首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 0 毫秒
1.
Grass populations in tropical savannas are highly resilient in relation to different fire regimes, but the mechanisms conferring such resilience have been poorly studied. Here we examine one such mechanism, high adult survival during fire, for three perennial grass species in an Australian savanna: Eriachne triseta Nees ex Steud, Eriachne avenacea R.Br and Chrysopogon latifolius S.T.Blake. The study examined survivorship after 3 years, at plots subject to experimental fire regimes (experiencing 0, 1, 2 or 3 fires over the study period) at the Territory Wildlife Park near Darwin in the Northern Territory, Australia. Mean survivorship was 79.9%, 64.3% and 62.0% for E. avenacea, E. triseta and C. latifolius respectively. For the two species of Eriachne, mean survivorship was highest (E. avenacea, 94.6%; E. triseta, 77.1%) in unburnt plots, whereas survivorship of C. latifolius was highest (71.7%) under highest fire frequency. However, variation in survivorship among fire regime treatments was not statistically significant for any of the study species. This negligible difference in survivorship among regimes points to fire tolerance (sprouting ability) as an important mechanism contributing to the resilience and persistence of perennial grasses in these savannas.  相似文献   

2.
Abstract. Above-ground grass biomass, necromass and tree litter were measured monthly over a vegetation cycle under tree clumps and in the open, in a humid savanna in Côte d'Ivoire. Grass production was calculated using several methods to better discriminate the contribution of the different grass compartments. Above-ground grass biomass is higher in the open than under canopies during the second part of the growing season, but there is no difference in grass necromass dynamics. Physical protection of grass necromass by tree litter against decaying under tree canopies was assumed to explain this discrepancy. Grass production, calculated as the sum of positive increments of biomass and necromass, equals 1073 g m-2 yr-1 in the open, against 74 % underneath trees. However, basal ground cover is only 50 % of that in the open. Comparison with other savanna studies as a whole does not show any significant effect of rainfall on the relationship between under-canopy and outside-canopy grass production. However, in arid conditions, grass production tends to increase under light-canopied trees (mostly Acacia legumes) which hardly affect grass photosynthesis, but add high quality litter to the soil surface.  相似文献   

3.
4.
Abstract Changes in plant abundance within a eucalypt savanna of north‐eastern Australia were studied using a manipulative fire experiment. Three fire regimes were compared between 1997 and 2001: (i) control, savanna burnt in the mid‐dry season (July) 1997 only; (ii) early burnt, savanna burnt in the mid‐dry season 1997 and early dry season (May) 1999; and (iii) late burnt, savanna burnt in the mid‐dry season 1997 and late dry season (October) 1999. Five annual surveys of permanent plots detected stability in the abundance of most species, irrespective of fire regime. However, a significant increase in the abundance of several subshrubs, ephemeral and twining perennial forbs, and grasses occurred in the first year after fire, particularly after late dry season fires. The abundance of these species declined toward prefire levels in the second year after fire. The dominant grass Heteropogon triticeus significantly declined in abundance with fire intervals of 4 years. The density of trees (>2 m tall) significantly increased in the absence of fire for 4 years, because of the growth of saplings; and the basal area of the dominant tree Corymbia clarksoniana significantly increased over the 5‐year study, irrespective of fire regime. Conservation management of these savannas will need to balance the role of regular fires in maintaining the diversity of herbaceous species with the requirement of fire intervals of at least 4‐years for allowing the growth of saplings >2 m in height. Whereas late dry season fires may cause some tree mortality, the use of occasional late fires may help maintain sustainable populations of many grasses and forbs.  相似文献   

5.
Abstract Recolonization patterns of a tall‐tussock grassland differ between low‐frequency and high‐intensity fires. A series of laboratory and field experiments were performed on the seed bank and on seeds of the main colonizing species (Carduus acanthoides, Cirsium vulgare, Lotus glaber) to determine and compare the effects of fire frequency and fire intensity on their recolonization potential. Seed‐bank size of colonizing species did not show a significant variation with contrasting fire frequencies, so overall interval‐dependent effects do not seem to affect their propagule pool at the time of fire. However, frequency of fire modified the proportion of viable seeds and their dormancy state according to species. Accumulated emergence from experimentally buried soft‐seeds of Lotus was lower after high‐intensity fires (following wind direction) than after back‐fires (against wind direction), but no significant effects of fire‐front direction on seedling emergence were observed for hard‐seeds of Lotus nor Carduus and Cirsium. Seedling emergence from buried seeds of Cirsium was increased with doubling fuel loads, particularly from deepen soil layers, where Cirsium had most of their viable seeds after a low frequency of fire. Emergence from hard‐seeds of Lotus was less promoted than Cirsium by doubling fuel loads, and according to analysis of excavated seedlings, it was completely inhibited from upper soil layers of the seed bank. Integration of species‐specific and burial depth‐specific responses of Cirsium and Lotus seeds according to fuel load, vertical distribution of the seed banks, seed dormant states and mean emergence depths, resulted in expected emergence values which agree with their previously observed patterns of recolonization. Thus, event‐dependent mechanisms had a better predictive value on recolonization success of the studied species than the observed cumulative effects of fire history on their seed‐bank size.  相似文献   

6.
Rainfall, fire and competition are emphasized as determinants of the density and basal area of woody vegetation in savanna. The semi‐arid savannas of Australia have substantial multi‐year rainfall deficits and insufficient grass fuel to carry annual fire in contrast to the mesic savannas in more northern regions. This study investigates the influence of rainfall deficit and excess, fire and woody competition on the population dynamics of a dominant tree in a semi‐arid savanna. All individuals of Eucalyptus melanophloia were mapped and monitored in three, 1‐ha plots over an 8.5 year period encompassing wet and dry periods. The plots were unburnt, burnt once and burnt twice. A competition index incorporating the size and distance of neighbours to target individuals was determined. Supplementary studies examined seedling recruitment and the transition of juvenile trees into the sapling layer. Mortality of burnt seedlings was related to lignotuber area but the majority of seedlings are fire resistant within 12 months of germination. Most of the juveniles (≤1 cm dbh) of E. melanophloia either died in the dry period or persisted as juveniles throughout 8.5 years of monitoring. Mortality of juveniles was positively related to woody competition and was higher in the dry period than the wet period. The transition of juveniles to a larger size class occurred at extremely low rates, and a subsidiary study along a clearing boundary suggests release from woody competition allows transition into the sapling layer. From three fires the highest proportion of saplings (1–10 cm dbh) reduced to juveniles was only 5.6% suggesting rates of ‘top‐kill’ of E. melanophloia as a result of fire are relatively low. Girth growth was enhanced in wet years, particularly for larger trees (>10 cm dbh), but all trees regardless of size or woody competition levels are vulnerable to drought‐induced mortality. Overall the results suggest that variations in rainfall, especially drought‐induced mortality, have a much stronger influence on the tree demographics of E. melanophloia in a semi‐arid savanna of north‐eastern Australia than fire.  相似文献   

7.
Survival and life expectancy are key demographic determinants of population dynamics. Using data collected in a field experiment monitored over 14 years in montane grassland of the Ukhahlamba‐Drakensberg Park, South Africa, we determined the effects of components of fire regime and plant structure on the survival and life expectancy of the tree Protea roupelliae subsp. roupelliae (Proteaceae). The field experiment comprised six plots (0.2–0.5 ha in area) from which the survival and life expectancies of 1567 juveniles (non‐reproductives) and 329 adults (reproductives) were estimated in response to differences in fire frequency, biennial seasonal fire, flame height, juvenile height, adult height, basal area and canopy vigour. Juvenile survival and life expectancies were highest when fires were excluded for 8 years. However, a fire after 12 years of fire exclusion and another fire 2 years later eliminated all juveniles. Over the same 14‐year period of biennial fires, juvenile survival was 5%. Juvenile survival and life expectancy were higher after biennial, winter fires than after annual, winter fires. Flame height had no effect on juvenile survival and life expectancy. Both survival and life expectancy of juveniles increased as plants got older and grew taller. Adult survival was unaffected by fire frequency, flame height or tree size, but the survival of adults in response to fire seasonality was inconclusive. Adults with low canopy vigour (<25%) were negatively affected by fire. Juvenile survival and life expectancy are critical bottlenecks in the demography of P. roupelliae. This species is neither a reseeder nor a resprouter. It avoids lethal fire damage by being restricted to rocky habitats with low fire intensities. Biennial winter fires least threaten the survival and life expectancy of P. roupelliae and impact least on its role in the summer feeding and breeding of Gurney's sugarbird.  相似文献   

8.
Abstract Seedling emergence in a eucalypt savanna of north‐eastern Australia was documented over a 12‐month period, between May 1999 and May 2000. Seedling emergence for grasses, forbs and subshrubs was found to mainly occur in a brief pulse at the start of the wet season following fire or the removal of grass biomass. Only a minor number of tree and shrub seedlings were detected overall. Burning, or cutting away the grass layer in unburnt savanna, in both the early (i.e. May) and the late (i.e. October) dry seasons significantly increased seedling emergence over undisturbed savanna that had been unburnt for 3 years. Removing the grass layer in unburnt savanna, during either the early or the late dry season, triggered similar seedling densities to savanna burnt in the early dry season. Late dry season fires promoted the greatest seedling density. We attribute this to the higher intensity, late dry season fires releasing a greater proportion of seed from dormancy, coupled with the higher density of soil seed reserves present in the late dry season.  相似文献   

9.
10.
Many species of mealybugs (Hemiptera: Pseudococcidae) are serious pests of economically important crops worldwide. We evaluated the influence of constant temperatures: 14, 16, 18, 20, 22, 24, 26, 28, 30, 32 and 34°C on the life history and demographic parameters of Spalgis epius (Lepidoptera: Lycaenidae), a candidate biological control agent of various species of mealybugs. No eggs completed their development at 14 and 34°C. Egg-to-adult developmental time significantly decreased from 89.9 days at 16°C to 20.4 days at 32°C. The estimated lower temperature threshold of 10.2°C and 416.6 degree-days were required to complete egg-to-adult development. The mortality of immature stages was maximum at 16 and 32°C and minimum at 28°C. The highest lifetime fecundity was recorded at 28°C and it significantly decreased at 32°C. The longevity of adults was about three times more at 16°C than at 30 and 32°C. The net reproductive rate (R 0) significantly increased with increased temperatures up to 28°C and significantly decreased at 32°C. The mean generation time (T) significantly decreased with increased temperature up to 30°C, but it significantly increased at 32°C. The intrinsic rate of population increase (r m ) was highest at 30°C. The finite rate of increase (λ) was significantly greater at 30°C than at other temperatures. These data suggest that S. epius can develop, reproduce and survive in a wide range of temperatures and thus could be regarded a potential biological control agent of mealybugs.  相似文献   

11.
Abstract Fire and grazing are important factors in the regulation of the grassland structure of the Flooding Pampa (Buenos Aires Province, Argentina dominated by Paspalum quadrifarium plants (henceforth ‘pajonal’)). Winter burning of pajonal is a practice that increases P. quadrifarium growth and its nutritious value for cattle. The objective of this work was to determine the responses of different demographic variables of P. quadrifarium growing in a grassland managed with different fire frequencies. The work was carried out in a pajonal situated in San Ignacio (Ayacucho county, Buenos Aires Province, Argentina). The treatments were: high fire frequency (0.8 fires per year) and low fire frequency (0.4 fires per year). The population of P. quadrifarium was affected by fire frequency. Biomass, number of tillers, and the relative production of tillers per plant did not change with fire frequency. Plant height was negatively affected by fire frequency. Whereas no plant mortality was observed in high fire frequency, 30% of the mature plants died at the end of the experiment in low fire frequency. In both treatments, plant mortality was size‐dependent and juvenile plants were more affected than mature ones. Burning had an immediate negative effect on mature and juvenile plants in terms of fecundity, survival of tillers and basal cover. Tiller survival and fecundity were significantly lower in burned plants than in unburned ones. In the high fire frequency treatment the number of ramets and/or genets and basal cover were greater than in the low fire frequency treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号