首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A small number of west African Bos taurus cattle breeds, including the N'Dama, constitute a valuable genetic resource by virtue of their ability to remain productive under trypanosomiasis challenge. However, introgression of Bos indicus genes into the trypanotolerant breeds, particularly by introduction of zebu bulls, is a threat to this resource. This work describes the characterization and cloning of a bovine randomly amplified polymorphic DNA (RAPD) that is generated in polymerase chain reaction (PCR) with the 10 base primer ILO1065 from Bos indicus male templates, but not from B. taurus male templates or female templates of either type. Male-specific sequences with homology to the RAPD also occur in B. taurus breeds. This suggests that the polymorphism may be due to base substitution(s) in an ILO1065 priming site, or insertion/deletion events either affecting priming sites or occurring between sites on the cattle Y chromosome. We have shown that cattle, whether of B. indicus or B. taurus phenotype, which possess a typically B. indicus metaphase Y chromosome on the basis of QFQ banding, have a B. indicus ILO1065-generated genotype. The ILO1065-primed RAPD can be used in a simple dot blot assay as a probe of RAPD-PCR products, to provide a convenient, reliable and effective means of detecting introgression of zebu genes in B. taurus cattle populations.  相似文献   

2.
Complete mitochondrial DNA D‐loop sequences of 1105 individuals were used to assess the diversity of maternal lineages of cattle populations in China. In total, 250 taurine and 88 zebu haplotypes were identified. Five main haplogroups—T1a, T2, T3, T4 and T5—were identified in Bos taurus, whereas Bos indicus harbored two haplogroups—I1 and I2. Our results suggest that the distribution of T1a in Asia was concentrated mainly in the northeast region (northeast China, Korea and Japan); haplogroups T2, T3 and T4 were predominant in Chinese cattle; and T5 was sporadically detected in Mongolian and Pingwu cattle. In contrast to the widespread presence of I1, I2 was distributed only in southwestern China (Yunnan‐Guizhou Plateau and the Tibet Autonomous Region) and Xinjiang Uygur Autonomous Region. This is the first time that all five taurine haplogroups and two zebu haplogroups have been found in Mongolian cattle. In addition, eight individuals in Tibetan cattle carried the Bos grunniens mtDNA type. The high mtDNA diversity (= 0.904 ± 0.008) and the weak genetic structure among the 57 Chinese cattle breeds/populations are consistent with their complex historical background, migration route and ecological environment.  相似文献   

3.
The Mongolian cattle are one of the most widespread breeds with strictly Bos taurus morphological features in northern China. In our current study, we presented a diversity of mitochondrial DNA (mtDNA) D-loop region and Y chromosome SNP markers in 25 male and 8 female samples of Mongolian cattle from the Xinjiang Uygur autonomous region in Western China, and detected 21 B. taurus and four Bos indicus (zebu) mtDNA haplotypes. Among four B. indicus mtDNA haplotypes, two haplotypes belonged to I1 haplogroup and the remaining two haplotypes belonged to I2 haplogroup. In contrast, all 25 male Mongolian cattle samples revealed B. taurus Y chromosome haplotype and no B. indicus haplotypes were found. Historical and archeological records indicate that B. taurus was introduced to Xinjiang during the second millennium BC and B. indicus appeared in this region by the second century AD. The two types of cattle coexisted for many centuries in Xinjiang, as depicted in clay and wooden figurines unearthed in the Astana cemetery in Turfan (3rd–8th century AD). Multiple lines of evidence suggest that the earliest B. indicus introgression in the Mongolian cattle may have occurred during the 2nd–7th centuries AD through the Silk Road around the Xinjiang region. This conclusion differs from the previous hypothesis that zebu introgression to Mongolian cattle happened during the Mongol Empire era in the 13th century.  相似文献   

4.
Cai X  Chen H  Lei C  Wang S  Xue K  Zhang B 《Genetica》2007,131(2):175-183
In order to clarify the origin and genetic diversity of indigenous cattle breeds in China, we carried out phylogenetic analysis of representatives of those breeds by employing mitochondrial gene polymorphism. Complete cyt b gene sequences, 1140 bp in length, were determined for a total of 136 individuals from 18 different breeds and these sequences were clustered into two distinct genetic lineages: taurine (Bos taurus) and zebu (Bos indicus). In analysis of the cyt b gene diversity, Chinese cattle showed higher nucleotide (0.00923) and haplotype diversity (0.848) than the reports from other studies, and the animals from the taurine lineage indicated higher nucleotide diversity (0.00330) and haplotype diversity (0.746) than the ones from the zebu lineage (0.00136; 0.661). The zebu mtDNA dominated in the southern breeds (63.3–100%), while the taurine dominated in the northern breeds (81.8–100%). Six cattle breeds from the central area of China exhibited intermediate frequencies of zebu mtDNA (25–71.4%). This polymorphism revealed a declining south-to-north gradient of female zebu introgression and a geographical hybrid zone of Bos taurus and Bos indicus in China.  相似文献   

5.
Indigenous cattle of India belong to the species, Bos indicus and they possess various adaptability and production traits. However, little is known about the genetic diversity and origin of these breeds. To investigate the status, we sequenced and analyzed the whole mitochondrial DNA (mtDNA) of seven Indian cattle breeds. In total, 49 single-nucleotide variants (SNVs) were identified among the seven breeds analyzed. We observed a common synonymous SNV in the COII gene (m.7583G?>?A) of all the breeds studied. The phylogenetic analysis and genetic distance estimation showed the close genetic relationship among the Indian cattle breeds, whereas distinct genetic differences were observed between Bos indicus and Bos taurus cattle. Our results indicate a common ancestor for European Zwergzebu breed and South Indian cattle. The estimated divergence time demonstrated that the Bos indicus and Bos taurus cattle lineages diverged 0.92 million years ago. Our study also demonstrates that ancestors of present zebu breeds originated in South and North India separately ~30,000 to 20,000 years ago. In conclusion, the identified genetic variants and results of the phylogenetic analysis may provide baseline information to develop appropriate strategies for management and conservation of Indian cattle breeds.  相似文献   

6.
The relative importance of dry- and wet-bulb temperatures on cutaneous function inBos indicus andBos taurus females under humid tropical climatic conditions was evaluated. The parameters investigated were sweating rate and skin temperature, while the species utilised were zebu White Fulani (Bos indicus) and German Brown and German Black and White (Bos taurus).The sweating rate, irrespective of breed, differed with the site of sampling and was more influenced by dry-bulb (59%) than by wet-bulb temperature (41%). Skin temperature responded more to wet-bulb temperature in White Fulani and German Black and White cattle, but not in German Brown cattle.It is concluded that the response of the animals, with respect to sweating, was similar but that the efficiency of sweating, judged by the lowering of skin temperature, was higher inBos indicus than inBos taurus. This, in part, may explain the higher degree of comfort demonstrated byBos indicus under tropical conditions.  相似文献   

7.
Genetics has the potential to provide a novel layer of information pertaining to the origins and relationships of domestic cattle. While it is important not to overstate the power of archeological inference from genetic data, some previously widespread conjectures are inevitably contradicted with the addition of new information. Conjectures regarding domesticated cattle that fall into this category include a single domestication event with the development of Bos indicus breeds from earlier Bos taurus domesticates; the domestication of a third type of cattle in Africa having an intermediate morphology between the two taxa; and the special status of the Jersey breed as a European type with some exotic influences. In reality, a wideranging survey of the genetic variation of modern cattle reveals that they all derive from either zebu or taurine progenitors or are hybrids of the two. The quantitative divergence between Bos indicus and Bos taurus strongly supports a predomestic separation; that between African and European taurines also suggests genetic input from native aurochsen populations on each continent. Patterns of genetic variants assayed from paternally, maternally, and biparentally inherited genetic systems reveal that extensive hybridization of the two subspecies is part of the ancestry of Northern Indian, peripheral European, and almost all African cattle breeds. In Africa, which is the most extensive hybrid zone, the sexual asymmetry of the process of zebu introgression into native taurine breeds is strikingly evident. © 1998 Wiley-Liss, Inc.  相似文献   

8.
测定了13个黄牛品种125个个体的线粒体D-loop区段的全序列,包括12个中国地方黄牛品种的123个个体和德国黄牛2个个体,并进行了分析。结果显示,共检测到93个变异位点,57个单倍型,平均核苷酸差异(average number ofnucleotide differences,k)为22.708,核苷酸多样度(nucleotide diversity,π)为0.0251±0.00479,单倍型多样度(haplotypediversity,Hd)为0.888±0.026,表明我国黄牛品种遗传多样性非常丰富。构建的Neighbor-Joining进化树显示这13个品种主要分成两大类型:普通牛和瘤牛;新发现的特殊类型Ⅲ只有一个西藏阿沛甲咂牛的个体,它与牦牛D-loop序列最相近,证明西藏地区的黄牛与牦牛之间存在基因渗入现象。普通牛和瘤牛在日喀则驼峰牛中占的比例分别是64.3%和35.7%,在阿沛甲咂牛中占的比例分别是50.0%和50.0%,证明了西藏的黄牛也有瘤牛类型。云南牛品种的单倍型非常丰富证明了云南在中国黄牛起源上的重要地位;在27个中国黄牛品种中(本研究11个品种以及GenBank上的16个品种)找到了中国瘤牛的核心单倍型i1,并且对它进行了讨论。同时证明了西藏瘤牛独立于中国瘤牛核心类群的特殊性。  相似文献   

9.
Population structure and ancestry of Qinchuan cattle   总被引:1,自引:0,他引:1       下载免费PDF全文
The aim of this study was to estimate population structure and ancestry of Qinchuan cattle by genotyping 27 individuals using the GeneSeek HD 77k BeadChip, and another 1355 cattle representing breeds distributed worldwide, which had been genotyped using the Illumina Bovine 50k BeadChip. Qinchuan cattle were characterized by a dominant Bos taurus ancestry, accompanied by a considerable proportion of Bos indicus ancestry based on principal components analysis and supervised admixture analysis. A small proportion of Bos javanicus ancestry was detected as well. A similar admixture pattern in both Qinchuan and Turkish cattle breeds reflects their similar degrees of zebu introgression. Our study presents a relatively clear view of the population structure and ancestry of Qinchuan cattle, serving to benefit our understanding of this breed and leading to better targeted conservation approaches moving forward.  相似文献   

10.
Densities ofAmblyomma americanum (L.) onBos indicus, B. taurus andB. indicus x B. taurus cattle are compared over a 3-year period, and the growth rate (rate of increase or decrease) of parasitic tick populations on each cattle genotype is estimated.Average log10 densities of parasiticA. americanum larvae are significantly (P=0.05) lower onB. indicus cattle than onB. taurus andB. indicus x B. taurus cattle. Average log densities of nymphal and adult ticks onB. taurus cattle are significantly higher than onB. indicus cattle but neither cattle genotype differs in this regard fromB. indicus x B. taurus cattle.Estimated annual tick population growth rates (log10) for parasiticA. americanum are positive onB. taurus cattle (+0.84 larvae, +0.09 nymphs, +0.22 adults calf–1 year–1), but are negative onB. indicus (–0.18 nymphs, –0.14 adults calf–1 year–1) andB. indicus x B. taurus cattle (–0.45 larvae, –0.24 nymphs, –0.14 adults calf–1 year–1). Populations of parasitic larvae were not detected onB. indicus cattle.  相似文献   

11.
Chen SY  Liu YP  Wang W  Gao CZ  Yao YG  Lai SJ 《Biochemical genetics》2008,46(3-4):206-215
Tongjiang cattle are a local cattle population of Sichuan Province, China, numbering approximately half a million in 2005. They have long been grouped into the Bashan breed, although they have a unique breeding history and phenotypic characteristics, as well as a restricted geographic distribution. Morphologically, they can be divided into two groups based on the basic coat color (black and russet). In order to dissect the matrilineal components of Tongjiang cattle and to compare the body size traits of the two morphological groups, we measured five body size traits among 59 Tongjiang cattle samples and further sequenced the mtDNA D-loop sequence of 54 individuals. Among the 54 mtDNAs, 37 (68.5%) were Bos taurus types and 17 (31.5%) were Bos indicus types. Four known B. taurus haplogroups (T1–T4) and one B. indicus haplogroup (I1) were detected in these samples. Two body size traits differed significantly (P < 0.05) between the black group and the russet group, although the two groups possessed similar matrilineal genetic structure. This is the first report to identify all four B. taurus haplogroups in one local Chinese cattle population. Our results suggest that the contribution of different matrilineal lineages to Chinese cattle might be more complex than we originally thought.  相似文献   

12.
A panel of 81 Asian, African and European cattle (Bos taurus and B. indicus) was sequenced for the exon 9 of the ARHGAP15, a strong candidate for cattle trypanotolerance on BTA2. The analyses provided five different haplotypes defined by four (two nonsynonymous) mutations. Neutrality tests suggest a recent sweep in the studied bovine sequences. The two most frequent haplotypes (H1 and H3) gathered 88% of the chromosomes analyzed and were present in all the cattle groups analyzed, including Asian zebu and European cattle. The current results question the sole association of the polymorphism identified, including mutation c.53317501A > C, with the trypanotolerant response in West African cattle.  相似文献   

13.
The origin of domestic cattle has perplexed archaeologists for more than a century. Researchers have proposed various theories, which offer alternative spatial and chronological models for the origin and spread of domesticated cattle. One point of discussion is whether domestic cattle had a single or multiple origins; however, most authorities considered that the first steps towards cattle domestication were taken in southwest Asia and that domesticated cattle entered Europe with pastoralists migrating from this region. Domesticated taurine cattle were thought to have entered Africa in successive waves from southwest Asia, while zebu cattle migrated into Africa at a later date from Arabia and the Indian subcontinent. Analysis of mitochondrial DNA (mtDNA) shows that taurine and zebu cattle divergence before the Holocene and were probably domesticated independently. Recent mtDNA sequence data shows that African and European taurine cattle were probably domesticated independently, but that there was a process of genetic introgression between taurine and zebu cattle in Africa. Ancient DNA studies over the last 10 years suggest that Northern European aurochsens apparently contributed little or nothing to domestic cattle while Southern European aurochsens apparently made a significant input. However, Middle Eastern aurochsen, unfortunately not typed yet, are expected to be to be very similar to European breeds as well, both because archeological data suggest that the major center of domestication for European Bos taurus breeds was the Fertile Crescent (9), and also because a mtDNA sequence from a Syrian specimen dated at 8,000–9,000 years ago shows a typical European haplotype found both in modern breeds and the Italian aurochsen. Evidence seems to suggest that small to moderate levels of local gene flow from wild Bos primigenius females in selected breeds were either accepted or may be reinforced by Neolithic breeders.  相似文献   

14.
FemaleAmblyomma americanum [L.] that feed onBos taurus cattle weigh significantly (P=0.05) more (x=505.4 mg) than females that feed onB. indicus x B. taurus cattle (x=450.7 mg) but not females that feed onB. indicus cattle (x=489.7 mg). Females that feed onB. taurus cattle lay more eggs (x=3492) and produce more larvae (x=3243) than females that feed onB. indicus cattle (x=3103 eggs; 2925 larvae) orB. indicus x B. taurus cattle (x=2961 eggs; 2759 larvae). The number of eggs produced per unit engorged female weight is not significantly different in ticks that feed onB. taurus andB. indicus x B. taurus cattle.  相似文献   

15.
The amount of trace elements present in edible bovine tissues is of importance for both animal health and human nutrition. This study presents data on trace element concentrations in semitendinosus and cardiac muscles, livers and kidneys of 60 zebu (Bos indicus) bulls, sampled at Jimma, Ethiopia. From 28 of these bulls, blood samples were also obtained. Deficient levels of copper were found in plasma, livers, kidneys and semitendinosus muscles. Suboptimal selenium concentrations were found in plasma and semitendinosus muscles. Semitendinosus muscles contained high iron concentrations. Trace elements were mainly stored in the liver, except for iron and selenium. Cardiac muscles generally contained higher concentrations of trace elements than semitendinous muscles except for zinc. A strong association was found between liver and kidney concentrations of copper, iron, cobalt and molybdenum. Liver storage was well correlated with storage in semitendinosus muscle for selenium and with cardiac muscle for cobalt and selenium. Plasma concentrations of copper, selenium, cobalt were well related with their respective liver concentrations and for cobalt and selenium, also with cardiac muscle concentrations. The data suggest multiple trace element deficiencies in zebu cattle in South-West Ethiopia, with lowered tissue concentrations as a consequence. Based on the comparison of our data with other literature, trace element concentrations in selected edible tissues of Bos indicus seem quite similar to those in Bos taurus. However, tissue threshold values for deficiency in Bos taurus cattle need to be refined and their applicability for Bos indicus cattle needs to be evaluated.  相似文献   

16.
The aim of this work was to perform a thorough analysis of the diversity of Y‐haplotypes in Spanish cattle. A total of 207 Bos taurus males were sampled across 25 European breeds, with a special focus on rare, local Spanish populations. Animals were genotyped with five Y‐specific microsatellites (INRA189, UMN0103, UMN0307, BM861 and BYM1), two indels (ZFY10 and USP9Y) and one SNP (UTY19). A new haplogroup, distinct from those described by Götherström et al. (2005), was identified and named Y1.2. Samples representing the three B. taurus Y‐haplogroups were genotyped for four additional Y chromosome SNPs (rs121919254, rs121919281, rs121919323 and rs137049553). Among these SNPs, only rs121919281 was informative in B. taurus and helped to confirm the new Y1.2 haplogroup. Analysis of a larger dataset of standardized haplotypes for 1507 individuals from 57 populations from Spain, other European countries and Africa showed the new Y1.2 haplogroup to be found exclusively in Spanish breeds. This finding reinforces the importance of local Spanish cattle as reservoirs of genetic diversity as well as the importance of the Iberian Peninsula in the history of cattle.  相似文献   

17.
Body measurement traits, influenced by genes and environmental factors, play numerous important roles in the value assessment of productivity and economy. Growth differentiate factor 5 (GDF5), involved in the development and maintenance of bone and cartilage, is an important candidate gene for body measurement traits selection through marker-assisted selection (MAS). In this study, based on the PCR-RFLP technology, we discovered and evaluated the potential association of the single nucleotide polymorphism (SNP) (T586C in exon 1) of the bovine GDF5 gene with body measurement traits in 985 Bos taurus breed, 42 Bos indicus breed and 76 Bos indicus × Bos taurus individuals. As the SNP marker, there were the significant effects on the Body length (BL) in the Bos taurus (BT) and Bos indicus × Bos taurus (BMY) populations (P < 0.05). In BT population, animals with the genotype TT had lower mean values for BL and Hip width (HW) than these with the TC and CC genotype (P < 0.01). In BMY population, animals with the genotype TC had lower mean values for BL than these with the genotype CC (P < 0.05). These results suggest that the SNP of the GDF5 gene could be a very useful genetic marker for body measurement traits in the bovine reproduction and breeding.  相似文献   

18.
We describe a polymorphism in the bovine gene PTHG which can be readily typed by PCR assay. The polymorphism is codominantly inherited and the allele frequencies appear characteristic of Bos indicus and B. taurus cattle.  相似文献   

19.
This study was conducted to compare the relative resistance of crossbred Bos indicus X B. taurus Bonsmara and B. taurus Friesian cattle to Ixodes rubicundus (Karoo paralysis tick) infestations. During periods of peak abundance of the ticks, Friesian oxen harboured almost twice or more than twice as many ticks as either Bonsmara oxen or cows. During periods of low tick abundance tick burdens on both cattle breeds were closely similar. It is envisaged that cattle can play an important role in an integrated control strategy against the Karro paralysis tick.  相似文献   

20.

Background

Diversity patterns of livestock species are informative to the history of agriculture and indicate uniqueness of breeds as relevant for conservation. So far, most studies on cattle have focused on mitochondrial and autosomal DNA variation. Previous studies of Y-chromosomal variation, with limited breed panels, identified two Bos taurus (taurine) haplogroups (Y1 and Y2; both composed of several haplotypes) and one Bos indicus (indicine/zebu) haplogroup (Y3), as well as a strong phylogeographic structuring of paternal lineages.

Methodology and Principal Findings

Haplogroup data were collected for 2087 animals from 138 breeds. For 111 breeds, these were resolved further by genotyping microsatellites INRA189 (10 alleles) and BM861 (2 alleles). European cattle carry exclusively taurine haplotypes, with the zebu Y-chromosomes having appreciable frequencies in Southwest Asian populations. Y1 is predominant in northern and north-western Europe, but is also observed in several Iberian breeds, as well as in Southwest Asia. A single Y1 haplotype is predominant in north-central Europe and a single Y2 haplotype in central Europe. In contrast, we found both Y1 and Y2 haplotypes in Britain, the Nordic region and Russia, with the highest Y-chromosomal diversity seen in the Iberian Peninsula.

Conclusions

We propose that the homogeneous Y1 and Y2 regions reflect founder effects associated with the development and expansion of two groups of dairy cattle, the pied or red breeds from the North Sea and Baltic coasts and the spotted, yellow or brown breeds from Switzerland, respectively. The present Y1-Y2 contrast in central Europe coincides with historic, linguistic, religious and cultural boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号