首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aims Understanding of the ecophysiological dynamics of forest canopy photosynthesis and its spatial and temporal scaling is crucial for revealing ecological response to climate change. Combined observations and analyses of plant ecophysiology and optical remote sensing would enable us to achieve these studies. In order to examine the utility of spectral vegetation indices (VIs) for assessing ecosystem-level photosynthesis, we investigated the relationships between canopy-scale photosynthetic productivity and canopy spectral reflectance over seasons for 5 years in a cool, temperate deciduous broadleaf forest at 'Takayama' super site in central Japan.Methods Daily photosynthetic capacity was assessed by in situ canopy leaf area index (LAI), (LAI × V cmax [single-leaf photosynthetic capacity]), and the daily maximum rate of gross primary production (GPP max) was estimated by an ecosystem carbon cycle model. We examined five VIs: normalized difference vegetation index (NDVI), enhanced vegetation index (EVI), green–red vegetation index (GRVI), chlorophyll index (CI) and canopy chlorophyll index (CCI), which were obtained by the in situ measurements of canopy spectral reflectance.Important findings Our in situ observation of leaf and canopy characteristics, which were analyzed by an ecosystem carbon cycling model, revealed that their phenological changes are responsible for seasonal and interannual variations in canopy photosynthesis. Significant correlations were found between the five VIs and canopy photosynthetic capacity over the seasons and years; four of the VIs showed hysteresis-type relationships and only CCI showed rather linear relationship. Among the VIs examined, we applied EVI–GPP max relationship to EVI data obtained by Moderate Resolution Imaging Spectroradiometer to estimate the temporal and spatial variation in GPP max over central Japan. Our findings would improve the accuracy of satellite-based estimate of forest photosynthetic productivity in fine spatial and temporal resolutions, which are necessary for detecting any response of terrestrial ecosystem to meteorological fluctuations.  相似文献   

2.
Using optical and photosynthetic assays from a canopy access crane, we examined the photosynthetic performance of tropical dry forest canopies during the dry season in Parque Metropolitano, Panama City, Panama. Photosynthetic gas exchange, chlorophyll fluorescence, and three indices derived from spectral reflectance (the normalized difference vegetation index, the simple ratio, and the photochemical reflectance index) were used as indicators of structural and physiological components of photosynthetic activity. Considerable interspecific variation was evident in structural and physiological behavior in this forest stand, which included varying degrees of foliage loss, altered leaf orientation, stomatal closure, and photosystem II downregulation. The normalized difference vegetation index and the simple ratio were closely related to canopy structure and absorbed radiation for most species, but failed to capture the widely divergent photosynthetic behavior among evergreen species exhibiting various degrees of downregulation. The photochemical reflectance index and chlorophyll fluorescence were related indicators of photosynthetic downregulation, which was not detectable with the normalized difference vegetation index or simple ratio. These results suggest that remote sensing methods that ignore downregulation cannot capture within‐stand variability in actual carbon flux for this diverse forest type. Instead, these findings support a sampling approach that derives photosynthetic fluxes from a consideration of both canopy light absorption (e.g., normalized difference vegetation index) and photosynthetic light‐use efficiency (e.g., photochemical reflectance index). Such sampling should improve our understanding of controls on photosynthetic carbon uptake in diverse tropical forest stands.  相似文献   

3.
湖南省MODIS遥感植被指数的时空变化   总被引:6,自引:0,他引:6  
采用最大值合成法,以MODIS 250 m分辨率图像为基础,提取湖南省2005年逐月植被指数值.通过月植被指数对比分析,将湖南省分为6个区描述其空间分布特征.利用5个分布均匀的气象站观测的月降水量和月平均气温数据,分析了湖南省植被指数的时相变化特征.结果表明:湖南省MODIS植被指数空间分布与植被覆盖率呈正相关,且具有一定的地域性;MODIS植被指数随季节变化,其月平均植被指数曲线形似开口向下的二次抛物线,最大值出现在7月份;MODIS月平均EVI值小于MODIS月平均NDVI值;植被指数的季节变化受温度影响较大,并且随着纬度的降低,温度对植被指数的影响力下降;MODIS EVI的变化规律比MODIS NDVI更加明显,其二次曲线更为光滑,月平均值由低逐渐上升到最大值,再逐渐降低,而后者的曲线在最大值两侧有细微波动现象.  相似文献   

4.
Retrieving leaf chlorophyll content at a range of spatio-temporal scales is central to monitoring vegetation productivity, identifying physiological stress and managing biological resources. However, estimating leaf chlorophyll over broad spatial extents using ground-based traditional methods is time and resource heavy. Satellite-derived spectral vegetation indices (VIs) are commonly used to estimate leaf chlorophyll content, however they are often developed and tested on broadleaf species. Relatively little research has assessed VIs for different leaf structures, particularly needle leaves which represent a large component of boreal forest and significant global ecosystems. This study tested the performance of 47 published VIs for estimating foliar chlorophyll content from different leaf and canopy structures (broadleaf and needle). Coniferous and deciduous sites were selected in Ontario, Canada, representing different dominant vegetation species (Picea mariana and Acer saccharum) and a variety of canopy structures. Leaf reflectance data was collected using an ASD Fieldspec Pro spectroradiometer (400–2500 nm) for over 300 leaf samples. Canopy reflectance data was acquired from the medium resolution imaging spectrometer (MERIS). At the canopy level, with both leaf types combined, the DD-index showed the strongest relationship with leaf chlorophyll (R2 = 0.78; RMSE = 3.56 μg/cm2), despite differences in leaf structure. For needleleaf trees alone the relationship with the top VI was weaker (D[red], R2 = 0.71; RMSE = 2.32 μg/cm2). A sensitivity study using simulated VIs from physically-modelled leaf (PROSPECT) and canopy (4-Scale) reflectance was performed in order to further investigate these results and assess the impacts of different background types and leaf area index on the VIs’ performance. At the leaf level, the MNDVI8 index showed a strong linearity to changing chlorophyll and negligible difference to leaf structure/type. At canopy level, the best performing VIs were relatively consistent where LAI  4, but responded strongly to differences in background at low canopy coverage (LAI = 2). This research provides comprehensive assessments for the use of spectral indices in retrieval of spatially-continuous leaf chlorophyll content at the leaf (MTCI: R2 = 0.72; p < 0.001) and canopy (DD: R2 = 0.78; p < 0.001) level for resource management over different spatial and temporal scales.  相似文献   

5.
Rice productivity can be limited by available photosynthetic assimilates from leaves. However, the lack of significant correlation between crop yield and leaf photosynthetic rate (A) is noted frequently. Engineering for improved leaf photosynthesis has been argued to yield little increase in crop productivity because of complicated constraints and feedback mechanisms when moving up from leaf to crop level. Here we examined the extent to which natural genetic variation in A can contribute to increasing rice productivity. Using the mechanistic model GECROS, we analysed the impact of genetic variation in A on crop biomass production, based on the quantitative trait loci for various photosynthetic components within a rice introgression line population. We showed that genetic variation in A of 25% can be scaled up equally to crop level, resulting in an increase in biomass of 22–29% across different locations and years. This was probably because the genetic variation in A resulted not only from Rubisco (ribulose 1,5‐bisphosphate carboxylase/oxygenase)‐limited photosynthesis but also from electron transport‐limited photosynthesis; as a result, photosynthetic rates could be improved for both light‐saturated and light‐limited leaves in the canopy. Rice productivity could be significantly improved by mining the natural variation in existing germ‐plasm, especially the variation in parameters determining light‐limited photosynthesis.  相似文献   

6.
Leaf quantity (i.e., canopy leaf area index, LAI), quality (i.e., per‐area photosynthetic capacity), and longevity all influence the photosynthetic seasonality of tropical evergreen forests. However, these components of tropical leaf phenology are poorly represented in most terrestrial biosphere models (TBMs). Here, we explored alternative options for the representation of leaf phenology effects in TBMs that employ the Farquahar, von Caemmerer & Berry (FvCB) representation of CO2 assimilation. We developed a two‐fraction leaf (sun and shade), two‐layer canopy (upper and lower) photosynthesis model to evaluate different modeling approaches and assessed three components of phenological variations (i.e., leaf quantity, quality, and within‐canopy variation in leaf longevity). Our model was driven by the prescribed seasonality of leaf quantity and quality derived from ground‐based measurements within an Amazonian evergreen forest. Modeled photosynthetic seasonality was not sensitive to leaf quantity, but was highly sensitive to leaf quality and its vertical distribution within the canopy, with markedly more sensitivity to upper canopy leaf quality. This is because light absorption in tropical canopies is near maximal for the entire year, implying that seasonal changes in LAI have little impact on total canopy light absorption; and because leaf quality has a greater effect on photosynthesis of sunlit leaves than light limited, shade leaves and sunlit foliage are more abundant in the upper canopy. Our two‐fraction leaf, two‐layer canopy model, which accounted for all three phenological components, was able to simulate photosynthetic seasonality, explaining ~90% of the average seasonal variation in eddy covariance‐derived CO2 assimilation. This work identifies a parsimonious approach for representing tropical evergreen forest photosynthetic seasonality in TBMs that utilize the FvCB model of CO2 assimilation and highlights the importance of incorporating more realistic phenological mechanisms in models that seek to improve the projection of future carbon dynamics in tropical evergreen forests.  相似文献   

7.
不同大气校正方法对森林叶面积指数遥感估算影响的比较   总被引:5,自引:1,他引:4  
利用TM原始图像以及经过6S模型和基于影像自身的Gilabert模型大气校正后的地面绝对反射率图像,分别计算了褒河流域阔叶林和针阔混交林2种林型的5类光谱植被指数(SR、NDVI、MNDVI、ARVI和RSR),并建立各林型森林叶面积指数与同时相的各个植被指数的相关关系。结果表明,2种大气校正模型均显著提高了各植被指数与森林叶面积指数的相关关系,除了对森林叶面积指数与植被指数SR和NDVI的相关关系影响不显著外,对森林叶面积指数与植被指数MNDVI、ARVI和RSR相关关系的影响均非常显著。说明不同大气校正模型对叶面积指数的遥感估算结果有较大影响。因此,在利用遥感数据进行定量分析、信息提取和生态遥感应用时,不仅要进行大气校正,而且还要慎重选择大气校正模型和植被指数。  相似文献   

8.
Amazon droughts have impacted regional ecosystem functioning as well as global carbon cycling. The severe dry‐season droughts in 2005 and 2010, driven by Atlantic sea surface temperature (SST) anomaly, have been widely investigated in terms of drought severity and impacts on ecosystems. Although the influence of Pacific SST anomaly on wet‐season precipitation has been well recognized, it remains uncertain to what extent the droughts driven by Pacific SST anomaly could affect forest greenness and photosynthesis in the Amazon. Here, we examined the monthly and annual dynamics of forest greenness and photosynthetic capacity when Amazon ecosystems experienced an extreme drought in 2015/2016 driven by a strong El Niño event. We found that the drought during August 2015–July 2016 was one of the two most severe meteorological droughts since 1901. Due to the enhanced solar radiation during this drought, overall forest greenness showed a small increase, and 21.6% of forests even greened up (greenness index anomaly ≥1 standard deviation). In contrast, solar‐induced chlorophyll fluorescence (SIF), an indicator of vegetation photosynthetic capacity, showed a significant decrease. Responses of forest greenness and photosynthesis decoupled during this drought, indicating that forest photosynthesis could still be suppressed regardless of the variation in canopy greenness. If future El Niño frequency increases as projected by earth system models, droughts would result in persistent reduction in Amazon forest productivity, substantial changes in tree composition, and considerable carbon emissions from Amazon.  相似文献   

9.
冠层绿色叶片(光合组分)的光合有效辐射分量(绿色FPAR)真实地反映了植被与外界进行物质和能量交换的能力,获取冠层光合组分吸收的太阳光合有效辐射,对生态系统生产力的遥感估算精度的提高具有重要的意义。研究以落叶阔叶林为例,基于SAIL模型模拟森林冠层光合组分和非光合组分吸收的光合有效辐射,研究冠层FPAR变化规律以及与植被指数的相关关系。结果表明,冠层结构的改变会影响冠层对PAR的吸收能力,冠层绿色FPAR的大小与植被面积指数及光合组分面积比相关;在高覆盖度植被区,冠层绿色FPAR占冠层总FPAR的80%以上,非光合组分的贡献较小,但在低植被覆盖区,当光合组分和非光合组分面积相同时,绿色FPAR不及冠层总FPAR的50%;相比于NDVI,北方落叶阔叶林冠层EVI与绿色FPAR存在更为显著的线性相关关系(R~20.99)。  相似文献   

10.
The integration of genetic information with ecological and phenotypic data constitutes an effective approach to gain insight into the mechanisms determining interpopulation variability and the evolutionary processes underlying local adaptation and incipient speciation. Here, we use the Pyrenean Morales grasshopper (Chorthippus saulcyi moralesi) as study system to (i) analyse the relative role of genetic drift and selection in range‐wide patterns of phenotypic differentiation and (ii) identify the potential selective agents (environment, elevation) responsible for variation. We also test the hypothesis that (iii) the development of dispersal‐related traits is associated with different parameters related to population persistence/turnover, including habitat suitability stability over the last 120 000 years, distance to the species distribution core and population genetic variability. Our results indicate that selection shaped phenotypic differentiation across all the studied morphological traits (body size, forewing length and shape). Subsequent analyses revealed that among‐population differentiation in forewing length was significantly explained by a temperature gradient, suggesting an adaptive response to thermoregulation or flight performance under contrasting temperature regimes. We found support for our hypothesis predicting a positive association between the distance to the species distribution core and the development of dispersal‐related morphology, which suggests an increased dispersal capability in populations located at range edges that, in turn, exhibit lower levels of genetic variability. Overall, our results indicate that range‐wide patterns of phenotypic variation are partially explained by adaptation in response to local environmental conditions and differences in habitat persistence between core and peripheral populations.  相似文献   

11.
以闽江河口鳝鱼滩湿地互花米草(Spartina alterniflora)的实测冠层高光谱反射率和叶片光合色素含量(LPPC)为数据源,在分析LPPC与原始光谱反射率、一阶导数光谱反射率、22种已报道光谱指数和14种新构建的植被指数相关性的基础上,利用直线回归、指数回归、对数回归以及乘幂回归方法,系统地比较了36种植被指数在估算互花米草LPPC中的表现。研究表明:(1)一阶导数光谱反射率组合的植被指数用于估算互花米草的LPPC优于原始光谱反射率;(2)红边区域一阶导数光谱是估测互花米草LPPC的最佳波段;(3)对于单一色素含量的估算,叶绿素a(Chla)的最佳估算指数为FDNDVI[723,703];叶绿素b(Chlb)的最佳估算指数为FDRVI[723,525];类胡萝卜素(Cars)的最佳估算指数为FDNDVI[723,703];(4)对于使用统一参量同时估算Chla、Chlb、Cars,由FDRVI[723,703]建立的对数估算模型效果最佳。研究成果可为湿地植物生化参量反演提供参考,也可为闽江河口湿地入侵种互花米草的动态监测和生态评估管理提供有力的科学依据。  相似文献   

12.
基于辐射传输模型的叶绿素含量定量反演   总被引:1,自引:0,他引:1  
利用基于叶片内部辐射传输机制的PROSPECT模型模拟大量不同生化含量和叶肉结构的叶片光谱,研究利用高光谱植被指数定量反演叶绿素含量的可行性和精度,并比较各指数的稳定性和抗干扰能力。结果显示,各指数在对叶绿素的敏感性方面相差不大,除三角植被指数(TVI)外,其它指数均随叶绿素含量的增加而减小。叶片水分含量的差异对各指数的影响很小,干物质次之,叶肉结构影响最大。在抵抗干物质影响和叶肉结构影响方面,结构无关色素指数(SIPI)明显优于其它四种指数,吸收中心波深归一化后的面积指数(ABNC)次之。通过使用叶片光学模型的模拟光谱来研究叶绿素含量变化的光谱响应及其影响因素和反演策略,具有较强的理论性和普适性。研究结果与实际观测相吻合,方法简单易行。  相似文献   

13.
Question: How do meteorological variations at seasonal, interannual scales differentially affect the canopy dynamics of four contrasting landscape units within a region? Location: Flooding Pampa, Buenos Aires, Argentina. 5000 km2. Central point: 35°15′S, 57°45′W. Methods: We used a 19‐year series of the normalized difference vegetation index (NDVI) derived from NOAA‐AVHRR PAL (Pathfinder AVHRR Land) images and meteorological data provided by a nearby weather station. The NDVI was used as surrogate of canopy photosynthetic status. The relationship between annually integrated NDVI and meteorological conditions was explored by stepwise multiple regressions for each defined unit. PC A was performed to compare units and growing seasons on a multivariate basis. Results: Mean seasonal NDVI curve was similarly shaped among landscapes. However, the absolute values differed widely. There was high interannual variation so that the mean seasonal pattern was seldom observed in any particular year. Annually integrated NDVI of all landscapes was negatively associated with summer temperature and positively with previous year precipitation. It was also directly related with current year winter precipitation in two landscapes and with summer precipitation in the others. NDVI response to September and March precipitation accounted for some of the differences in interannual variation among landscapes. Conclusions: Our results revealed a strong intra‐regional variation of canopy dynamics, closely linked to landscape (vegetation‐soil) and water availability (mainly in summer and during the previous year). These links may be used to predict forage production rates for livestock.  相似文献   

14.
Rhizophora mangle L., the predominant neotropical mangrove species, occupies a gradient from low intertidal swamp margins with high insolation, to shaded sites at highest high water. Across a light gradient, R. mangle shows properties of both “light-demanding” and “shade-tolerant” species, and defies designation according to existing successional paradigms for rain forest trees. The mode and magnitude of its adaptability to light also change through ontogeny as it grows into the canopy. We characterized and compared phenotypic flexibility of R. mangle seedlings, saplings, and tree modules across changing light environments, from the level of leaf anatomy and photosynthesis, through stem and whole-plant architecture. We also examined growth and mortality differences among sun and shade populations of seedlings over 3 yr. Sun and shade seedling populations diverged in terms of four of six leaf anatomy traits (relative thickness of tissue layers and stomatal density), as well as leaf size and shape, specific leaf area (SLA), leaf internode distances, disparity in blade–petiole angles, canopy spread: height ratios, standing leaf numbers, summer (July) photosynthetic light curve shapes, and growth rates. Saplings showed significant sun/shade differences in fewer characters: leaf thickness, SLA, leaf overlap, disparity in bladepetiole angles, standing leaf numbers, stem volume and branching angle (first-order branches only), and summer photosynthesis. In trees, leaf anatomy was insensitive to light environment, but leaf length, width, and SLA, disparities in bladepetiole angles, and summer maximal photosynthetic rates varied among sun and shade leaf populations. Seedling and sapling photosynthetic rates were significantly depressed in winter (December), while photosynthetic rates in tree leaves did not differ in winter and summer. Seasonal and ontogenetic changes in response to light environment are apparent at several levels of biological organization in R. mangle, within constraints of its architectural baiiplan. Such variation has implications for models of stand carbon gain, and suggest that response flexibility may change with plant age.  相似文献   

15.
Abstract The empirical study of interpopulation variation in life history and other fitness traits has been an important approach to understanding the ecology and evolution of organisms and gaining insight into possible sources of variation. We report a quantitative analysis for variations of five life history traits (larval developmental time, adult body weight, adult lifespan, age at first reproduction, total fecundity) and flight capacity among populations of Epiphyas postvittana originating from four localities in Australia and one in New Zealand. These populations were compared at two temperatures (15° and 25°C) after being maintained under uniform laboratory conditions for 1.5 generations, so that the relative role of genetic divergence and phenotypic plasticity in determining interpopulation variation could be disentangled. Genetic differentiation between populations was shown in all measured traits, with the greatest divergence occurring in developmental time, fecundity and adult body size. However, these traits were highly sensitive to changes in environmental temperatures; and furthermore, significant interactions between population and temperature occurred in all traits except for flight capacity of female moths. Thus, phenotypic plasticity may be another cause of interpopulation variation. The interpopulation variation for some measured traits was apparently related to climatic differences found where the populations originated. Individuals of the populations from the warmer climates tended to develop more slowly at immature stages, producing smaller and less fecund moths but with stronger flight capacity, in comparison to those from the cooler regions. It seems, therefore, that natural populations of E. postvittana have evolved different strategies to cope with local environmental conditions.  相似文献   

16.
The efficiency of vegetation indices (VIs) to estimate the above-ground biomass of the seagrass species Zostera noltii Hornem. from remote sensing was tested experimentally on different substrata, since terrestrial vegetation studies have shown that VIs can be adversely influenced by the spectral properties of soils and background surfaces. Leaves placed on medium sand, fine sand and autoclaved fine sand were incrementally removed, and the spectral reflectance was measured in the 400–900 nm wavelength range. Several VIs were evaluated: ratios using visible and near infrared wavelengths, narrow-band indices, indices based on derivative analysis and continuum removal. Background spectral reflectance was clearly visible in the leaf reflectance spectra, showing marked brightness and spectral contrast variations for the same amount of vegetation. Paradoxically, indices used to minimize soil effects, such as the Soil-Adjusted Vegetation Index (SAVI) and the Modified second Soil-Adjusted Vegetation Index (MSAVI2) showed a high sensitivity to background effects. Similar results were found for the widely used Normalized Difference Vegetation Index (NDVI) and for Pigment Specific Simple Ratios (PSSRs). In fact, background effects were most reduced for VIs integrating a blue band correction, namely the modified specific ratio (mSR(705)), the modified Normalized Difference (mND(705)), and two modified NDVIs proposed in this study. However, these indices showed a faster saturation for high seagrass biomass. The background effects were also substantially reduced using Modified Gaussian Model indices at 620 and 675 nm. The blue band corrected VIs should now be tested for air-borne or satellite remote sensing applications, but some require sensors with a hyperspectral resolution. Nevertheless, this type of index can be applied to analyse broad band multispectral satellite images with a blue band.  相似文献   

17.
Acclimation of photosynthesis in canopies: models and limitations   总被引:8,自引:0,他引:8  
Olevi Kull 《Oecologia》2002,133(3):267-279
Within a time-scale of several days photosynthesis can acclimate to light by variation in the capacity for photosynthesis with depth in a canopy or by variation in the stoichiometry of photosynthetic components at each position within the canopy. The changes in leaf photosynthetic capacity are usually related to and expressed as changes in leaf nitrogen content. However, photosynthetic capacity and leaf nitrogen never match exactly the photon flux density (PFD) gradient within a canopy. As a result, photosynthetic light use efficiency, i.e. photosynthetic performance per incident PFD, increases considerably from the top of the canopy to the lower shaded part. Many of existing optimisation models fail to express the actual pattern of nitrogen or photosynthetic capacity distribution within a canopy. This failure occurs because these optimisation models do not consider that the quantitative aspect of photosynthesis acclimation is a whole plant phenomenon. Although turnover models, which describe the distribution of the photosynthetic apparatus within a canopy as a dynamic equilibrium between breakdown and regeneration of apparatus with respect to nitrogen availability, photosynthetic rate and export of carbohydrates, produce realistic results, these models require confirmation. The mechanism responsible for changes in the relative share of light-harvesting apparatus as acclimation to irradiance remains unknown. Ability of the photosynthetic apparatus to balance properly the light harvesting capacity with electron transport and biochemical capacities is limited. As a result of this fundamental limitation, photosynthetic light use efficiency always increases with increasing thickness of the photosynthetic apparatus.  相似文献   

18.
Leaf chemical, biophysical, and optical properties were measured in 13 populations of Metrosideros polymorpha across gradients of soil fertility and climate in Hawaii. Climate (predominantly temperature) caused large changes in specific leaf area (SLA) and SLA-linked traits, including nitrogen (N) and pigment contents, as did conditions of highest soil fertility on 20 ky old substrates. When averaged by site, chemical constituent ratios containing chlorophyll (Car/Chl, Chl/N) varied more across climate than substrate gradients, while the Chl a/b ratio was similarly influenced by climate and substrate. Variations in Chl a/b ratios and SLA were similar to those found previously in a common garden of M. polymorpha taken from our climate gradient, suggesting strong genetic control over these traits. Optical reflectance indices related to photosynthetic function were closely correlated to pigment changes, varying three times more in response to climate than across substrate ages. Combined, our results suggest that variation in leaf structure, composition, and function of M. polymorpha is a result of genetic and phenotypic adaptation to environmental differences, and that these variations are greater in response to climate (especially temperature) than to soil fertility.  相似文献   

19.
程乾 《应用生态学报》2006,17(8):1453-1458
基于中分辨率成像光谱仪MODIS (moderate resolution imaging spectroradiometer)反射率产品MOD09的同步野外实测水稻叶面积指数(LAI)和叶绿素含量(Chltot)相关数据,探寻用MOD09产品提取的植被指数(VIs)与水稻LAI和Chltot之间的相关性以及估算模型. 结果表明,MOD09计算的VI数值比MODIS前3个波段数值偏大,归一化植被指数NDVI (normalized difference vegetation index) 值普遍比增强性植被指数EVI(enhanced vegetation index) 值大. 通过4种不同植被指数与LAI相关性的比较,得出EVI与LAI的相关关系在水稻各个生育期优于其它植被指数,基于MOD09-EVI建立水稻LAI的遥感估算模型,经实际地面同步数据检验, 模型精度较高. 因而, MOD09-EVI较适用于水稻叶面积指数的实时遥感监测. MOD09红波段与Chltot之间的相关性在水稻前中期达到显著,并且优于其它植被指数,基于MOD09红波段建立了水稻前中期Chltot的估算模型并进行了精度检验. 除水稻孕穗期叶绿素含量估算模型的相关系数和F值通过了显著性检验外, 其余生育期估算模型都没有通过显著性检验.  相似文献   

20.
Measuring leaf gas exchange from canopy leaves is fundamental for our understanding of photosynthesis and for a realistic representation of carbon uptake in vegetation models. Since canopy leaves are often difficult to reach, especially in tropical forests with emergent trees up to 60 m at remote places, canopy access techniques such as canopy cranes or towers have facilitated photosynthetic measurements. These structures are expensive and therefore not very common. As an alternative, branches are often cut to enable leaf gas exchange measurements. The effect of branch excision on leaf gas exchange rates should be minimized and quantified to evaluate possible bias. We compared light-saturated leaf net photosynthetic rates measured on excised and intact branches. We selected branches positioned at three canopy positions, estimated relative to the top of the canopy: upper sunlit foliage, middle canopy foliage, and lower canopy foliage. We studied the variation of the effects of branch excision and transport among branches at these different heights in the canopy. After excision and transport, light-saturated leaf net photosynthetic rates were close to zero for most leaves due to stomatal closure. However, when the branch had acclimated to its new environmental conditions—which took on average 20 min—light-saturated leaf net photosynthetic rates did not significantly differ between the excised and intact branches. We therefore conclude that branch excision does not affect the measurement of light-saturated leaf net photosynthesis, provided that the branch is recut under water and is allowed sufficient time to acclimate to its new environmental conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号