首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Tony Gamble 《Molecular ecology》2016,25(10):2114-2116
Next‐generation sequencing methods have initiated a revolution in molecular ecology and evolution (Tautz et al. 2010 ). Among the most impressive of these sequencing innovations is restriction site‐associated DNA sequencing or RAD‐seq (Baird et al. 2008 ; Andrews et al. 2016 ). RAD‐seq uses the Illumina sequencing platform to sequence fragments of DNA cut by a specific restriction enzyme and can generate tens of thousands of molecular genetic markers for analysis. One of the many uses of RAD‐seq data has been to identify sex‐specific genetic markers, markers found in one sex but not the other (Baxter et al. 2011 ; Gamble & Zarkower 2014 ). Sex‐specific markers are a powerful tool for biologists. At their most basic, they can be used to identify the sex of an individual via PCR. This is useful in cases where a species lacks obvious sexual dimorphism at some or all life history stages. For example, such tests have been important for studying sex differences in life history (Sheldon 1998 ; Mossman & Waser 1999 ), the management and breeding of endangered species (Taberlet et al. 1993 ; Griffiths & Tiwari 1995 ; Robertson et al. 2006 ) and sexing embryonic material (Hacker et al. 1995 ; Smith et al. 1999 ). Furthermore, sex‐specific markers allow recognition of the sex chromosome system in cases where standard cytogenetic methods fail (Charlesworth & Mank 2010 ; Gamble & Zarkower 2014 ). Thus, species with male‐specific markers have male heterogamety (XY) while species with female‐specific markers have female heterogamety (ZW). In this issue, Fowler & Buonaccorsi ( 2016 ) illustrate the ease by which RAD‐seq data can generate sex‐specific genetic markers in rockfish (Sebastes). Moreover, by examining RAD‐seq data from two closely related rockfish species, Sebastes chrysomelas and Sebastes carnatus (Fig.  1 ), Fowler & Buonaccorsi ( 2016 ) uncover shared sex‐specific markers and a conserved sex chromosome system.  相似文献   

2.
Sex chromosomes have different evolutionary properties compared to autosomes due to their hemizygous nature. In particular, recessive mutations are more readily exposed to selection, which can lead to faster rates of molecular evolution. Here, we report patterns of gene expression and molecular evolution for a group of butterflies. First, we improve the completeness of the Heliconius melpomene reference annotation, a neotropical butterfly with a ZW sex determination system. Then, we analyse RNA from male and female whole abdomens and sequence female ovary and gut tissue to identify sex‐ and tissue‐specific gene expression profiles in H. melpomene. Using these expression profiles, we compare (a) sequence divergence and polymorphism; (b) the strength of positive and negative selection; and (c) rates of adaptive evolution, for Z and autosomal genes between two species of Heliconius butterflies, H. melpomene and H. erato. We show that the rate of adaptive substitutions is higher for Z than autosomal genes, but contrary to expectation, it is also higher for male‐biased than female‐biased genes. Additionally, we find no significant increase in the rate of adaptive evolution or purifying selection on genes expressed in ovary tissue, a heterogametic‐specific tissue. Our results contribute to a growing body of literature from other ZW systems that also provide mixed evidence for a fast‐Z effect where hemizygosity influences the rate of adaptive substitutions.  相似文献   

3.
4.
The red‐spotted grouper Epinephelus akaara (E. akaara) is one of the most economically important marine fish in China, Japan and South‐East Asia and is a threatened species. The species is also considered a good model for studies of sex inversion, development, genetic diversity and immunity. Despite its importance, molecular resources for E. akaara remain limited and no reference genome has been published to date. In this study, we constructed a chromosome‐level reference genome of E. akaara by taking advantage of long‐read single‐molecule sequencing and de novo assembly by Oxford Nanopore Technology (ONT) and Hi‐C. A red‐spotted grouper genome of 1.135 Gb was assembled from a total of 106.29 Gb polished Nanopore sequence (GridION, ONT), equivalent to 96‐fold genome coverage. The assembled genome represents 96.8% completeness (BUSCO) with a contig N50 length of 5.25 Mb and a longest contig of 25.75 Mb. The contigs were clustered and ordered onto 24 pseudochromosomes covering approximately 95.55% of the genome assembly with Hi‐C data, with a scaffold N50 length of 46.03 Mb. The genome contained 43.02% repeat sequences and 5,480 noncoding RNAs. Furthermore, combined with several RNA‐seq data sets, 23,808 (99.5%) genes were functionally annotated from a total of 23,923 predicted protein‐coding sequences. The high‐quality chromosome‐level reference genome of E. akaara was assembled for the first time and will be a valuable resource for molecular breeding and functional genomics studies of red‐spotted grouper in the future.  相似文献   

5.
A unique species flock of large barbs (Barbus spp.) from Lake Tana is presented, from the level of fish stocks to molecules. Evidence is given for the species status of 14 morphotypes of large barbs. They distinctly differ in: (1) head and body morphometrics, (2) food preferences, (3) distribution patterns, (4) maximal body size, (5) spawning area and period, and (6) molecular genetic characters. Most types show early morphological divergence at small size. Major Histocompatibility Complex (MHC) genes, encoding cell membrane proteins involved in defence against pathogens, were found to be diagnostic for the species' genetic identity. A strong selective pressure on particular amino acid positions in the MHC protein sequence most probably arose in response to different pathogen loads from the newly invaded ecological niches after formation of Lake Tana, ca. two million years ago.Arguments for a sympatric origin of this species flock are discussed. An evolutionary scenario suggests a riverine ancestral Barbus intermedius invading Lake Tana after its formation by volcanic blocking of the Blue Nile river and its isolation by waterfalls. Specialisation for particular food types and disruptive selection on many feeding structures are hypothesized as the evolutionary drive in speciation. The causal relationship between the diversity in feeding structures and food types is explained from experiments and models. As an example, the potential food niche of three barb species is predicted from parameter values measured from a large set of feeding structures and tested against the actual gut contents. The co-occurrence of eight piscivorous barb species is unique for cyprinid fish, which lack oral jaw teeth and a stomach. The significance of this aquatic ecosystem as a multidisciplinary evolutionary laboratory and the need for a wise balance between exploitation and conservation is stressed.  相似文献   

6.
The major histocompatibility complex (MHC) is a cornerstone in the study of adaptive genetic diversity. Intriguingly, highly polymorphic MHC sequences are often not more similar within species than between closely related species. Divergent selection of gene duplicates, balancing selection maintaining trans‐species polymorphism (TSP) that predate speciation and parallel evolution of species sharing similar selection pressures can all lead to higher sequence similarity between species. In contrast, high rates of concerted evolution increase sequence similarity of duplicated loci within species. Assessing these evolutionary models remains difficult as relatedness and ecological similarities are often confounded. As sympatric species of flamingos are more distantly related than allopatric species, flamingos represent an ideal model to disentangle these evolutionary models. We characterized MHC Class I exon 3, Class IIB exon 2 and exon 3 of the six extant flamingo species. We found up to six MHC Class I loci and two MHC Class IIB loci. As all six species shared the same number of MHC Class IIB loci, duplication appears to predate flamingo speciation. However, the high rate of concerted evolution has prevented the divergence of duplicated loci. We found high sequence similarity between all species regardless of codon position. The latter is consistent with balancing selection maintaining TSP, as under this mechanism amino acid sites under pathogen‐mediated selection should be characterized by fewer synonymous codons (due to their common ancestry) than under parallel evolution. Overall, balancing selection maintaining TSP appears to result in high MHC similarity between species regardless of species relatedness and geographical distribution.  相似文献   

7.
8.
9.
Bottle gourd (Lagenaria siceraria) is an important vegetable crop as well as a rootstock for other cucurbit crops. In this study, we report a high‐quality 313.4‐Mb genome sequence of a bottle gourd inbred line, USVL1VR‐Ls, with a scaffold N50 of 8.7 Mb and the longest of 19.0 Mb. About 98.3% of the assembled scaffolds are anchored to the 11 pseudomolecules. Our comparative genomic analysis identifies chromosome‐level syntenic relationships between bottle gourd and other cucurbits, as well as lineage‐specific gene family expansions in bottle gourd. We reconstructed the genome of the most recent common ancestor of Cucurbitaceae, which revealed that the ancestral Cucurbitaceae karyotypes consisted of 12 protochromosomes with 18 534 protogenes. The 12 protochromosomes are largely retained in the modern melon genome, while have undergone different degrees of shuffling events in other investigated cucurbit genomes. The 11 bottle gourd chromosomes derive from the ancestral Cucurbitaceae karyotypes followed by 19 chromosomal fissions and 20 fusions. The bottle gourd genome sequence has facilitated the mapping of a dominant monogenic locus, Prs, conferring Papaya ring‐spot virus (PRSV) resistance in bottle gourd, to a 317.8‐kb region on chromosome 1. We have developed a cleaved amplified polymorphic sequence (CAPS) marker tightly linked to the Prs locus and demonstrated its potential application in marker‐assisted selection of PRSV resistance in bottle gourd. This study provides insights into the paleohistory of Cucurbitaceae genome evolution, and the high‐quality genome sequence of bottle gourd provides a useful resource for plant comparative genomics studies and cucurbit improvement.  相似文献   

10.
11.
Unraveling genetic population structure is challenging in species potentially characterized by large population size and high dispersal rates, often resulting in weak genetic differentiation. Genotyping a large number of samples can improve the detection of subtle genetic structure, but this may substantially increase sequencing cost and downstream bioinformatics computational time. To overcome this challenge, alternative, cost‐effective sequencing approaches, namely Pool‐seq and Rapture, have been developed. We empirically measured the power of resolution and congruence of these two methods in documenting weak population structure in nonmodel species with high gene flow comparatively to a conventional genotyping‐by‐sequencing (GBS) approach. For this, we used the American lobster (Homarus americanus) as a case study. First, we found that GBS, Rapture, and Pool‐seq approaches gave similar allele frequency estimates (i.e., correlation coefficient over 0.90) and all three revealed the same weak pattern of population structure. Yet, Pool‐seq data showed FST estimates three to five times higher than GBS and Rapture, while the latter two methods returned similar FST estimates, indicating that individual‐based approaches provided more congruent results than Pool‐seq. We conclude that despite higher costs, GBS and Rapture are more convenient approaches to use in the case of species exhibiting very weak differentiation. While both GBS and Rapture approaches provided similar results with regard to estimates of population genetic parameters, GBS remains more cost‐effective in project involving a relatively small numbers of genotyped individuals (e.g., <1,000). Overall, this study illustrates the complexity of estimating genetic differentiation and other summary statistics in complex biological systems characterized by large population size and migration rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号