of nestling growth rates, hatching date, hatching asynchrony, brood size and rank order after brood reduction, and sex on first‐year survival of 137 fledglings using a mark‐resighting analysis. We found that the survival probability (Φ1yr = 0.39) of first‐year Herring Gulls (Larus argentatus) in our study colony located at the outer port of Zeebrugge (Belgium) was lower than that of older individuals (Φ>1yr = 0.75). All 10 models best supported by our data included nestling growth rate, suggesting that variability in first‐year survival may be linked primarily to individual variation in growth. First‐year survival was negatively correlated with hatching date and rank order after brood reduction. Hence, carry‐over effects of breeding season events such as timing of breeding, early development, and social status had an influence on survival of Herring Gulls after fledging. Furthermore, we found sex‐biased mortality in first‐year Herring Gulls, with females (Φ1yr = 0.45) surviving better than males (Φ1yr = 0.38). Although adult survival is generally regarded as the key parameter driving population trajectories in long‐lived species, juvenile survival has recently been acknowledged as an important source of variability in population growth rates. Thus, increasing our knowledge of factors affecting age‐specific survival rates is necessary to improve our understanding of population dynamics and ultimately life‐history variation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号