首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Genotype‐by‐genotype (G×G) interactions are an essential requirement for the coevolution of hosts and parasites, but have only been documented in a small number of animal model systems. G×G effects arise from interactions between host and pathogen genotypes, such that some pathogen strains are more infectious in certain hosts and some hosts are more susceptible to certain pathogen strains. We tested for G×G interactions in the gypsy moth (Lymantria dispar) and its baculovirus. We infected 21 full‐sib families of gypsy moths with each of 16 isolates of baculovirus and measured the between‐isolate correlations of infection rate across host families for all pairwise combinations of isolates. Mean infectiousness varied among isolates and disease susceptibility varied among host families. Between‐isolate correlations of infection rate were generally less than one, indicating nonadditive effects of host and pathogen type consistent with G×G interactions. Our results support the presence of G×G effects in the gypsy moth–baculovirus interaction and provide empirical evidence that correlations in infection rates between field‐collected isolates are consistent with values that mathematical models have previously shown to increase the likelihood of pathogen polymorphism.  相似文献   

2.
Free asparagine in cereals is known to be the precursor of acrylamide, a neurotoxic and carcinogenic product formed during cooking processes. Thus, the development of crops with lower asparagine is of considerable interest to growers and the food industry. In this study, we describe the development and application of a rapid 1H‐NMR‐based analysis of cereal flour, that is, suitable for quantifying asparagine levels, and hence acrylamide‐forming potential, across large numbers of samples. The screen was applied to flour samples from 150 bread wheats grown at a single site in 2005, providing the largest sample set to date. Additionally, screening of 26 selected cultivars grown for two further years in the same location and in three additional European locations in the third year (2007) provided six widely different environments to allow estimation of the environmental (E) and G x E effects on asparagine levels. Asparagine concentrations in the 150 genotypes ranged from 0.32 to 1.56 mg/g dry matter in wholemeal wheat flours. Asparagine levels were correlated with plant height and therefore, due to recent breeding activities to produce semi‐dwarf varieties, a negative relationship with the year of registration of the cultivar was also observed. The multisite study indicated that only 13% of the observed variation in asparagine levels was heritable, whilst the environmental contribution was 36% and the GxE component was 43%. Thus, compared to some other phenotypic traits, breeding for low asparagine wheats presents a difficult challenge.  相似文献   

3.
The patterns of immunity conferred by host sex or age represent two sources of host heterogeneity that can potentially shape the evolutionary trajectory of disease. With each host sex or age encountered, a pathogen's optimal exploitative strategy may change, leading to considerable variation in expression of pathogen transmission and virulence. To date, these host characteristics have been studied in the context of host fitness alone, overlooking the effects of host sex and age on the fundamental virulence–transmission trade‐off faced by pathogens. Here, we explicitly address the interaction of these characteristics and find that host sex and age at exposure to a pathogen affect age‐specific patterns of mortality and the balance between pathogen transmission and virulence. When infecting age‐structured male and female Daphnia magna with different genotypes of Pasteuria ramosa, we found that infection increased mortality rates across all age classes for females, whereas mortality only increased in the earliest age class for males. Female hosts allowed a variety of trade‐offs between transmission and virulence to arise with each age and pathogen genotype. In contrast, this variation was dampened in males, with pathogens exhibiting declines in both virulence and transmission with increasing host age. Our results suggest that differences in exploitation potential of males and females to a pathogen can interact with host age to allow different virulence strategies to coexist, and illustrate the potential for these widespread sources of host heterogeneity to direct the evolution of disease in natural populations.  相似文献   

4.
Temperate kelp forests (Laminarians) are threatened by temperature stress due to ocean warming and photoinhibition due to increased light associated with canopy loss. However, the potential for evolutionary adaptation in kelp to rapid climate change is not well known. This study examined family‐level variation in physiological and photosynthetic traits in the early life‐cycle stages of the ecologically important Australasian kelp Ecklonia radiata and the response of E. radiata families to different temperature and light environments using a family × environment design. There was strong family‐level variation in traits relating to morphology (surface area measures, branch length, branch count) and photosynthetic performance (Fv/Fm) in both haploid (gametophyte) and diploid (sporophyte) stages of the life‐cycle. Additionally, the presence of family × environment interactions showed that offspring from different families respond differently to temperature and light in the branch length of male gametophytes and oogonia surface area of female gametophytes. Negative responses to high temperatures were stronger for females vs. males. Our findings suggest E. radiata may be able to respond adaptively to climate change but studies partitioning the narrow vs. broad sense components of heritable variation are needed to establish the evolutionary potential of E. radiata to adapt under climate change.  相似文献   

5.
Genotype‐by‐environment interactions (G × Es) describe genetic variation for phenotypic plasticity. Recent interest in the role of these interactions in sexual selection has identified G × Es across a diverse range of species and sexual traits. Additionally, theoretical work predicts that G × Es in sexual traits could help to maintain genetic variation, but could also disrupt the reliability of these traits as signals of mate quality. However, empirical tests of these theoretical predictions are scarce. We reared iso‐female lines of Drosophila simulans across two axes of environmental variation (diet and temperature) in a fully factorial design and tested for G × Es in the expression of cuticular hydrocarbons (CHCs), a multivariate sexual trait in this species. We find sex‐specific environmental, genetic and G × E effects on CHC expression, with G × Es for diet in both male and female CHC profile and a G × E for temperature in females. We also find some evidence for ecological crossover in these G × Es, and by quantifying variance components, genetic correlations and heritabilities, we show the potential for these G × Es to help maintain genetic variation and cause sexual signal unreliability in D. simulans CHC profiles.  相似文献   

6.
Phenotypic integration can be defined as the network of multivariate relationships among behavioural, physiological and morphological traits that describe the organism. Phenotypic integration plasticity refers to the change in patterns of phenotypic integration across environments or ontogeny. Because studies of phenotypic plasticity have predominantly focussed on single traits, a G × E interaction is typically perceived as differences in the magnitude of trait expression across two or more environments. However, many plastic responses involve coordinated responses in multiple traits, raising the possibility that relative differences in trait expression in different environments are an important, but often overlooked, source of G × E interaction. Here, we use phenotypic change vectors to statistically compare the multivariate life‐history plasticity of six Daphnia magna clones collected from four disparate European populations. Differences in the magnitude of plastic responses were statistically distinguishable for two of the six clones studied. However, differences in phenotypic integration plasticity were statistically distinguishable for all six of the clones studied, suggesting that phenotypic integration plasticity is an important component of G × E interactions that may be missed unless appropriate multivariate analyses are used.  相似文献   

7.
Phenotypic plasticity can contribute to the proliferation and invasion success of nonindigenous species by promoting phenotypic changes that increase fitness, facilitate range expansion and improve survival. In this study, differences in phenotypic plasticity were investigated using young‐of‐year pumpkinseed sunfish from colonies established with lentic and lotic populations originating in Canada (native) and Spain (non‐native). Individuals were subjected to static and flowing water treatments for 80 days. Inter‐ and intra‐population differences were tested using ancova and discriminant function analysis, and differences in phenotypic plasticity were tested through a manova of discriminant function scores. Differences between Iberian and North American populations were observed in dorsal fin length, pectoral fin position and caudal peduncle length. Phenotypic plasticity had less influence on morphology than genetic factors, regardless of population origin. Contrary to predictions, Iberian pumpkinseed exhibited lower levels of phenotypic plasticity than native populations, suggesting that canalization may have occurred in the non‐native populations during the processes of introduction and range expansion.  相似文献   

8.
Genetic architecture fundamentally affects the way that traits evolve. However, the mapping of genotype to phenotype includes complex interactions with the environment or even the sex of an organism that can modulate the expressed phenotype. Line‐cross analysis is a powerful quantitative genetics method to infer genetic architecture by analysing the mean phenotype value of two diverged strains and a series of subsequent crosses and backcrosses. However, it has been difficult to account for complex interactions with the environment or sex within this framework. We have developed extensions to line‐cross analysis that allow for gene by environment and gene by sex interactions. Using extensive simulation studies and reanalysis of empirical data, we show that our approach can account for both unintended environmental variation when crosses cannot be reared in a common garden and can be used to test for the presence of gene by environment or gene by sex interactions. In analyses that fail to account for environmental variation between crosses, we find that line‐cross analysis has low power and high false‐positive rates. However, we illustrate that accounting for environmental variation allows for the inference of adaptive divergence, and that accounting for sex differences in phenotypes allows practitioners to infer the genetic architecture of sexual dimorphism.  相似文献   

9.
10.
Free‐living amoebae (FLAs) are major reservoirs for a variety of bacteria, viruses, and fungi. The most studied mycophagic FLA, Acanthamoeba castellanii (Ac), is a potential environmental host for endemic fungal pathogens such as Cryptococcus spp., Histoplasma capsulatum, Blastomyces dermatitides, and Sporothrix schenckii. However, the mechanisms involved in this interaction are poorly understood. The aim of this work was to characterize the molecular instances that enable Ac to interact with and ingest fungal pathogens, a process that could lead to selection and maintenance of possible virulence factors. The interaction of Ac with a variety of fungal pathogens was analysed in a multifactorial evaluation that included the role of multiplicity of infection over time. Fungal binding to Ac surface by living image consisted of a quick process, and fungal initial extrusion (vomocytosis) was detected from 15 to 80 min depending on the organism. When these fungi were cocultured with the amoeba, only Candida albicans and Cryptococcus neoformans were able to grow, whereas Paracoccidioides brasiliensis and Sporothrix brasiliensis displayed unchanged viability. Yeasts of H. capsulatum and Saccharomyces cerevisiae were rapidly killed by Ac; however, some cells remained viable after 48 hr. To evaluate changes in fungal virulence upon cocultivation with Ac, recovered yeasts were used to infect Galleria mellonella, and in all instances, they killed the larvae faster than control yeasts. Surface biotinylated extracts of Ac exhibited intense fungal binding by FACS and fluorescence microscopy. Binding was also intense to mannose, and mass spectrometry identified Ac proteins with affinity to fungal surfaces including two putative transmembrane mannose‐binding proteins (MBP, L8WXW7 and MBP1, Q6J288). Consistent with interactions with such mannose‐binding proteins, Ac–fungi interactions were inhibited by mannose. These MBPs may be involved in fungal recognition by amoeba and promotes interactions that allow the emergence and maintenance of fungal virulence for animals.  相似文献   

11.
The role of plant intraspecific variation in plant–soil linkages is poorly understood, especially in the context of natural environmental variation, but has important implications in evolutionary ecology. We utilized three 18‐ to 21‐year‐old common gardens across an elevational gradient, planted with replicates of five Populus angustifolia genotypes each, to address the hypothesis that tree genotype (G), environment (E), and G × E interactions would affect soil carbon and nitrogen dynamics beneath individual trees. We found that soil nitrogen and carbon varied by over 50% and 62%, respectively, across all common garden environments. We found that plant leaf litter (but not root) traits vary by genotype and environment while soil nutrient pools demonstrated genotype, environment, and sometimes G × E interactions, while process rates (net N mineralization and net nitrification) demonstrated G × E interactions. Plasticity in tree growth and litter chemistry was significantly related to the variation in soil nutrient pools and processes across environments, reflecting tight plant–soil linkages. These data overall suggest that plant genetic variation can have differential affects on carbon storage and nitrogen cycling, with implications for understanding the role of genetic variation in plant–soil feedback as well as management plans for conservation and restoration of forest habitats with a changing climate.  相似文献   

12.
Sexual signals can be used to attract mates, but to be honest indicators of signaller quality they need to convey information reliably. However, environmental variation and genotype‐by‐environment (G × E) interactions have the potential to compromise the reliability of sexual signals. Here, we test the reliability of cuticular hydrocarbons (CHCs) as signals of heritable aspects of male attractiveness in Drosophila simulans. We examined the heritability of male attractiveness and a measure of the difference between fathers' and sons' CHC profiles across dietary and temperature environments. Our results show that environmental heterogeneity disrupts the similarity of some components of father and son CHC profile. However, overall male attractiveness is heritable within and across environments, so that sire attractiveness is a good predictor of son attractiveness even with environmental heterogeneity. This suggests that although some male CHC signals are unreliable, attractive genotypes retain their attractiveness across environments on average.  相似文献   

13.
The bacterium Erwinia amylovora, the causal agent of fire blight disease in apple, triggers its infection through the DspA/E effector which interacts with the apple susceptibility protein MdDIPM4. In this work, MdDIPM4 knockout has been produced in two Malus × domestica susceptible cultivars using the CRISPR/Cas9 system delivered via Agrobacterium tumefaciens. Fifty‐seven transgenic lines were screened to identify CRISPR/Cas9‐induced mutations. An editing efficiency of 75% was obtained. Seven edited lines with a loss‐of‐function mutation were inoculated with the pathogen. Highly significant reduction in susceptibility was observed compared to control plants. Sequencing of five potential off‐target sites revealed no mutation event. Moreover, our construct contained a heat‐shock inducible FLP/FRT recombination system designed specifically to remove the T‐DNA harbouring the expression cassettes for CRISPR/Cas9, the marker gene and the FLP itself. Six plant lines with reduced susceptibility to the pathogen were heat‐treated and screened by real‐time PCR to quantify the exogenous DNA elimination. The T‐DNA removal was further validated by sequencing in one plant line. To our knowledge, this work demonstrates for the first time the development and application of a CRISPR/Cas9‐FLP/FRT gene editing system for the production of edited apple plants carrying a minimal trace of exogenous DNA.  相似文献   

14.
Some regions of the genome exhibit sexual asymmetries in inheritance and are thus subjected to sex‐biased evolutionary forces. Maternal inheritance of mitochondrial DNA (mtDNA) enables mtDNA mutations harmful to males, but not females, to accumulate. In the face of male‐harmful mtDNA mutation accumulation, selection will favour the evolution of compensatory modifiers in the nuclear genome that offset fitness losses to males. The Y chromosome is a candidate to host these modifiers, because it is paternally inherited, known to harbour an abundance of genetic variation for male fertility, and therefore likely to be under strong selection to uphold male viability. Here, we test for intergenomic interactions involving mtDNA and Y chromosomes in male Drosophila melanogaster. Specifically, we examine effects of each of these genomic regions, and their interaction, on locomotive activity, across different environmental contexts – both dietary and social. We found that both the mtDNA haplotype and Y chromosome haplotype affected activity in males assayed in an environment perceived as social. These effects, however, were not evident in males assayed in perceived solitary environments, and neither social nor solitary treatments revealed evidence for intergenomic interactions. Finally, the magnitude and direction of these genetic effects was further contingent on the diet treatment of the males. Thus, genes within the mtDNA and Y chromosome are involved in genotype‐by‐environment interactions. These interactions might contribute to the maintenance of genetic variation within these asymmetrically inherited gene regions and complicate the dynamics of genetic interactions between the mtDNA and the Y chromosome.  相似文献   

15.
Miscanthus × giganteus is often regarded as one of the most promising crops to produce sustainable bioenergy. This perennial crop, renowned for its high productivity associated with low input requirements, in particular regarding fertilizers, is thought to have low environmental impacts, but few data are available to confirm this. Our study aimed at assessing nitrate leaching from Miscanthus × giganteus crops in farmers' fields, thus including a wide range of soil and cropping system conditions. We focused on the first years of growth after planting as experimental studies have suggested that Miscanthus × giganteus, once established, results in low nitrate leaching. We combined on‐farm measurements and modeling to estimate drainage, leached nitrogen, and nitrate concentration in drainage water in 38 fields located in Center‐East France during two winters (November 2010 to March 2011, November 2011 to March 2012). Nitrate leaching and nitrate concentration in drainage water were on average very low. Nitrate leaching averaged 6 kg N ha?1 whereas nitrate concentration averaged 12 mg l?1. These low values are attributable to the low estimates of drainage water (mean = 166 mm) but also to the low soil mineral nitrogen contents measured at the beginning of winter (mean = 37 kg N ha?1). Our results were, however, very variable, mainly due to the crop age: nitrate leaching and nitrate concentration were critically higher during the winter following the first growth year of Miscanthus × giganteus, reflecting the low development of the crop. This variability was also explained by the range of soil and cropping conditions explored in the on‐farm design: shallow and/or sandy soils as well as fields where establishment failed had a higher risk of nitrate leaching.  相似文献   

16.
Edwardsiella tarda is the predominant bacterium in farm‐cultured eel in Korea. Here, we evaluated the heterogeneity of 37 E. tarda isolates derived from Japanese eel with various origins (olive flounder, common carp and ornamental fish) between 2003 and 2010. Regardless of origins, the biochemical characteristics of E. tarda isolates were homogenous except hydrogen sulfide production, citrate utilization and mannitol fermentation. Based on the phylogenetic analysis of 16S rRNA, E. tarda isolates could be classified into two subgroups and displayed a close relation with Edwardsiella ictaluri and Edwardsiella hosinae lineages, suggesting that the subgroup I has been a predominant type in the Jeonnam and Jeonbuk provinces. I‐CeuI‐based pulsed‐field gel electrophoresis (PFGE) typing showed that the isolates from Japanese eels belonged to 11 pulsotypes, indicating that the presence of highly genomic diversity. Additionally, two isolates, ET‐060 and ET‐191, showed a high frequency of virulence genes (100%) and caused 90% and 60% mortality in Japanese eel, respectively. This finding suggests a substantial congruence of virulence gene profiles and pathogenicity. Our results demonstrate that the intraspecific diversity within E. tarda strains from Japanese eel has been in prior existence.

Significance and Impact of the Study

Based on the biochemical characteristics, the phylogenetic property of the 16S rRNA gene and PFGE types of Edwardsiella tarda, we could identify the intraspecific diversity of isolates from Japanese eel, Anguilla japonica in Korea. In addition, this study describes the strong congruence of virulence‐related genes and pathogenicity, suggesting that the virulence profile may be useful tool for prediction of pathogenicity.  相似文献   

17.
Octoploid strawberry (Fragaria × ananassa Duch.) is a model plant for research and one of the most important non‐climacteric fruit crops throughout the world. The associations between regulatory networks and metabolite composition were explored for one of the most critical agricultural properties in octoploid strawberry, fruit colour. Differences in the levels of flavonoids are due to the differences in the expression of structural and regulatory genes involved in flavonoid biosynthesis. The molecular mechanisms underlying differences in fruit colour were compared between red and white octoploid strawberry varieties. FaMYB genes had combinatorial effects in determining the red colour of fruit through the regulation of flavonoid biosynthesis in response to the increase in endogenous ABA at the final stage of fruit development. Analysis of alleles of FaMYB10 and FaMYB1 in red and white strawberry varieties led to the discovery of a white‐specific variant allele of FaMYB10, FaMYB10‐2. Its coding sequence possessed an ACTTATAC insertion in the genomic region encoding the C‐terminus of the protein. This insertion introduced a predicted premature termination codon, which suggested the loss of intact FaMYB10 protein playing a critical role in the loss of red colour in white octoploid strawberry.  相似文献   

18.
REALLY INTERESTING NEW GENE (RING) proteins play important roles in the regulation of many processes by recognizing target proteins for ubiquitination. Previously, we have shown that the expression of PtaRHE1, encoding a Populus tremula × Populus alba RING‐H2 protein with E3 ubiquitin ligase activity, is associated with tissues undergoing secondary growth. To further elucidate the role of PtaRHE1 in vascular tissues, we have undertaken a reverse genetic analysis in poplar. Within stem secondary vascular tissues, PtaRHE1 and its corresponding protein are expressed predominantly in the phloem. The downregulation of PtaRHE1 in poplar by artificial miRNA triggers alterations in phloem fibre patterning, characterized by an increased portion of secondary phloem fibres that have a reduced cell wall thickness and a change in lignin composition, with lower levels of syringyl units as compared with wild‐type plants. Following an RNA‐seq analysis, a biological network involving hormone stress signalling, as well as developmental processes, could be delineated. Several candidate genes possibly associated with the altered phloem fibre phenotype observed in amiRPtaRHE1 poplar were identified. Altogether, our data suggest a regulatory role for PtaRHE1 in secondary phloem fibre development.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号