首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Autochthonous pig breeds are usually reared in extensive or semi‐extensive production systems that might facilitate contact with wild boars and, thus, reciprocal genetic exchanges. In this study, we analysed variants in the melanocortin 1 receptor (MC1R) gene (which cause different coat colour phenotypes) and in the nuclear receptor subfamily 6 group A member 1 (NR6A1) gene (associated with increased vertebral number) in 712 pigs of 12 local pig breeds raised in Italy (Apulo‐Calabrese, Casertana, Cinta Senese, Mora Romagnola, Nero Siciliano and Sarda) and south‐eastern European countries (Kr?kopolje from Slovenia, Black Slavonian and Turopolje from Croatia, Mangalitsa and Moravka from Serbia and East Balkan Swine from Bulgaria) and compared the data with the genetic variability at these loci investigated in 229 wild boars from populations spread in the same macro‐geographic areas. None of the autochthonous pig breeds or wild boar populations were fixed for one allele at both loci. Domestic and wild‐type alleles at these two genes were present in both domestic and wild populations. Findings of the distribution of MC1R alleles might be useful for tracing back the complex genetic history of autochthonous breeds. Altogether, these results indirectly demonstrate that bidirectional introgression of wild and domestic alleles is derived and affected by the human and naturally driven evolutionary forces that are shaping the Sus scrofa genome: autochthonous breeds are experiencing a sort of ‘de‐domestication’ process, and wild resources are challenged by a ‘domestication’ drift. Both need to be further investigated and managed.  相似文献   

2.
Massese is an Italian dairy sheep breed characterized by animals with black skin and horns and black or apparent grey hairs. Owing to the presence of these two coat colour types, this breed can be considered an interesting model to evaluate the effects of coat colour gene polymorphisms on this phenotypic trait. Two main loci have been already shown to affect coat colour in sheep: Agouti and Extension coding for the agouti signalling protein (ASIP) and melanocortin 1 receptor (MC1R) genes, respectively. The Agouti locus is affected by a large duplication including the ASIP gene that may determine the Agouti white and tan allele (A(Wt)). Other disrupting or partially inactivating mutations have been identified in exon 2 (a deletion of 5 bp, D(5); and a deletion of 9 bp, D(9)) and in exon 4 (g.5172T>A, p.C126S) of the ASIP gene. Three missense mutations in the sheep MC1R gene cause the dominant black E(D) allele (p.M73K and p.D121N) and the putative recessive e allele (p.R67C). Here, we analysed these ASIP and MC1R mutations in 161 Massese sheep collected from four flocks. The presence of one duplicated copy allele including the ASIP gene was associated with grey coat colour (P = 9.4E-30). Almost all animals with a duplicated copy allele (37 out of 41) showed uniform apparent grey hair and almost all animals without a duplicated allele (117 out of 120) were completely black. Different forms of duplicated alleles were identified in Massese sheep including, in almost all cases, copies with exon 2 disrupting or partially inactivating mutations making these alleles different from the A(Wt) allele. A few exceptions were observed in the association between ASIP polymorphisms and coat colour: three grey sheep did not carry any duplicated copy allele and four black animals carried a duplicated copy allele. Of the latter four sheep, two carried the E(D) allele of the MC1R gene that may be the cause of their black coat colour. The coat colour of all other black animals may be determined by non-functional ASIP alleles (non-agouti alleles, A(a)) and in a few cases by the E(D) Extension allele. At least three frequent ASIP haplotypes ([D(5):g.5172T], [N:g.5172A] and [D(5):g.5172A]) were detected (organized into six different diplotypes). In conclusion, the results indicated that coat colours in the Massese sheep breed are mainly derived by combining ASIP and MC1R mutations.  相似文献   

3.
Here we have tested the hypothesis of association between different levels of agouti signalling peptide (ASIP) mRNA and the recessive black coat colour in the rare Xalda breed of sheep. To deal with this task, we first tested the possible action of both the dominant black extension allele (E(D)) and a 5-bp deletion (X99692:c.100_104del; A(del)) in the ovine ASIP coding sequence on the black coat colour pattern in 188 Xalda individuals. The E(D) allele was not present in the sample and only 11 individuals were homozygous for the A(del)ASIP allele. All Xalda individuals carrying the A(del)/A(del) genotype were phenotypically black. However, most black-coated individuals (109 out of 120) were not homozygous for the 5-bp deletion, thus rejecting the A(del)/A(del) genotype as the sole cause of recessive black coat colour in sheep. Differences in expression of ASIP mRNA were assessed via RT-PCR in 14 black-coated and 10 white-coated Xalda individuals showing different ASIP genotypes (A(wt)/A(wt), A(wt)/A(del) and A(del)/A(del)). Levels of expression in black animals were significantly (P < 0.0001) lower than those assessed for white-coated individuals. However, the ASIP genotype did not influence the ASIP mRNA level of expression. The consistency of these findings with those recently reported in humans is discussed, and the need to isolate the promoter region of ovine ASIP to obtain further evidence for a role of ASIP in recessive black ovine pigmentation is pointed out.  相似文献   

4.
We sequenced almost the complete coding region of the MC1R gene in several domestic rabbits (Oryctolagus cuniculus) and identified four alleles: two wild-type alleles differing by two synonymous single nucleotide polymorphisms (c.333A>G;c.555T>C), one allele with a 30-nucleotide in-frame deletion (c.304_333del30) and one allele with a 6-nucleotide in-frame deletion (c.280_285del6). A polymerase chain reaction-based protocol was used to distinguish the wild-type alleles from the other two alleles in 263 rabbits belonging to 37 breeds or strains. All red/fawn/yellow rabbits were homozygous for the c.304_333del30 allele. This allele represents the recessive e allele at the extension locus identified through pioneering genetic studies in this species. All Californian, Checkered, Giant White and New Zealand White rabbits were homozygous for allele c.280_285del6, which was also observed in the heterozygous condition in a few other breeds. Black coat colour is part of the standard colour in Californian and Checkered breeds, in contrast to the two albino breeds, Giant White and New Zealand White. Following the nomenclature established for the rabbit extension locus, the c.280_285del6 allele, which is dominant over c.304_333del30, may be allele E(D) or allele E(S).  相似文献   

5.
The Burmese is a breed of domestic cat that originated in Southeast Asia and was further developed in the United States. Variants in melanocortin 1 receptor (MC1R) causes common coat colour phenotypes in a variety of mammalian species but only limited colour variation in the domestic cat. Known as the extension (E) locus, melanocortin 1 receptor (MC1R) interacts with the agouti locus to produce the eumelanin and pheomelanin pigments. Recently, a novel reddish coloration, which is termed russet, was identified in the Burmese cat breed. Because this russet Burmese coloration changes with aging, MC1R was suggested as candidate gene. The similar colouration in specific lineages of Norwegian Forest cat known as amber (e) (c.250G>A; p.Asp84Asn) was excluded for this Burmese phenotype. The complete 954‐bp coding region of MC1R was directly sequenced in russet Burmese and suspected carriers. A 3‐bp deletion (c.439_441del) associated with the deletion of a phenyalanine (p.Phe146del) in the protein sequence was identified. All russet coloured cats were homozygous for the variant, and all obligate carriers were heterozygous, confirming that the deletion segregated concordantly with colouring in Burmese cats from the New Zealand foundation lineage. The variant was not identified in 442 cats from 26 different breeds and random‐bred cats. Twenty‐six Burmese from the USA did not have the variant. This MC1R variant defines a unique coloration and the second breed‐specific MC1R variant in cats. The interactions of the two recessive feline MC1R alleles (E  >  e, er) is unknown.  相似文献   

6.
7.
Six solid colors occur in Highland cattle: black, dun, silver dun and red, yellow, and white. These six coat colors are explained by a non‐epistatic interaction of the genotypes at the MC1R and PMEL genes. A three base pair deletion in the PMEL gene leading to the deletion of a leucine from the signal peptide is observed in dilute‐colored Highland cattle (c.50_52delTTC, p.Leu18del). The mutant PMEL allele acts in a semi‐dominant manner. Dun Galloway cattle also have one copy of the deletion allele, and silver dun Galloway cattle have two copies. The presence of two adjacent leucine residues at the site of this deletion is highly conserved in human, horse, mouse and chicken as well as in cattle with undiluted coat colors. Highland and Galloway cattle thus exhibit a similar dose‐dependent dilution effect based on the number of PMEL :c.50_51delTTC alleles, as Charolais cattle with PMEL :c.64G>A alleles. The PMEL :c.64G>A allele was not found in Highland or Galloway cattle.  相似文献   

8.
Three vagrant (Circinaria hispida, Circinaria gyrosa, and Circinaria sp. ‘paramerae’) and one crustose (semi‐vagrant, Circinaria sp. ‘oromediterranea’) lichens growing in very continental areas in the Iberian Peninsula were selected to study the phycobiont diversity. Mycobiont identification was checked using nrITS DNA barcoding: Circinaria sp. ‘oromediterranea’ and Circinaria sp. ‘paramerae’ formed a new clade. Phycobiont diversity was analyzed in 50 thalli of Circinaria spp. using nrITS DNA and LSU rDNA, with microalgae coexistence being found in all the species analyzed by Sanger sequencing. The survey of phycobiont diversity showed up to four different Trebouxia spp. as the primary phycobiont in 20 thalli of C. hispida, in comparison with the remaining Circinaria spp., where only one Trebouxia was the primary microalga. In lichen species showing coexistence, some complementary approaches are needed (454 pyrosequencing and/or ultrastructural analyses). Five specimens were selected for high‐throughput screening (HTS) analyses: 22 Trebouxia OTUs were detected, 10 of them not previously known. TEM analyses showed three different cell morphotypes (Trebouxia sp. OTU A12, OTU S51, and T. cretacea) whose ultrastructure is described here in detail for the first time. HTS revealed a different microalgae pool in each species studied, and we cannot assume a specific pattern between these pools and the ecological and/or morphological characteristics. The mechanisms involved in the selection of the primary phycobiont and the other microalgae by the mycobiont are unknown, and require complex experimental designs. The systematics of the genus Circinaria is not yet well resolved, and more analyses are needed to establish a precise delimitation of the species.  相似文献   

9.
Molecular identification of mutant alleles responsible for certain phenotypic alterations is a central goal of genetic analyses. In this study we describe a rapid procedure suitable for the identification of induced recessive and dominant mutations applied to two Zea mays mutants expressing a dwarf and a pale green phenotype, respectively, which were obtained through pollen ethyl methanesulfonate (EMS) mutagenesis. First, without prior backcrossing, induced mutations (single nucleotide polymorphisms, SNPs) segregating in a (M2) family derived from a heterozygous (M1) parent were identified using whole‐genome shotgun (WGS) sequencing of a small number of (M2) individuals with mutant and wild‐type phenotypes. Second, the state of zygosity of the mutation causing the phenotype was determined for each sequenced individual by phenotypic segregation analysis of the self‐pollinated (M3) offspring. Finally, we filtered for segregating EMS‐induced SNPs whose state of zygosity matched the determined state of zygosity of the mutant locus in each sequenced (M2) individuals. Through this procedure, combining sequencing of individuals and Mendelian inheritance, three and four SNPs in linkage passed our zygosity filter for the homozygous dwarf and heterozygous pale green mutation, respectively. The dwarf mutation was found to be allelic to the an1 locus and caused by an insertion in the largest exon of the AN1 gene. The pale green mutation affected the nuclear W2 gene and was caused by a non‐synonymous amino acid exchange in encoded chloroplast DNA polymerase with a predicted deleterious effect. This coincided with lower cpDNA levels in pale green plants.  相似文献   

10.
11.
Leptosphaeria maculans is the most important fungal pathogen of canola (Brassica napus, oilseed rape) that causes the devastating stem canker in canola fields of western Canada. The population genetic structure of L. maculans, represented by nine subpopulations from a 6‐year period and three different provinces in western Canada, was determined using ten minisatellite markers. Isolates collected at different locations in six consecutive years had an even distribution of MAT1‐1 and MAT1‐2 across the nine subpopulations. All subpopulations of L. maculans exhibited a moderate gene diversity (= 0.356–0.585). The majority of the genetic variation occurred within subpopulations. Approximately 8% and 4% of the variations were distributed between sampling year and location, respectively. Genetic distance (FST) results, using analysis of molecular variation (AMOVA), indicated that subpopulation pairing within isolates by year ranged from FST = 0.010 to 0.109, and the location subpopulation ranged from FST = 0.038 to 0.085. Bayesian clustering analyses of multiloci inferred two distinct clusters in all the subpopulations examined. This study indicates a relatively high degree of gene exchange between the different L. maculans isolates. Our results suggest that this can occur in the wide growing areas of canola fields in western Canada. This gene exchange produced different gene allele frequencies and divergence between populations.  相似文献   

12.
Theories of plant invasion based on enemy release in a new range assume that selection exerted by specialist herbivores on defence traits should be reduced, absent, or even selected against in the new environment. Here, we measured phenotypic selection on atropine and scopolamine concentration of Datura stramonium in eight native (Mexico) and 14 non‐native (Spain) populations. Native populations produced between 20 and 40 times more alkaloid than non‐native populations (atropine: 2.0171 vs. 0.0458 mg/g; scopolamine: 1.004 vs. 0.0488 mg/g, respectively). Selection on alkaloids was negative for atropine and positive for scopolamine concentration in both ranges. However, the effect sizes of selection gradients were only significant in the native range. Our results support the assumption that the reduction of plant defence in the absence of the plant's natural enemies in invasive ranges is driven by natural selection.  相似文献   

13.
14.
White spotting phenotypes in horses may be caused by developmental alterations impairing melanoblast differentiation, survival, migration and/or proliferation. Candidate genes for white‐spotting phenotypes in horses include EDNRB, KIT, MITF, PAX3 and TRPM1. We investigated a German Riding Pony with a sabino‐like phenotype involving extensive white spots on the body together with large white markings on the head and almost completely white legs. We obtained whole genome sequence data from this horse. The analysis revealed a heterozygous 1273‐bp deletion spanning parts of intron 2 and exon 3 of the equine KIT gene (Chr3: 79 579 925–79 581 197). We confirmed the breakpoints of the deletion by PCR and Sanger sequencing. Knowledge of the functional impact of similar KIT variants in horses and other species suggests that this deletion represents a plausible candidate causative variant for the white‐spotting phenotype. We propose the designation W28 for the mutant allele.  相似文献   

15.
16.
17.
Statistical Analysis of Mixed‐Ploidy Populations (StAMPP) is a freely available R package for calculation of population structure and differentiation based on single nucleotide polymorphism (SNP) genotype data from populations of any ploidy level, and/or mixed‐ploidy levels. StAMPP provides an advance on previous similar software packages, due to an ability to calculate pairwise FST values along with confidence intervals, Nei's genetic distance and genomic relationship matrixes from data sets of mixed‐ploidy level. The software code is designed to efficiently handle analysis of large genotypic data sets that are typically generated by high‐throughput genotyping platforms. Population differentiation studies using StAMPP are broadly applicable to studies of molecular ecology and conservation genetics, as well as animal and plant breeding.  相似文献   

18.
Although alternative life‐history strategies exist within many populations, very little is known about their genetic basis and mechanistic insight into these traits could greatly advance the understanding of eco‐evolutionary dynamics. Many species of butterfly within the genus Colias exhibit a sex‐limited wing colour polymorphism, called Alba, which is correlated with an alternative life‐history strategy. Here, we have taken the first steps in localizing the region carrying Alba in Colias croceus, a species with no genomic resources, by generating whole genome sequence of a single Alba mother and two sequencing pools, one for her Alba and another for her orange, offspring. These data were used in a bulk‐segregant analysis wherein SNPs fulfilling the Mendelian inheritance expectations of Alba were identified. Then, using the conserved synteny in Lepidoptera, the Alba locus was assigned to chromosome 15 in Bombyx mori. We then identified candidate regions within the chromosome by investigating the distribution of Alba SNPs along the chromosome and the difference in nucleotide diversity in exons between the two pools. A region spanning ~ 5.7 Mbp at the 5′ end of the chromosome was identified as likely to contain the Alba locus. These insights set the stage for more detailed genomic scans and mapping of the Alba phenotype, and demonstrate an efficient use of genomic resources in a novel species.  相似文献   

19.
为了检测犬MC1R基因T105A基因座的多态性,并分析该多态性与犬毛色表型的相关性,抽取111只外科手术学实验用杂种犬血液并提取DNA,记录毛色表型。采用PCR-RFLP技术,对MC1R基因T105A基因座进行基因多态性分析,并对该基因座DNA进行克隆测序;用二元变量相关分析的统计学方法分析基因座多态性与毛色性状之间的相关性。经PCR-RFLP分析结果表明,T105A基因座序列具有多态性,表现为A、B二个等位基因和AA、AB及BB 3种基因型。A、B等位基因频率分别为72.97%和27.03%,基因杂合度(H)为0.39。基因型AA频率为55.86%,BB为9.91%,AB为34.23%。对T105A多态性片段DNA克隆测序后发现,MC1R基因在编码第105位氨基酸的密码子第一个碱基存在由G到A的单碱基突变,该突变导致第105位氨基酸发生由丙氨酸向苏氨酸的改变。统计分析结果表明MC1R基因T105A基因座的多态性与毛色性状不存在显著的相关性,这可能是由于外科手术学实验用犬是杂种犬,其遗传背景不同所致,尚须在纯种犬群体中进一步研究MC1R基因对毛色的影响。 Abstract: In order to detect the polymorphism of T105A in MC1R gene in dogs and to analyze the relationship between the genetic polymorphisms and phenotypes of dog coat color, the blood samples of 111 cross-breed dogs were taken and their genomic DNAs were extracted. The phenotypes of dog coat color were recorded. The T105A locus of MC1R gene in the canine was detected through the technology of PCR-RFLP. Furthermore, the polymorphic fragments at T105A were sequenced. The relationships between the polymorphism of T105A and coat color trait were analyzed by the statistical methods of bivarate correlation analysis. By the method of PCR-RFLP, the T105A polymorphism was found with two alleles A and B and three genotypes AA, AB and BB. The frequencies of two alleles were 72.97% and 27.03%, respectively. The heterozygosity of T105A locus was 0.39. The frequencies of three genotypes were 55.86%, 34.23% and 9.91%, respectively. According to the results of sequencing, one base change from G to A at the position 105 was found at T105A locus and it altered amino acid at the position 105 from alanine to threonine. According to the statistical analysis, no significant association between the polymorphism of MC1R gene and the coat color was found and the result may be due to the differences of genetic background. Further research on MC1R gene should be done in pure breed dogs.  相似文献   

20.
Melanocortin 1-receptor (MC1R) is one of the major genes that controls chicken plumage colour. In this study, we investigated the sequence and haplotype distribution of the MC1R gene in native Japanese chickens, along with non-Japanese chicken breeds. In total, 732 and 155 chickens from 30 Japanese and eight non-Japanese breeds respectively were used. Three synonymous and 11 non-synonymous nucleotide substitutions were detected, resulting in 15 haplotypes (H0–H14). Of these, three were newly found haplotypes (H9, H13 and H14), of which one (H9) was composed of known substitutions C69T, T212C, G274A and G636A. The second one (H13) possessed newly found non-synonymous substitution C919G, apart from the known substitutions C69T, G178A, G274A, G636A and T637C. The third one (H14) comprised a newly discovered substitution C919G in addition to the known C69T, G274A and G409A substitutions. The homozygote for this new haplotype exhibited wt like plumage despite the presence of G274A. In addition to discovering a new nucleotide substitution (C919G) and three new haplotypes, we defined the plumage colour of the bird that was homozygous for the A644C substitution (H5 haplotype) as wheaten-like for the first time; although the substitution has been already reported, its effect was not revealed. Besides detecting the new plumage colour, we also confirmed that the A427G and G274A substitutions contribute in expressing brownish and black plumage colour respectively, as reported by the previous studies. Moreover, we confirmed that the buttercup allele does not express black plumage despite possessing a G274A substitution, under the suppression effect of A644C. In contrast, the birds homozygous for the birchen allele presented solid black plumage, which was contradictory to the previous reports. In conclusion, we revealed a large diversity in the MC1R gene of native Japanese chicken breeds, along with the discovery of a new non-synonymous nucleotide substitution (C919G) and three novel haplotypes (H9, H13 and H14).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号