首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A causal role for mitochondrial dysfunction in mammalian aging is supported by recent studies of the mtDNA mutator mouse (“PolG” mouse), which harbors a defect in the proofreading-exonuclease activity of mitochondrial DNA polymerase gamma. These mice exhibit accelerated aging phenotypes characteristic of human aging, including systemic mitochondrial dysfunction, exercise intolerance, alopecia and graying of hair, curvature of the spine, and premature mortality. While mitochondrial dysfunction has been shown to cause increased oxidative stress in many systems, several groups have suggested that PolG mutator mice show no markers of oxidative damage. These mice have been presented as proof that mitochondrial dysfunction is sufficient to accelerate aging without oxidative stress. In this study, by normalizing to mitochondrial content in enriched fractions we detected increased oxidative modification of protein and DNA in PolG skeletal muscle mitochondria. We separately developed novel methods that allow simultaneous direct measurement of mtDNA replication defects and oxidative damage. Using this approach, we find evidence that suggests PolG muscle mtDNA is indeed oxidatively damaged. We also observed a significant decrease in antioxidants and expression of mitochondrial biogenesis pathway components and DNA repair enzymes in these mice, indicating an association of maladaptive gene expression with the phenotypes observed in PolG mice. Together, these findings demonstrate the presence of oxidative damage associated with the premature aging-like phenotypes induced by mitochondrial dysfunction.  相似文献   

2.
Mitochondrial DNA (mtDNA) mutator mice are proposed to express premature aging phenotypes including kyphosis and hair loss (alopecia) due to their carrying a nuclear-encoded mtDNA polymerase with a defective proofreading function, which causes accelerated accumulation of random mutations in mtDNA, resulting in expression of respiration defects. On the contrary, transmitochondrial mito-miceΔ carrying mtDNA with a large-scale deletion mutation (ΔmtDNA) also express respiration defects, but not express premature aging phenotypes. Here, we resolved this discrepancy by generating mtDNA mutator mice sharing the same C57BL/6J (B6J) nuclear background with that of mito-miceΔ. Expression patterns of premature aging phenotypes are very close, when we compared between homozygous mtDNA mutator mice carrying a B6J nuclear background and selected mito-miceΔ only carrying predominant amounts of ΔmtDNA, in their expression of significant respiration defects, kyphosis, and a short lifespan, but not the alopecia. Therefore, the apparent discrepancy in the presence and absence of premature aging phenotypes in mtDNA mutator mice and mito-miceΔ, respectively, is partly the result of differences in the nuclear background of mtDNA mutator mice and of the broad range of ΔmtDNA proportions of mito-miceΔ used in previous studies. We also provided direct evidence that mtDNA abnormalities in homozygous mtDNA mutator mice are responsible for respiration defects by demonstrating the co-transfer of mtDNA and respiration defects from mtDNA mutator mice into mtDNA-less (ρ0) mouse cells. Moreover, heterozygous mtDNA mutator mice had a normal lifespan, but frequently developed B-cell lymphoma, suggesting that the mtDNA abnormalities in heterozygous mutator mice are not sufficient to induce a short lifespan and aging phenotypes, but are able to contribute to the B-cell lymphoma development during their prolonged lifespan.  相似文献   

3.
Pharmacological agents, such as bezafibrate, that activate peroxisome proliferator-activated receptors (PPARs) and PPAR γ coactivator-1α (PGC-1α) pathways have been shown to improve mitochondrial function and energy metabolism. The mitochondrial DNA (mtDNA) mutator mouse is a mouse model of aging that harbors a proofreading-deficient mtDNA polymerase γ. These mice develop many features of premature aging including hair loss, anemia, osteoporosis, sarcopenia and decreased lifespan. They also have increased mtDNA mutations and marked mitochondrial dysfunction. We found that mutator mice treated with bezafibrate for 8-months had delayed hair loss and improved skin and spleen aging-like phenotypes. Although we observed an increase in markers of fatty acid oxidation in these tissues, we did not detect a generalized increase in mitochondrial markers. On the other hand, there were no improvements in muscle function or lifespan of the mutator mouse, which we attributed to the rodent-specific hepatomegaly associated with fibrate treatment. These results showed that despite its secondary effects in rodent's liver, bezafibrate was able to improve some of the aging phenotypes in the mutator mouse. Because the associated hepatomegaly is not observed in primates, long-term bezafibrate treatment in humans could have beneficial effects on tissues undergoing chronic bioenergetic-related degeneration.  相似文献   

4.
Recent studies have demonstrated that transgenic mice with an increased rate of somatic point mutations in mitochondrial DNA (mtDNA mutator mice) display a premature aging phenotype reminiscent of human aging. These results are widely interpreted as implying that mtDNA mutations may be a central mechanism in mammalian aging. However, the levels of mutations in the mutator mice typically are more than an order of magnitude higher than typical levels in aged humans. Furthermore, most of the aging-like features are not specific to the mtDNA mutator mice, but are shared with several other premature aging mouse models, where no mtDNA mutations are involved. We conclude that, although mtDNA mutator mouse is a very useful model for studies of phenotypes associated with mtDNA mutations, the aging-like phenotypes of the mouse do not imply that mtDNA mutations are necessarily involved in natural mammalian aging. On the other hand, the fact that point mutations in aged human tissues are much less abundant than those causing premature aging in mutator mice does not mean that mtDNA mutations are not involved in human aging. Thus, mtDNA mutations may indeed be relevant to human aging, but they probably differ by origin, type, distribution, and spectra of affected tissues from those observed in mutator mice.  相似文献   

5.
6.
Somatic mutations of mtDNA are implicated in the aging process, but there is no universally accepted method for their accurate quantification. We have used ultra-deep sequencing to study genome-wide mtDNA mutation load in the liver of normally- and prematurely-aging mice. Mice that are homozygous for an allele expressing a proof-reading-deficient mtDNA polymerase (mtDNA mutator mice) have 10-times-higher point mutation loads than their wildtype siblings. In addition, the mtDNA mutator mice have increased levels of a truncated linear mtDNA molecule, resulting in decreased sequence coverage in the deleted region. In contrast, circular mtDNA molecules with large deletions occur at extremely low frequencies in mtDNA mutator mice and can therefore not drive the premature aging phenotype. Sequence analysis shows that the main proportion of the mutation load in heterozygous mtDNA mutator mice and their wildtype siblings is inherited from their heterozygous mothers consistent with germline transmission. We found no increase in levels of point mutations or deletions in wildtype C57Bl/6N mice with increasing age, thus questioning the causative role of these changes in aging. In addition, there was no increased frequency of transversion mutations with time in any of the studied genotypes, arguing against oxidative damage as a major cause of mtDNA mutations. Our results from studies of mice thus indicate that most somatic mtDNA mutations occur as replication errors during development and do not result from damage accumulation in adult life.  相似文献   

7.
In mtDNA mutator mice, mtDNA mutations accumulate leading to a rapidly aging phenotype. However, there is little evidence of oxidative damage to tissues, and when analyzed ex vivo, no change in production of the reactive oxygen species (ROS) superoxide and hydrogen peroxide by mitochondria has been reported, undermining the mitochondrial oxidative damage theory of aging. Paradoxically, interventions that decrease mitochondrial ROS levels in vivo delay onset of aging. To reconcile these findings, we used the mitochondria‐targeted mass spectrometry probe MitoB to measure hydrogen peroxide within mitochondria of living mice. Mitochondrial hydrogen peroxide was the same in young mutator and control mice, but as the mutator mice aged, hydrogen peroxide increased. This suggests that the prolonged presence of mtDNA mutations in vivo increases hydrogen peroxide that contributes to an accelerated aging phenotype, perhaps through the activation of pro‐apoptotic and pro‐inflammatory redox signaling pathways.  相似文献   

8.
Mitochondrial DNA damage is thought to be a causal contributor to aging as mice with inactivating mutations in polymerase gamma (Polg) develop a progeroid phenotype. To further understand the molecular mechanisms underlying this phenotype, we used iTRAQ and RNA-Seq to determine differences in protein and mRNA abundance respectively in the brains of one year old Polg mutator mice compared to control animals. We found that mitochondrial respiratory chain proteins are specifically decreased in abundance in the brains of the mutator mice, including several nuclear encoded mitochondrial components. However, we found no evidence that the changes we observed in protein levels were the result of decreases in mRNA expression. These results show that there are post-translational effects associated with mutations in Polg.  相似文献   

9.
10.
To investigate the effects of respiration defects on the disease phenotypes, we generated trans-mitochondrial mice (mito-mice) by introducing a mutated G13997A mtDNA, which specifically induces respiratory complex I defects and metastatic potentials in mouse tumor cells. First, we obtained ES cells and chimeric mice containing the G13997A mtDNA, and then we generated mito-mice carrying the G13997A mtDNA via its female germ line transmission. The three-month-old mito-mice showed complex I defects and lactate overproduction, but showed no other phenotypes related to mitochondrial diseases or tumor formation, suggesting that aging or additional nuclear abnormalities are required for expression of other phenotypes.  相似文献   

11.
Deletions in mitochondrial DNA (mtDNA) have long been suspected to be involved in mammalian aging, but their role remains controversial. Recent research has demonstrated that relatively higher levels of mtDNA deletions correlate with premature aging in mtDNA mutator mice, which led to the conclusion that premature aging in these mice is driven by mtDNA deletions. However, it is reported here that the absolute level of deletions in mutator mice is quite low, especially when compared with the level of point mutations in these mice. It is thus argued that the available data are insufficient to conclude that mtDNA mutations drive premature aging in mtDNA mutator mice. It remains possible that clonal expansion of mtDNA deletions may result in sufficiently high levels to play a role in age-related dysfunction in some cells, but assessing this possibility will require studies of the distribution of these deletions among different cell types and in individual cells.  相似文献   

12.
Early embryonic development features rapid nuclear DNA replication cycles, but lacks mtDNA replication. To meet the high‐energy demands of embryogenesis, mature oocytes are furnished with vast amounts of mitochondria and mtDNA. However, the cellular machinery driving massive mtDNA replication in ovaries remains unknown. Here, we describe a Drosophila AKAP protein, MDI that recruits a translation stimulator, La‐related protein (Larp), to the mitochondrial outer membrane in ovaries. The MDI‐Larp complex promotes the synthesis of a subset of nuclear‐encoded mitochondrial proteins by cytosolic ribosomes on the mitochondrial surface. MDI‐Larp's targets include mtDNA replication factors, mitochondrial ribosomal proteins, and electron‐transport chain subunits. Lack of MDI abolishes mtDNA replication in ovaries, which leads to mtDNA deficiency in mature eggs. Targeting Larp to the mitochondrial outer membrane independently of MDI restores local protein synthesis and rescues the phenotypes of mdi mutant flies. Our work suggests that a selective translational boost by the MDI‐Larp complex on the outer mitochondrial membrane might be essential for mtDNA replication and mitochondrial biogenesis during oogenesis.  相似文献   

13.
It has been proposed that somatic mutations make major contributions to aging. The first paper, based on a gene knock-in mouse, supports a contributory role for mutation in mtDNA in aging, but does not support a damaged-mtDNA-producing-more-damaged-mtDNA hypothesis. The second paper indicates some GC-rich sequences in the nuclear DNA are more sensitive to oxidative damage than mtDNA. As a result, key genes involved in brain function and mitochondrial function are progressively inactivated with age. Failure in these nucleus-encoded mitochondrial genes may be a primary reason for mitochondrial failure in old age.  相似文献   

14.
15.
16.
Polg mtDNA mutator mice are important models for investigating the role of acquired mtDNA mutations in aging. Despite extensive study, there remains little consensus on either the etiology of the progeroid phenotype or the mtDNA mutation spectrum induced by disrupted polymerase-γ function. To investigate the latter, we have developed a novel, pragmatic approach we term "Mito-seq," applying next-generation sequencing to enriched, native mtDNA. Regardless of detection parameters we observed an increase of at least two orders of magnitude in the number of mtDNA single nucleotide variants in Polg mutator mice compared to controls. We found no evidence for the accumulation of canonical mtDNA deletions but multimers of the mtDNA control region were identified in brain and heart. These control region multimers (CRMs) contained heterogeneous breakpoints and formed species that excluded the majority of mtDNA genes. CRMs demonstrate that polymerase-γ 3'-5' exonuclease activity is required for preserving mtDNA integrity.  相似文献   

17.
Mitochondrial dysfunction has been implicated in the commonly occurring age-associated hearing loss (presbyacusis). We have previously generated mtDNA mutator mice with increased levels of somatic mtDNA point mutations causing phenotypes consistent with premature ageing. We have now utilized these mice to investigate whether elevated levels of somatic mtDNA mutations affect the auditory system. The mtDNA mutator mice develop a progressive impairment of hearing (ABR thresholds). Quantitative assessment of hair cell loss in the cochlea did not show any significant difference between the mutator and wild-type mice. The mtDNA mutator mice showed progressive apoptotic cell loss in the spiral ganglion and increased pathology with increasing age in the stria vascularis. The neurons in the cochlear nucleus showed an accelerated progressive degeneration with increasing age in the mutator mice compared to the wild-type mice. Both physiological and histological characterization thus reveals a striking resemblance between the auditory system pathology of mtDNA mutator mice and humans with presbyacusis. Somatic mtDNA mutations accumulate during normal ageing and further studies in humans are now warranted to investigate whether presbyacusis can be linked to mitochondrial dysfunction.  相似文献   

18.
Mitochondria contain a separate protein-synthesis machinery to produce the polypeptides encoded in mitochondrial DNA (mtDNA), and many mtDNA disease mutations affect this machinery. In humans, the mitochondrial rRNAs and tRNAs are encoded by mtDNA, whereas all proteins involved in mitochondrial translation are encoded by nuclear genes. Recently, several articles have discussed the identification of pathological mutations in nuclear genes encoding components of this protein-synthesis machinery, suggesting that these types of mutation are a frequent cause of human genetic diseases.  相似文献   

19.
20.
Mitochondrial defects have been found in aging and several age‐related diseases. Mice with a homozygous mutation in the exonuclease encoding domain of mitochondrial DNA polymerase gamma (Polgm/m) are prone to age‐dependent accumulation of mitochondrial DNA mutations and have shown a broad spectrum of aging‐like phenotypes. However, the mechanism of cardiac phenotypes in relation to the role of mitochondrial DNA mutations and oxidative stress in this mouse model has not been fully addressed. We demonstrate age‐dependent cardiomyopathy in Polgm/m mice, which by 13–14 months of age displays marked cardiac hypertrophy and dilatation, impairment of systolic and diastolic function, and increased cardiac fibrosis. This age‐dependent cardiomyopathy is associated with increases in mitochondrial DNA (mtDNA) deletions and protein oxidative damage, increased expression of apoptotic and senescence markers, as well as a decline in signaling for mitochondrial biogenesis. The relationship of these changes to mitochondrial reactive oxygen species (ROS) was tested by crossing Polgm/m mice with mice that overexpress mitochondrial targeted catalase (mCAT). All of the above phenotypes were partially rescued in Polgm/m/mCAT mice. These data indicate that accumulation of mitochondrial DNA damage with age can lead to cardiomyopathy and that this phenotype is partly mediated by mitochondrial oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号