首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
2.
Long noncoding RNAs (lncRNAs) are critical regulators of cell biology whose alteration can lead to the development of diseases such as cancer. The potential role of lncRNAs and their epigenetic regulation in response to platinum treatment are largely unknown. We analyzed four paired cisplatin-sensitive/resistant non-small cell lung cancer and ovarian cancer cell lines. The epigenetic landscape of overlapping and cis-acting lncRNAs was determined by combining human microarray data on 30,586 lncRNAs and 20,109 protein coding mRNAs with whole-genome bisulfite sequencing. Selected candidate lncRNAs were further characterized by PCR, gene-ontology analysis, and targeted bisulfite sequencing. Differential expression in response to therapy was observed more frequently in cis-acting than in overlapping lncRNAs (78% vs. 22%, fold change ≥1.5), while significantly altered methylation profiles were more commonly associated with overlapping lncRNAs (29% vs. 8%; P value <0.001). Moreover, overlapping lncRNAs contain more CpG islands (CGIs) (25% vs. 17%) and the majority of CGI-containing overlapping lncRNAs share these CGIs with their associated coding genes (84%). The differences in expression between sensitive and resistant cell lines were replicated in 87% of the selected candidates (P<0.05), while our bioinformatics approach identifying differential methylation was confirmed in all of the selected lncRNAs (100%). Five lncRNAs under epigenetic regulation appear to be involved in cisplatin resistance (AC091814.2, AC141928.1, RP11-65J3.1-002, BX641110, and AF198444). These novel findings provide new insights into epigenetic mechanisms and acquired resistance to cisplatin that highlight specific lncRNAs, some with unknown function, that may signal strategies in epigenetic therapies.  相似文献   

3.
Enhancing climate resilience and sustainable production for animals in harsh environments are important goals for the livestock industry given the predicted impacts of climate change. Rapid adaptation to extreme climatic conditions has already been imposed on livestock species, including those exported after Columbus's arrival in the Americas. We compared the methylomes of two Creole cattle breeds living in tropical environments with their putative Spanish ancestors to understand the epigenetic mechanisms underlying rapid adaptation of a domestic species to a new and more physiologically challenging environment. Reduced representation bisulfite sequencing was used to assess differences in methylation in Creole and Spanish samples and revealed 334 differentially methylated regions using high stringency parameters (P‐value <0.01, ≥4 CpGs within a distance of 200 bp, mean methylation difference >25%) annotated to 263 unique features. Gene ontology analysis revealed candidate genes involved in tropical adaptation processes, including genes differentially hyper‐ or hypomethylated above 80% in Creole samples displaying biological functions related to immune response (IRF6, PTGDR, FAM19A5, PGLYRP1), nervous system (GBX2, NKX2‐8, RPGR), energy management (BTD), heat resistance (CYB561) and skin and coat attributes (LGR6). Our results entail that major environmental changes imposed on Creole cattle have had an impact on their methylomes measurable today, which affects genes implicated in important pathways for adaptation. Although further work is needed, this first characterization of methylation patterns driven by profound environmental change provides a valuable pointer for the identification of biomarkers of resilience for improved cattle performance and welfare under predicted climatic change models.  相似文献   

4.

Background

DNA methylation plays crucial roles in epigenetic gene regulation in normal development and disease pathogenesis. Efficient and accurate quantification of DNA methylation at single base resolution can greatly advance the knowledge of disease mechanisms and be used to identify potential biomarkers. We developed an improved pipeline based on reduced representation bisulfite sequencing (RRBS) for cost-effective genome-wide quantification of DNA methylation at single base resolution. A selection of two restriction enzymes (TaqαI and MspI) enables a more unbiased coverage of genomic regions of different CpG densities. We further developed a highly automated software package to analyze bisulfite sequencing results from the Solexa GAIIx system.

Results

With two sequencing lanes, we were able to quantify ~1.8 million individual CpG sites at a minimum sequencing depth of 10. Overall, about 76.7% of CpG islands, 54.9% of CpG island shores and 52.2% of core promoters in the human genome were covered with at least 3 CpG sites per region.

Conclusions

With this new pipeline, it is now possible to perform whole-genome DNA methylation analysis at single base resolution for a large number of samples for understanding how DNA methylation and its changes are involved in development, differentiation, and disease pathogenesis.  相似文献   

5.
6.
MicroRNAs (miRNAs) belong to the heterogeneous class of non-coding RNAs (ncRNAs) that regulate the translation and degradation of target mRNAs, and control approximately 30% of human genes. MiRNA genes might be silenced in human tumors (oncomiRs) by aberrant hypermethylation of CpG islands that encompass or lie adjacent to miRNA genes and/or by histone modifications. We performed literature search for research articles describing epigenetically regulated miRNAs in cancer and identified 45 studies that were published between 2006 and 7/2010. The data from those papers are fragmented and methodologically heterogeneous and our work represents first systematic review towards to integration of diverse sets of information. We reviewed the methods used for detection of miRNA epigenetic regulation, which comprise bisulfite genomic sequencing PCR (BSP), bisulfite pyrosequencing, methylation specific PCR (MSP), combined bisulfite restriction analysis (COBRA), methylation sensitive single nucleotide primer extension (Ms-SNuPE), MassARRAY technique and some modifications of those methods. This integrative study revealed 122 miRNAs that were reported to be epigenetically regulated in 23 cancer types. Compared to protein coding genes, human oncomiRs showed an order of magnitude higher methylation frequency (11.6%; 122/1048 known miRNAs). Nearly half, (45%; 55/122) epigenetically regulated miRNAs were associated with different cancer types, but other 55% (67/122) miRNAs were present in only one cancer type and therefore representing cancer-specific biomarker potential. The data integration revealed miRNA epigenomic hot spots on the chromosomes 1q, 7q, 11q, 14q and 19q. CpG island analysis of corresponding miRNA precursors (pre-miRNAs) revealed that 20% (26/133) of epigenetically regulated miRNAs had a CpG island within the range of 5kb upstream, among them 14% (19/133) of miRNAs resided within the CpG island. Our integrative survey and analyses revealed candidate cancer-specific miRNA epigenetic signatures which provide the basis for new therapeutic strategies in cancer by targeting the epigenetic regulation of miRNAs.  相似文献   

7.
Evolutionary theory posits that adaptation can result when populations harbour heritable phenotypic variation for traits that increase tolerance to local conditions. However, the actual mechanisms that underlie heritable phenotypic variation are not completely understood (Keller 2014 ). Recently, the potential role of epigenetic mechanisms in the process of adaptive evolution has been the subject of much debate (Pigliucci & Finkelman 2014 ). Studies of variation in DNA methylation in particular have shown that natural populations harbour high amounts of epigenetic variation, which can be inherited across generations and can cause heritable trait variation independently of genetic variation (Kilvitis et al. 2014 ). While we have made some progress addressing the importance of epigenetics in ecology and evolution using methylation‐sensitive AFLP (MS‐AFLP), this approach provides relatively few anonymous and dominant markers per individual. MS‐AFLP are difficult to link to functional genomic elements or phenotype and are difficult to compare directly to genetic variation, which has limited the insights drawn from studies of epigenetic variation in natural nonmodel populations (Schrey et al. 2013 ). In this issue, Platt et al. provide an example of a promising approach to address this problem by applying a reduced representation bisulphite sequencing (RRBS) approach based on next‐generation sequencing methods in an ecological context.  相似文献   

8.
DNA methylation plays major roles in many biological processes, including aging, carcinogenesis, and development. Analyses of DNA methylation using next‐generation sequencing offer a new way to profile and compare methylomes across the genome in the context of aging. We explored genomewide DNA methylation and the effects of short‐term calorie restriction (CR) on the methylome of aged rat kidney. Whole‐genome methylation of kidney in young (6 months old), old (25 months old), and OCR (old with 4‐week, short‐term CR) rats was analyzed by methylated DNA immunoprecipitation and next‐generation sequencing (MeDIP‐Seq). CpG islands and repetitive regions were hypomethylated, but 5′‐UTR, exon, and 3′‐UTR hypermethylated in old and OCR rats. The methylation in the promoter and intron regions was decreased in old rats, but increased in OCR rats. Pathway enrichment analysis showed that the hypermethylated promoters in old rats were associated with degenerative phenotypes such as cancer and diabetes. The hypomethylated promoters in old rats related significantly to the chemokine signaling pathway. However, the pathways significantly enriched in old rats were not observed from the differentially methylated promoters in OCR rats. Thus, these findings suggest that short‐term CR could partially ameliorate age‐related methylation changes in promoters in old rats. From the epigenomic data, we propose that the hypermethylation found in the promoter regions of disease‐related genes during aging may indicate increases in susceptibility to age‐related diseases. Therefore, the CR‐induced epigenetic changes that ameliorate age‐dependent aberrant methylation may be important to CR's health‐ and life‐prolonging effects.  相似文献   

9.
Aging and cancer are two interrelated processes, with aging being a major risk factor for the development of cancer. Parallel epigenetic alterations have been described for both, although differences, especially within the DNA hypomethylation scenario, have also been recently reported. Although many of these observations arise from the use of mouse models, there is a lack of systematic comparisons of human and mouse epigenetic patterns in the context of disease. However, such comparisons are significant as they allow to establish the extent to which some of the observed similarities or differences arise from pre-existing species-specific epigenetic traits. Here, we have used reduced representation bisulfite sequencing to profile the brain methylomes of young and old, tumoral and nontumoral brain samples from human and mouse. We first characterized the baseline epigenomic patterns of the species and subsequently focused on the DNA methylation alterations associated with cancer and aging. Next, we described the functional genomic and epigenomic context associated with the alterations, and finally, we integrated our data to study interspecies DNA methylation levels at orthologous CpG sites. Globally, we found considerable differences between the characteristics of DNA methylation alterations in cancer and aging in both species. Moreover, we describe robust evidence for the conservation of the specific cancer and aging epigenomic signatures in human and mouse. Our observations point toward the preservation of the functional consequences of these alterations at multiple levels of genomic regulation. Finally, our analyses reveal a role for the genomic context in explaining disease- and species-specific epigenetic traits.  相似文献   

10.
《Epigenetics》2013,8(4):503-512
The identification of genes that are differentially methylated in colorectal cancer (CRC) has potential value for both diagnostic and therapeutic interventions specifically in high-risk populations such as African Americans (AAs). However, DNA methylation patterns in CRC, especially in AAs, have not been systematically explored and remain poorly understood. Here, we performed DNA methylome profiling to identify the methylation status of CpG islands within candidate genes involved in critical pathways important in the initiation and development of CRC. We used reduced representation bisulfite sequencing (RRBS) in colorectal cancer and adenoma tissues that were compared with DNA methylome from a healthy AA subject’s colon tissue and peripheral blood DNA. The identified methylation markers were validated in fresh frozen CRC tissues and corresponding normal tissues from AA patients diagnosed with CRC at Howard University Hospital. We identified and validated the methylation status of 355 CpG sites located within 16 gene promoter regions associated with CpG islands. Fifty CpG sites located within CpG islands—in genes ATXN7L1 (2), BMP3 (7), EID3 (15), GAS7 (1), GPR75 (24), and TNFAIP2 (1)—were significantly hypermethylated in tumor vs. normal tissues (P < 0.05). The methylation status of BMP3, EID3, GAS7, and GPR75 was confirmed in an independent, validation cohort. Ingenuity pathway analysis mapped three of these markers (GAS7, BMP3 and GPR) in the insulin and TGF-β1 network—the two key pathways in CRC. In addition to hypermethylated genes, our analysis also revealed that LINE-1 repeat elements were progressively hypomethylated in the normal-adenoma-cancer sequence. We conclude that DNA methylome profiling based on RRBS is an effective method for screening aberrantly methylated genes in CRC. While previous studies focused on the limited identification of hypermethylated genes, ours is the first study to systematically and comprehensively identify novel hypermethylated genes, as well as hypomethylated LINE-1 sequences, which may serve as potential biomarkers for CRC in African Americans. Our discovered biomarkers were intimately linked to the insulin/TGF-B1 pathway, further strengthening the association of diabetic disorders with colon oncogenic transformation.  相似文献   

11.
Neonatal abstinence syndrome (NAS) due to in‐utero opioid exposure has significant variability of severity. Preliminary studies have suggested that epigenetic variation within the μ‐opioid receptor (OPRM1) gene impacts NAS. We aimed to determine if DNA methylation in OPRM1 within opioid‐exposed mother‐infant dyads is associated with differences in NAS severity in an independent cohort. Full‐term opioid‐exposed newborns and their mothers (N = 68 pairs) were studied. A DNA sample was obtained and then assessed for level of DNA methylation at 20 CpG sites within the OPRM1 promoter region by next‐generation sequencing. Infants were monitored for NAS and treated with replacement opioids according to institutional protocol. The association between DNA methylation level at each CpG site with NAS outcome measures was evaluated using linear and logistic regression models. Higher methylation levels within the infants at the ?18 (11.4% vs 4.4%, P = .0001), ?14 (46.1% vs 24.0%, P = .002) and +23 (26.3% vs 12.9%, P = .008) CpG sites were associated with higher rates of infant pharmacologic treatment. Higher levels of methylation within the mothers at the ?169 (R = 0.43, P = .008), ?152 (R = 0.40, P = .002) and +84 (R = 0.44, P = .006) sites were associated point‐wise with longer infant length of stay. Maternal associations remained significant point‐wise for ?169 (β = 0.07, P = .007) and on an experiment‐wise level for +84 (β = ?0.10, P = .003) using regression models. These results suggest an association of higher levels of OPRM1 methylation at specific CpG sites and increased NAS severity, replicating prior findings. These findings have important implications for personalized treatment regimens for infants at high risk for severe NAS.  相似文献   

12.
13.
14.
《Epigenetics》2013,8(12):1641-1647
Metastatic melanoma is a deadly treatment-resistant form of skin cancer whose global incidence is on the rise. During melanocyte transformation and melanoma progression the expression profile of many genes changes. Among these, a gene implicated in several steps of melanocyte development, TFAP2A, is frequently silenced; however, the molecular mechanism of TFAP2A silencing in human melanoma remains unknown. In this study, we measured TFAP2A mRNA expression in primary human melanocytes compared to 11 human melanoma samples by quantitative real-time RT-PCR. In addition, we assessed CpG DNA methylation of the TFAP2A promoter in these samples using bisulfite sequencing. Compared to primary melanocytes, which showed high TFAP2A mRNA expression and no promoter methylation, human melanoma samples showed decreased TFAP2A mRNA expression and increased promoter methylation. We further show that increased CpG methylation correlates with decreased TFAP2A mRNA expression. Using The Cancer Genome Atlas, we further identified TFAP2A as a gene displaying among the most decreased expression in stage 4 melanomas vs. non-stage 4 melanomas, and whose CpG methylation was frequently associated with lack of mRNA expression. Based on our data, we conclude that TFAP2A expression in human melanomas can be silenced by aberrant CpG methylation of the TFAP2A promoter. We have identified aberrant CpG DNA methylation as an epigenetic mark associated with TFAP2A silencing in human melanoma that could have significant implications for the therapy of human melanoma using epigenetic modifying drugs.  相似文献   

15.
Secondary sexual trait expression can be influenced by fixed individual factors (such as genetic quality) as well as by dynamic factors (such as age and environmentally induced gene expression) that may be associated with variation in condition or quality. In particular, melanin‐based traits are known to relate to condition and there is a well‐characterized genetic pathway underpinning their expression. However, the mechanisms linking variable trait expression to genetic quality remain unclear. One plausible mechanism is that genetic quality could influence trait expression via differential methylation and differential gene expression. We therefore conducted a pilot study examining DNA methylation at a candidate gene (agouti‐related neuropeptide: AgRP) in the black grouse Lyrurus tetrix. We specifically tested whether CpG methylation covaries with age and multilocus heterozygosity (a proxy of genetic quality) and from there whether the expression of a melanin‐based ornament (ultraviolet‐blue chroma) correlates with DNA methylation. Consistent with expectations, we found clear evidence for age‐ and heterozygosity‐specific patterns of DNA methylation, with two CpG sites showing the greatest DNA methylation in highly heterozygous males at their peak age of reproduction. Furthermore, DNA methylation at three CpG sites was significantly positively correlated with ultraviolet‐blue chroma. Ours is the first study to our knowledge to document age‐ and quality‐dependent variation in DNA methylation and to show that dynamic sexual trait expression across the lifespan of an organism is associated with patterns of DNA methylation. Although we cannot demonstrate causality, our work provides empirical support for a mechanism that could potentially link key individual factors to variation in sexual trait expression in a wild vertebrate.  相似文献   

16.
Replicative senescence has a major impact on function and integrity of cell preparations. This process is reflected by continuous DNA methylation (DNAm) changes at specific CpG dinucleotides in the course of in vitro culture, and such modifications can be used to estimate the state of cellular senescence for quality control of cell preparations. Still, it is unclear how senescence‐associated DNAm changes are regulated and whether they occur simultaneously across a cell population. In this study, we analyzed global DNAm profiles of human mesenchymal stem cells (MSCs) and human umbilical vein endothelial cells (HUVECs) to demonstrate that senescence‐associated DNAm changes are overall similar in these different cell types. Subsequently, an Epigenetic‐Senescence‐Signature, based on six CpGs, was either analyzed by pyrosequencing or by bar‐coded bisulfite amplicon sequencing. There was a good correlation between predicted and real passage numbers in bulk populations of MSCs (R2 = 0.67) and HUVECs (R2 = 0.97). However, when we analyzed the Epigenetic‐Senescence‐Signature in subclones of MSCs, the predictions revealed high variation and they were not related to the adipogenic or osteogenic differentiation potential of the subclones. Notably, in clonally derived subpopulations, the DNAm levels of neighboring CpGs differed extensively, indicating that these genomic regions are not synchronously modified during senescence. Taken together, senescence‐associated DNAm changes occur in a highly reproducible manner, but they are not synchronously co‐regulated. They rather appear to be acquired stochastically—potentially evoked by other epigenetic modifications.  相似文献   

17.
18.
19.
The development of hepatocellular carcinoma (HCC) is believed to be associated with multiple risk factors, including the infection of hepatitis B virus (HBV). Based on the analysis of individual genes, evidence has indicated the association between HCC and HBV and has also been expanded to epigenetic regulation, with an involvement of HBV in the DNA methylation of the promoter of cellular target genes leading to changes in their expression. Proteomic study has been widely used to map a comprehensive protein profile, which in turn could provide a better understanding of underlying mechanisms of disease onset. In the present study, we performed a proteomic profiling by using iTRAQ‐coupled 2‐D LC/MS‐MS analysis to identify cellular genes down‐regulated in HBV‐producing HepG2.2.15 cells compared with HepG2 cells. A total of 15 proteins including S100A6 and Annexin A2 were identified by our approach. The significance of these cellular proteins as target of HBV‐mediated epigenetic regulation was supported by our validation assays, including their reactivation in cells treated with 5‐aza‐2′‐deoxycytidine (a DNA methyltransferase inhibitor) by real‐time RT‐PCR and Western blot analysis, as well as the DNA methylation status analysis by bisulfite genome sequencing. Our approach provides a comprehensive analysis of cellular target proteins to HBV‐mediated epigenetic regulation and further analysis should facilitate a better understanding of its involvement in HCC development.  相似文献   

20.
Differential epigenetic modification by methylation of CpG dinucleotides is a candidate mechanism that may identify the alleles of imprinted genes and result in monoallelic expression of either the maternal or the paternal allele. Determination of the allelic methylation status of imprinted genes in the gametes and during early development is constrained by the limiting quantities of genomic DNA available from these early developmental stages. To circumvent this problem we have used bisulfite genomic sequencing to determine the allelic methylation status of the minimal promoter and a 1-kb region within theXistgene during preimplantation development. We find that the parentalXistalleles are not differentially methylated in these regions. Our findings are discussed in the context of previous conflicting data obtained using methylation-sensitive restriction enzyme digestion followed by PCR amplification to assay for methylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号