首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work aimed to investigate miR‐93‐5p expression in tumor tissue and its in vitro effects in colorectal cancer (CRC) by targeting programmed death ligand‐1 (PD‐L1). MiR‐93‐5p and PD‐L1 expression was detected in CRC and adjacent normal tissues by quantitative real‐time polymerase chain reaction and immunohistochemistry. The correlation between miR‐93‐5p and PD‐L1 was validated by a dual‐luciferase reporter assay. HCT116 and SW480 cells were divided into blank, miR‐NC, miR‐93‐5p mimics, miR‐93‐5p inhibitor, PD‐L1 small interfering RNA (siRNA) and miR‐93‐5p inhibitor + PD‐L1 siRNA groups, and wound‐healing and transwell assays were performed to detect cell migration and invasion, respectively. Protein expression was measured by western blotting. The secretion of cytokines was detected in the CRC cell/T coculture models. MiR‐93‐5p was downregulated in CRC tissues with upregulated PD‐L1. In PD‐L1‐negative patients, miR‐93‐5p expression was increased compared with that in PD‐L1‐positive patients. MiR‐93‐5p and PD‐L1 expression levels were associated with the tumor differentiation, lymphatic metastasis, TNM, Duke's stage, and prognosis of CRC. PD‐L1 siRNA weakened the migration and invasion abilities via decreased expression of matrix metalloproteinase‐1 (MMP‐1), ‐2, and ‐9, and these effects were abolished by the miR‐93‐5p inhibitor. Additionally, anti‐PD‐L1 upregulated the expressions of interleukin‐2 (IL‐2), tumor necrosis factor‐α (TNF‐α), and interferon γ (IFN‐γ) in the coculture of T cells with CRC cells, but downregulated the expressions of IL‐1β, IL‐10, and TGF‐β. However, these changes were partially reversed by miR‐93‐5p inhibition. miR‐93‐5p is expected to be a novel target for CRC treatment since it decreases the migration and invasion, as well as the immune evasion, of CRC cells via targeting PD‐L1.  相似文献   

2.
3.
The aim of our study was to explore the roles of miR‐671‐5p in mediating biological processes of osteosarcoma (OS) cells and clinical implications. On the basis of the OS samples acquired from the GEO database, the expression difference and overall survival analyses of miR‐671‐5p and TUFT1 were determined. The expression of MiR‐671‐5p was verified using OS cell lines. 3‐(4,5‐Dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide, wound‐healing, and Transwell assays were respectively carried out to probe whether miR‐671‐5p regulated OS cell vitality, migration, and invasion. The expression of miR‐671‐5p was downregulated in OS tissues and cell lines. High expression of MiR‐671‐5p blocked OS cell growth, migration, and invasion. TUFT1 was predicted and validated as the target of miR‐671‐5p in OS cells using in silico analysis and luciferase reporter assays. Forced expression of TUFT1 reversed the suppressive influence of miR‐671‐5p on cell viability, migration, and invasion of OS cells. Moreover, the low expression of miR‐671‐5p and the high expression of TUFT1 led to poor prognosis. Taken together, targeting miR‐671‐5p/TUFT1 may be a promising strategy for treating OS.  相似文献   

4.
Abdominal aortic aneurysm (AAA) is a serious vascular disease featured by inflammatory infiltration in aortic wall, aortic dilatation and extracellular matrix (ECM) degradation. Dysregulation of microRNAs (miRNAs) is implicated in AAA progress. By profiling miRNA expression in mouse AAA tissues and control aortas, we noted that miR‐126a‐5p was down‐regulated by 18‐fold in AAA samples, which was further validated with real‐time qPCR. This study was performed to investigate miR‐126a‐5p's role in AAA formation. In vivo, a 28‐d infusion of 1 μg/kg/min Angiotensin (Ang) II was used to induce AAA formation in Apoe‐/‐ mice. MiR‐126a‐5p (20 mg/kg; MIMAT0000137) or negative control (NC) agomirs were intravenously injected to mice on days 0, 7, 14 and 21 post‐Ang II infusion. Our data showed that miR‐126a‐5p overexpression significantly improved the survival and reduced aortic dilatation in Ang II‐infused mice. Elastic fragment and ECM degradation induced by Ang II were also ameliorated by miR‐126a‐5p. A strong up‐regulation of ADAM metallopeptidase with thrombospondin type 1 motif 4 (ADAMTS‐4), a secreted proteinase that regulates matrix degradation, was observed in smooth muscle cells (SMCs) of aortic tunica media, which was inhibited by miR‐126a‐5p. Dual‐luciferase results demonstrated ADAMTS‐4 as a new and valid target for miR‐126a‐5p. In vitro, human aortic SMCs (hASMCs) were stimulated by Ang II. Gain‐ and loss‐of‐function experiments further confirmed that miR‐126‐5p prevented Ang II‐induced ECM degradation, and reduced ADAMTS‐4 expression in hASMCs. In summary, our work demonstrates that miR‐126a‐5p limits experimental AAA formation and reduces ADAMTS‐4 expression in abdominal aortas.  相似文献   

5.
This study purposed to explore the correlation between miR‐129‐5p and TGIF2 and their impacts on glioma cell progression. Differentially expressed miRNA was screened through microarray analysis. MiR‐129‐5p expression levels in glioma tissues and cells were measured by qRT‐PCR. CCK‐8 assay, flow cytometer, transwell assay and wound‐healing assay were employed to detect cell proliferation, apoptosis and cycle, invasiveness and migration, respectively. Dual‐luciferase reporting assay was performed to confirm the targeted relationship between miR‐129‐5p and TGIF2. The effects of TGIF2 expression on cell biological functions were also investigated using the indicated methods. Tumour xenograft was applied to explore the impact of miR‐129‐5p on tumorigenesis in vivo. MiR‐129‐5p expression was down‐regulated in both glioma tissues and glioma cells, while TGIF2 expression was aberrantly higher than normal level. Dual‐luciferase reporter assay validated the targeting relation between miR‐129‐5p and TGIF2. Overexpression of miR‐129‐5p or down‐regulation of TGIF2 inhibited the proliferation, invasion and migration capacity of glioma cells U87 and U251, and meanwhile blocked the cell cycle as well as induced cell apoptosis. MiR‐129‐5p overexpression repressed the tumour development in vivo. MiR‐129‐5p and TGIF2 had opposite biological functions in glioma cells. MiR‐129‐5p could inhibit glioma cell progression by targeting TGIF2, shining light for the development of target treatment for glioma.  相似文献   

6.
Sepsis is a life‐threatening syndrome with a high risk of mortality, which is caused by the dysregulated host response to infection. We examined significant roles of circDMNT3B and miR‐20b‐5p in the intestinal mucosal permeability dysfunction of rats with sepsis. SD rats were randomly divided into 6 groups (n = 10/group): sham group, sepsis group, si‐negative control group, circDNMT3B‐si1 group, circDNMT3B‐si2 group and circDNMT3B‐si1 + anti‐miR‐20b‐5p group. The level of malondialdehyde (MDA) content, superoxide dismutase (SOD) activity, interleukin (IL)‐6 and IL‐10 levels were measured through ELISA assay kits. Cell survival rate and cell apoptosis were evaluated by Cell‐Counting Kit‐8 Assay and flow cytometry, respectively. Luciferase reporter assays were used to investigate interactions between miR‐20b‐5p circDMNT3B in HEK‐293T cells. Silencing circDNMT3B can significantly increase the level of d ‐lactic acid, FD‐40, MDA, diamine oxidase, IL‐10 and IL‐6, compared with sepsis group, while the SOD activity was lower. Silencing circDNMT3B leads to oxidative damage and influence inflammatory factors level in intestinal tissue. CircDNMT3B was identified as a target gene of miR‐20b‐5p. Silencing circDNMT3B decreased cell survival and induced apoptosis in Caco2 cells treated with LPS, which was reversed by anti‐miR‐20b‐5p. MiR‐20b‐5p inhibitor remarkably down‐regulated mentioned‐above levels, in addition to up‐regulate SOD activity, which may relieve the damage of intestinal mucosal permeability caused by silencing circDNMT3B in sepsis rats. Down‐regulation of circDMNT3B was conducive to the dysfunction of intestinal mucosal permeability via sponging miR‐20b‐5p in sepsis rats, which may provide the novel strategy for sepsis treatment in the future.  相似文献   

7.
MiR‐4732‐5p was previously found to be dysregulated in nipple discharge of breast cancer. However, the expression and function of miR‐4732‐5p in breast cancer remain largely unknown. Here, the expression of miR‐4732‐5p was detected using quantitative real‐time PCR in breast cancer tissues and cell lines. Cell proliferation, apoptosis, migration and invasion assays were performed to examine the effects of miR‐4732‐5p in breast cancer. In addition, mRNA sequencing, bioinformatics analysis, Western blot and luciferase assays were performed to identify the target of miR‐4732‐5p. Overall, miR‐4732‐5p was significantly down‐regulated in breast cancer tissues, especially in lymph node metastasis (LNM)‐negative tissues, compared with adjacent normal tissues. However, it was more highly expressed in LNM‐positive breast cancer tissues, compared with LNM‐negative ones. Expression of miR‐4732‐5p was positively correlated with lymph node metastasis, larger tumour size, advanced clinical stage, high Ki‐67 levels and poor prognosis. MiR‐4732‐5p promoted cell proliferation, migration and invasion in breast cancer. MiR‐4732‐5p directly targeted the 3′‐UTR of tetraspanin 13 (TSPAN13) and suppressed TSPAN13 expression at the mRNA and protein levels. These results suggested that miR‐4732‐5p may serve as a tumour suppressor in the initiation of breast cancer, but as a tumour promoter in breast cancer progression by targeting TSPAN13.  相似文献   

8.
MiRNAs contribute greatly to epithelial to mesenchymal transition (EMT) of peritoneal mesothelial cells (PMCs), which is a crucial step in peritoneal fibrosis (PF). In this study, we tried to profile whether miRNA expression differences exist after human umbilical cord mesenchymal stem cells (hUCMSCs) treatment in PF rats and investigate the possible role of miR‐153‐3p involved in anti‐EMT process. We randomly assigned 34 rats into three groups: control group (Group Control), MGO‐induced PF rats (Group MGO) and hUCMSCs‐treated rats (Group MGO + hUCMSCs). MiRNA microarrays and real‐time PCR analyses were conducted in three groups. α‐SMA, Snail1 and E‐cadherin expression were detected by Western blot. Luciferase reporter assays were used to detect the effects of miR‐153‐3p overexpression on Snai1 in rat peritoneal mesothelial cells (RPMCs). We identified differentially expressed miRNAs related to EMT, in which miR‐153‐3p demonstrated the greatest increase in Group MGO + hUCMSCs. Transient cotransfection of miR‐153‐3p mimics with luciferase expression plasmids resulted in a significant repression of Snai1 3′‐untranslated region luciferase activity in RPMCs. These studies suggest that miR‐153‐3p is a critical molecule in anti‐EMT effects of hUCMSCs in MGO‐induced PF rats. MiR‐153‐3p might exert its beneficial effect through directly targeting Snai1.  相似文献   

9.
Acquired chemoresistance represents a major obstacle in cancer treatment, the underlying mechanism of which is complex and not well understood. MiR‐425‐5p has been reported to be implicated tumorigenesis in a few cancer types. However, its role in regulating chemoresistance has not been investigated in colorectal cancer (CRC) cells. Microarray analysis was performed in isogenic chemosensitive and chemoresistant HCT116 cell lines to identify differentially expressed miRNAs. miRNA quantitative real‐time PCR was used to detect miR‐425‐5p expression levels between drug resistant and parental cancer cells. MiR‐425‐5p mimic and inhibitor were transfected, followed by CellTiter‐Glo® assay to examine drug sensitivity in these two cell lines. Western Blot and luciferase assay were performed to investigate the direct target of miR‐425‐5p. Xenograft mouse models were used to examine in vivo function of miR‐425‐5p. Our data showed that expression of miR‐425‐5p was significantly up‐regulated in HCT116‐R compared with parental HCT116 cells. Inhibition of miR‐425‐5p reversed chemoresistance in HCT116‐R cells. Programmed cell death 10 (PDCD10) is the direct target of miR‐425‐5p which is required for the regulatory role of miR‐425‐5p in chemoresistance. MiR‐425‐5p inhibitor sensitized HCT116‐R xenografts to chemo drugs in vivo. Our study demonstrated that miR‐425‐5p regulates chemoresistance of CRC cells by modulating PDCD10 expression level both in vitro and in vivo. MiR‐425‐5p may represent a new therapeutic target for the intervention of CRC.  相似文献   

10.
11.
12.
Colorectal cancer (CRC) remains both common and fatal, and its successful treatment is greatly limited by the development of stem cell‐like characteristics (stemness) and chemoresistance. MiR‐30‐5p has been shown to function as a tumor suppressor by targeting the Wnt/β‐catenin signaling pathway, but its activity in CRC has never been assessed. We hypothesized that miR‐30‐5p exerts anti‐oncogenic effects in CRC by regulating the USP22/Wnt/β‐catenin signaling axis. In the present study, we demonstrate that tissues from CRC patients and human CRC cell lines show significantly decreased miR‐30‐5p family expression. After identifying the 3’UTR of USP22 as a potential binding site of miR‐30‐5p, we constructed a luciferase reporter containing the potential miR‐30‐5p binding site and measured the effects on USP22 expression. Western blot assays showed that miR‐30‐5p decreased USP22 protein expression in HEK293 and Caco2 CRC cells. To evaluate the effects of miR‐30‐5p on CRC cell stemness, we isolated CD133 + CRC cells (Caco2 and HCT15). We then determined that, while miR‐30‐5p is normally decreased in CD133 + CRC cells, miR‐30‐5p overexpression significantly reduces expression of stem cell markers CD133 and Sox2, sphere formation, and cell proliferation. Similarly, we found that miR‐30‐5p expression is normally reduced in 5‐fluorouracil (5‐FU) resistant CRC cells, whereas miR‐30‐5p overexpression in 5‐FU resistant cells reduces sphere formation and cell viability. Inhibition of miR‐30‐5p reversed the process. Finally, we determined that miR‐30‐5p attenuates the expression of Wnt/β‐catenin signaling target genes (Axin2 and MYC), Wnt luciferase activity, and β‐catenin protein levels in CRC stem cells.  相似文献   

13.
The study was aimed to screen out miRNAs with differential expression in hepatocellular carcinoma (HCC), and to explore the influence of the expressions of these miRNAs and their target gene on HCC cell proliferation, invasion and apoptosis. MiRNAs with differential expression in HCC were screened out by microarray analysis. The common target gene of these miRNAs (miR‐139‐5p, miR‐940 and miR‐193a‐5p) was screened out by analysing the target genes profile (acquired from Targetscan) of the three miRNAs. Expression levels of miRNAs and SPOCK1 were determined by quantitative real time polymerase chain reaction (qRT‐PCR). The target relationships were verified by dual luciferase reporter gene assay and RNA pull‐down assay. Through 3‐(4,5‐dimethyl‐2‐thiazolyl)‐2,5‐diphenyl‐2‐H‐tetrazolium bromide,thiazolyl blue tetrazolium bromide (MTT) and transwell assays and flow cytometry, HCC cell viability, invasion and apoptosis were determined. In vivo experiment was conducted in nude mice to investigate the influence of three miRNAs on tumour growth. Down‐regulation of miR‐139‐5p, miR‐940 and miR‐193a‐5p was found in HCC. Overexpression of these miRNAs suppressed HCC cell viability and invasion, promoted apoptosis and inhibited tumour growth. SPOCK1, the common target gene of miR‐139‐5p, miR‐940 and miR‐193a‐5p, was overexpressed in HCC. SPOCK1 overexpression promoted proliferation and invasion, and restrained apoptosis of HCC cells. MiR‐139‐5p, miR‐940 and miR‐193a‐5p inhibited HCC development through targeting SPOCK1.  相似文献   

14.
Sporadic Alzheimer's disease (AD) is the most prevalent form of dementia, but no clear disease‐initiating mechanism is known. Aβ deposits and neuronal tangles composed of hyperphosphorylated tau are characteristic for AD. Here, we analyze the contribution of microRNA‐125b (miR‐125b), which is elevated in AD. In primary neurons, overexpression of miR‐125b causes tau hyperphosphorylation and an upregulation of p35, cdk5, and p44/42‐MAPK signaling. In parallel, the phosphatases DUSP6 and PPP1CA and the anti‐apoptotic factor Bcl‐W are downregulated as direct targets of miR‐125b. Knockdown of these phosphatases induces tau hyperphosphorylation, and overexpression of PPP1CA and Bcl‐W prevents miR‐125b‐induced tau phosphorylation, suggesting that they mediate the effects of miR‐125b on tau. Conversely, suppression of miR‐125b in neurons by tough decoys reduces tau phosphorylation and kinase expression/activity. Injecting miR‐125b into the hippocampus of mice impairs associative learning and is accompanied by downregulation of Bcl‐W, DUSP6, and PPP1CA, resulting in increased tau phosphorylation in vivo. Importantly, DUSP6 and PPP1CA are also reduced in AD brains. These data implicate miR‐125b in the pathogenesis of AD by promoting pathological tau phosphorylation.  相似文献   

15.
MicroRNAs (miRNAs) have already been proposed to be implicated in the development of ischaemic stroke. We aim to investigate the role of miR‐130a in the neurological deficit and angiogenesis in rats with ischaemic stroke by regulating X‐linked inhibitor of apoptosis protein (XIAP). Middle cerebral artery occlusion (MCAO) models were established by suture‐occluded method, and MCAO rats were then treated with miR‐130a mimics/inhibitors or/and altered XIAP for detection of changes of rats’ neurological function, nerve damage and angiogenesis in MCAO rats. The oxygen‐glucose deprivation (OGD) cellular models were established and respectively treated to determine the roles of miR‐130a and XIAP in neuronal viability and apoptosis. The expression levels of miR‐130a and XIAP in brain tissues of MCAO rats and OGD‐treated neurons were detected. The binding site between miR‐130a and XIAP was verified by luciferase activity assay. MiR‐130a was overexpressed while XIAP was down‐regulated in MCAO rats and OGD‐treated neurons. In animal models, suppressed miR‐130a improved neurological function, alleviated nerve damage and increased new vessels in brain tissues of rats with MCAO. In cellular models, miR‐130a inhibition promoted neuronal viability and suppressed apoptosis. Inhibited XIAP reversed the effect of inhibited miR‐130a in both MCAO rats and OGD‐treated neurons. XIAP was identified as a target of miR‐130a. Our study reveals that miR‐130a regulates neurological deficit and angiogenesis in rats with MCAO by targeting XIAP.  相似文献   

16.
17.
Detection and treatment of lung cancer still remain a clinical challenge. This study aims to validate exosomal microRNA‐96 (miR‐96) as a serum biomarker for lung cancer and understand the underlying mechanism in lung cancer progression. MiR‐96 expressions in normal and lung cancer patients were characterized by qPCR analysis. Changes in cell viability, migration and cisplatin resistance were monitored after incubation with isolated miR‐96‐containing exosomes, anti‐miR‐96 and anti‐miR negative control (anti‐miR‐NC) transfections. Dual‐luciferase reporter assay was used to study interaction between miR‐96 and LIM‐domain only protein 7 (LMO7). Changes induced by miR‐96 transfection and LMO7 overexpression were also evaluated. MiR‐96 expression was positively correlated with high‐grade and metastatic lung cancers. While anti‐miR‐96 transfection exhibited a tumour‐suppressing function, exosomes isolated from H1299 enhanced cell viability, migration and cisplatin resistance. Potential miR‐96 binding sites were found within the 3′‐UTR of wild‐type LMO7 gene, but not of mutant LMO7 gene. LMO7 expression was inversely correlated with lung cancer grades, and LMO7 overexpression reversed promoting effect of miR‐96. We have identified exosomal miR‐96 as a serum biomarker of malignant lung cancer. MiR‐96 promotes lung cancer progression by targeting LMO7. The miR‐96‐LMO7 axis may be a therapeutic target for lung cancer patients, and new diagnostic or therapeutic strategies could be developed by targeting the miR‐96‐LMO7 axis.  相似文献   

18.
19.
Long‐term peritoneal dialysis (PD) can lead to the induction of mesothelial/epithelial‐mesenchymal transition (MMT/EMT) and fibrosis; these effects eventually result in ultrafiltration failure and the discontinuation of PD. MicroRNA‐302c (miR‐302c) is believed to be involved in regulating tumour cell growth and metastasis by suppressing MMT, but the effect of miR‐302c on MMT in the context of PD is unknown. MiR‐302c levels were measured in mesothelial cells isolated from the PD effluents of continuous ambulatory peritoneal dialysis patients. After miR‐302c overexpression using lentivirus, human peritoneal mesothelial cell line (HMrSV5) and PD mouse peritoneum were treated with TGF‐β1 or high glucose peritoneal dialysate respectively. MiR‐302c expression level and MMT‐related factors alteration were observed. In addition, fibrosis of PD mouse peritoneum was alleviated by miR‐302c overexpression. Furthermore, the expression of connective tissue growth factor (CTGF) was negatively related by miR‐302c, and LV‐miR‐302c reversed the up‐regulation of CTGF induced by TGF‐β1. These data suggest that there is a novel TGF‐β1/miR‐302c/CTGF pathway that plays a significant role in the process of MMT and fibrosis during PD. MiR‐302c might be a potential biomarker for peritoneal fibrosis and a novel therapeutic target for protection against peritoneal fibrosis in PD patients.  相似文献   

20.
Osteoarthritis (OA) is a most common form of arthritis worldwide leading to significant disability. MicroRNAs (miRNAs) are non‐coding RNAs involved in various aspects of cartilage development, homoeostasis and pathology. Several miRNAs have been identified which have shown to regulate expression of target genes relevant to OA pathogenesis such as matrix metalloproteinase (MMP)‐13, cyclooxygenase (COX)‐2, etc. Epigallocatechin‐3‐O‐gallate (EGCG), the most abundant and active polyphenol in green tea, has been reported to have anti‐arthritic effects, however, the role of EGCG in the regulation of miRNAs has not been investigated in OA. Here, we showed that EGCG inhibits COX‐2 mRNA/protein expression or prostaglandin E2 (PGE2) production via up‐regulating microRNA hsa‐miR‐199a‐3p expression in interleukin (IL)‐1β‐stimulated human OA chondrocytes. This negative co‐regulation of hsa‐miR‐199a‐3p and COX‐2 by EGCG was confirmed by transfection of OA chondrocytes with anti‐miR‐199a‐3p. Transfection of OA chondrocytes with anti‐miR‐199a‐3p significantly enhanced COX‐2 expression and PGE2 production (P < 0.001), while EGCG treatment significantly inhibited anti‐miR‐199a‐3p transfection‐induced COX‐2 expression or PGE2 production in a dose‐dependent manner. These results were further re‐validated by co‐treatment of these transfection OA chondrocytes with IL‐1β and EGCG. EGCG treatment consistently up‐regulated the IL‐1β‐decreased hsa‐miR‐199a‐3p expression (P < 0.05) and significantly inhibited the IL‐1β‐induced COX‐2 expression/PGE2 production (P < 0.05) in OA chondrocytes transfected with anti‐hsa‐miR‐199a‐3p. Taken together, these results clearly indicate that EGCG inhibits COX‐2 expression/PGE2 production via up‐regulation of hsa‐miR‐199a‐3p expression. These novel pharmacological actions of EGCG on IL‐1β‐stimulated human OA chondrocytes provide new suggestions that EGCG or EGCG‐derived compounds inhibit cartilage breakdown or pain by up‐regulating the expression of microRNAs in human chondrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号