首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Parallel phenotypic differentiation is generally attributed to parallel adaptive divergence as an evolutionary response to similar environmental contrasts. Such parallelism may actually originate from several evolutionary scenarios ranging from repeated parallel divergence caused by divergent selection to a unique divergence event followed by gene flow. Reconstructing the evolutionary history underlying parallel phenotypic differentiation is thus fundamental to understand the relative contribution of demography and selection on genomic divergence during speciation. In this study, we investigate the divergence history of replicate European whitefish (Coregonus lavaretus), limnetic and benthic species pairs from two lakes in Norway and two lakes in Switzerland. Demographic models accounting for semi‐permeability and linked selection were fitted to the unfolded joint allele frequency spectrum built from genome‐wide SNPs and compared to each other in each species pair. We found strong support for a model of asymmetrical post‐glacial secondary contact between glacial lineages in all four lakes. Moreover, our results suggest that heterogeneous genomic differentiation has been shaped by the joint action of linked selection accelerating lineage sorting during allopatry, and heterogeneous migration eroding divergence at different rates along the genome following secondary contact. Our analyses reveal how the interplay between demography, selection and historical contingency has influenced the levels of diversity observed in previous whitefish phylogeographic studies. This study thus provides new insights into the historical demographic and selective processes that shaped the divergence associated with ecological speciation in European whitefish.  相似文献   

2.
Molecular markers produced by next‐generation sequencing (NGS) technologies are revolutionizing genetic research. However, the costs of analysing large numbers of individual genomes remain prohibitive for most population genetics studies. Here, we present results based on mathematical derivations showing that, under many realistic experimental designs, NGS of DNA pools from diploid individuals allows to estimate the allele frequencies at single nucleotide polymorphisms (SNPs) with at least the same accuracy as individual‐based analyses, for considerably lower library construction and sequencing efforts. These findings remain true when taking into account the possibility of substantially unequal contributions of each individual to the final pool of sequence reads. We propose the intuitive notion of effective pool size to account for unequal pooling and derive a Bayesian hierarchical model to estimate this parameter directly from the data. We provide a user‐friendly application assessing the accuracy of allele frequency estimation from both pool‐ and individual‐based NGS population data under various sampling, sequencing depth and experimental error designs. We illustrate our findings with theoretical examples and real data sets corresponding to SNP loci obtained using restriction site–associated DNA (RAD) sequencing in pool‐ and individual‐based experiments carried out on the same population of the pine processionary moth (Thaumetopoea pityocampa). NGS of DNA pools might not be optimal for all types of studies but provides a cost‐effective approach for estimating allele frequencies for very large numbers of SNPs. It thus allows comparison of genome‐wide patterns of genetic variation for large numbers of individuals in multiple populations.  相似文献   

3.
Small populations are prone to loss of genetic variation and hence to a reduction in their evolutionary potential. Therefore, studying the mating system of small populations and its potential effects on genetic drift and genetic diversity is of high importance for their viability assessments. The traditional method for studying genetic mating systems is paternity analysis. Yet, as small populations are often rare and elusive, the genetic data required for paternity analysis are frequently unavailable. The endangered Asiatic wild ass (Equus hemionus), like all equids, displays a behaviourally polygynous mating system; however, the level of polygyny has never been measured genetically in wild equids. Combining noninvasive genetic data with stochastic modelling of shifts in allele frequencies, we developed an alternative approach to paternity analysis for studying the genetic mating system of the re‐introduced Asiatic wild ass in the Negev Desert, Israel. We compared the shifts in allele frequencies (as a measure of genetic drift) that have occurred in the wild ass population since re‐introduction onset to simulated scenarios under different proportions of mating males. We revealed a strongly polygynous mating system in which less than 25% of all males participate in the mating process each generation. This strongly polygynous mating system and its potential effect on the re‐introduced population's genetic diversity could have significant consequences for the long‐term persistence of the population in the Negev. The stochastic modelling approach and the use of allele‐frequency shifts can be further applied to systems that are affected by genetic drift and for which genetic data are limited.  相似文献   

4.
Mutations that are beneficial in one environment can have different fitness effects in other environments. In the context of antibiotic resistance, the resulting genotype‐by‐environment interactions potentially make selection on resistance unpredictable in heterogeneous environments. Furthermore, resistant bacteria frequently fix additional mutations during evolution in the absence of antibiotics. How do these two types of mutations interact to determine the bacterial phenotype across different environments? To address this, I used Escherichia coli as a model system, measuring the effects of nine different rifampicin resistance mutations on bacterial growth in 31 antibiotic‐free environments. I did this both before and after approximately 200 generations of experimental evolution in antibiotic‐free conditions (LB medium), and did the same for the antibiotic‐sensitive wild type after adaptation to the same environment. The following results were observed: (i) bacteria with and without costly resistance mutations adapted to experimental conditions and reached similar levels of competitive fitness; (ii) rifampicin resistance mutations and adaptation to LB both indirectly altered growth in other environments; and (iii) resistant‐evolved genotypes were more phenotypically different from the ancestor and from each other than resistant‐nonevolved and sensitive‐evolved genotypes. This suggests genotype‐by‐environment interactions generated by antibiotic resistance mutations, observed previously in short‐term experiments, are more pronounced after adaptation to other types of environmental variation, making it difficult to predict long‐term selection on resistance mutations from fitness effects in a single environment.  相似文献   

5.
6.
For many species, climate oscillations drove cycles of population contraction during cool glacial periods followed by expansion during interglacials. Some groups, however, show evidence of uniform and synchronous expansion, while others display differences in the timing and extent of demographic change. We compared demographic histories inferred from genetic data across marine turtle species to identify responses to postglacial warming shared across taxa and to examine drivers of past demographic change at the global scale. Using coalescent simulations and approximate Bayesian computation (ABC), we estimated demographic parameters, including the likelihood of past population expansion, from a mitochondrial data set encompassing 23 previously identified lineages from all seven marine turtle species. For lineages with a high posterior probability of expansion, we conducted a hierarchical ABC analysis to estimate the proportion of lineages expanding synchronously and the timing of synchronous expansion. We used Bayesian model averaging to identify variables associated with expansion and genetic diversity. Approximately 60% of extant marine turtle lineages showed evidence of expansion, with the rest mainly exhibiting patterns of genetic diversity most consistent with population stability. For lineages showing expansion, there was a strong signal of synchronous expansion after the Last Glacial Maximum. Expansion and genetic diversity were best explained by ocean basin and the degree of endemism for a given lineage. Geographic differences in sensitivity to climate change have implications for prioritizing conservation actions in marine turtles as well as for identifying areas of past demographic stability and potential resilience to future climate change for broadly distributed taxa.  相似文献   

7.
Rapidly developing sequencing technologies and declining costs have made it possible to collect genome‐scale data from population‐level samples in nonmodel systems. Inferential tools for historical demography given these data sets are, at present, underdeveloped. In particular, approximate Bayesian computation (ABC) has yet to be widely embraced by researchers generating these data. Here, we demonstrate the promise of ABC for analysis of the large data sets that are now attainable from nonmodel taxa through current genomic sequencing technologies. We develop and test an ABC framework for model selection and parameter estimation, given histories of three‐population divergence with admixture. We then explore different sampling regimes to illustrate how sampling more loci, longer loci or more individuals affects the quality of model selection and parameter estimation in this ABC framework. Our results show that inferences improved substantially with increases in the number and/or length of sequenced loci, while less benefit was gained by sampling large numbers of individuals. Optimal sampling strategies given our inferential models included at least 2000 loci, each approximately 2 kb in length, sampled from five diploid individuals per population, although specific strategies are model and question dependent. We tested our ABC approach through simulation‐based cross‐validations and illustrate its application using previously analysed data from the oak gall wasp, Biorhiza pallida.  相似文献   

8.
Prioritizing and making efficient conservation plans for threatened populations requires information at both evolutionary and ecological timescales. Nevertheless, few studies integrate multidisciplinary approaches, mainly because of the difficulty for conservationists to assess simultaneously the evolutionary and ecological status of populations. Here, we sought to demonstrate how combining genetic and demographic analyses allows prioritizing and initiating conservation plans. To do so, we combined snapshot microsatellite data and a 30‐year‐long demographic survey on a threatened freshwater fish species (Parachondrostoma toxostoma) at the river basin scale. Our results revealed low levels of genetic diversity and weak effective population sizes (<63 individuals) in all populations. We further detected severe bottlenecks dating back to the last centuries (200–800 years ago), which may explain the differentiation of certain populations. The demographic survey revealed a general decrease in the spatial distribution and abundance of P. toxostoma over the last three decades. We conclude that demo‐genetic approaches are essential for (1) identifying populations for which both evolutionary and ecological extinction risks are high; and (2) proposing conservation plans targeted toward these at risk populations, and accounting for the evolutionary history of populations. We suggest that demo‐genetic approaches should be the norm in conservation practices.  相似文献   

9.
Inferring the demographic history of species and their populations is crucial to understand their contemporary distribution, abundance and adaptations. The high computational overhead of likelihood‐based inference approaches severely restricts their applicability to large data sets or complex models. In response to these restrictions, approximate Bayesian computation (ABC) methods have been developed to infer the demographic past of populations and species. Here, we present the results of an evaluation of the ABC‐based approach implemented in the popular software package diyabc using simulated data sets (mitochondrial DNA sequences, microsatellite genotypes and single nucleotide polymorphisms). We simulated population genetic data under five different simple, single‐population models to assess the model recovery rates as well as the bias and error of the parameter estimates. The ability of diyabc to recover the correct model was relatively low (0.49): 0.6 for the simplest models and 0.3 for the more complex models. The recovery rate improved significantly when reducing the number of candidate models from five to three (from 0.57 to 0.71). Among the parameters of interest, the effective population size was estimated at a higher accuracy compared to the timing of events. Increased amounts of genetic data did not significantly improve the accuracy of the parameter estimates. Some gains in accuracy and decreases in error were observed for scaled parameters (e.g., Neμ) compared to unscaled parameters (e.g., Ne and μ). We concluded that diyabc ‐based assessments are not suited to capture a detailed demographic history, but might be efficient at capturing simple, major demographic changes.  相似文献   

10.

Aims

This study developed and systematically evaluated performance and limit of detection of an off‐the‐slide genotyping procedure for both Cryptosporidium oocysts and Giardia cysts.

Methods and Results

Slide standards containing flow‐sorted (oo)cysts were used to evaluate the off‐the‐slide genotyping procedure by microscopy and PCR. Results show approximately 20% of cysts and oocysts are lost during staining. Although transfer efficiency from the slide to the PCR tube could not be determined by microscopy, it was observed that the transfer process aided in the physical lysis of the (oo)cysts likely releasing DNA. PCR detection rates for a single event on a slide were 44% for Giardia and 27% for Cryptosporidium, and a minimum of five cysts and 20 oocysts are required to achieve a 90% PCR detection rate. A Poisson distribution analysis estimated the relative PCR target densities and limits of detection, it showed that 18 Cryptosporidium and five Giardia replicates are required for a 95% probability of detecting a single (oo)cyst on a slide.

Conclusions

This study successfully developed and evaluated recovery rates and limits of detection of an off‐the‐slide genotyping procedure for both Cryptosporidium and Giardia (oo)cysts from the same slide.

Significance and Impact of the Study

This off‐the‐slide genotyping technique is a simple and low cost tool that expands the applications of US EPA Method 1623 results by identifying the genotypes and assemblages of the enumerated Cryptosporidium and Giardia. This additional information will be useful for microbial risk assessment models and watershed management decisions.  相似文献   

11.
12.
Single nucleotide polymorphisms (SNPs) have become the marker of choice for genetic studies in organisms of conservation, commercial or biological interest. Most SNP discovery projects in nonmodel organisms apply a strategy for identifying putative SNPs based on filtering rules that account for random sequencing errors. Here, we analyse data used to develop 4723 novel SNPs for the commercially important deep‐sea fish, orange roughy (Hoplostethus atlanticus), to assess the impact of not accounting for systematic sequencing errors when filtering identified polymorphisms when discovering SNPs. We used SAMtools to identify polymorphisms in a velvet assembly of genomic DNA sequence data from seven individuals. The resulting set of polymorphisms were filtered to minimize ‘bycatch’—polymorphisms caused by sequencing or assembly error. An Illumina Infinium SNP chip was used to genotype a final set of 7714 polymorphisms across 1734 individuals. Five predictors were examined for their effect on the probability of obtaining an assayable SNP: depth of coverage, number of reads that support a variant, polymorphism type (e.g. A/C), strand‐bias and Illumina SNP probe design score. Our results indicate that filtering out systematic sequencing errors could substantially improve the efficiency of SNP discovery. We show that BLASTX can be used as an efficient tool to identify single‐copy genomic regions in the absence of a reference genome. The results have implications for research aiming to identify assayable SNPs and build SNP genotyping assays for nonmodel organisms.  相似文献   

13.
14.
15.
16.
17.
18.
Crop‐wild hybridization occurs in numerous plant species and could alter the genetic structure and evolutionary dynamics of wild populations. Studying crop‐derived alleles in wild populations is also relevant to assessing/mitigating the risks associated with transgene escape. To date, crop‐wild hybridization has generally been examined via short‐term studies, typically within a single generation, focusing on few traits or genetic markers. Little is known about patterns of selection on crop‐derived alleles over multiple generations, particularly at a genome‐wide scale. Here, we documented patterns of natural selection in an experimental crop × wild sunflower population that was allowed to evolve under natural conditions for two generations at two locations. Allele frequencies at a genome‐wide collection of SNPs were tracked across generations, and a common garden experiment was conducted to compare trait means between generations. These data allowed us to identify instances of selection on crop‐derived alleles/traits and, in concert with QTL mapping results, test for congruence between our genotypic and phenotypic results. We found that natural selection overwhelmingly favours wild alleles and phenotypes. However, crop alleles in certain genomic regions can be favoured, and these changes often occurred in parallel across locations. We did not, however, consistently observe close agreement between our genotypic and phenotypic results. For example, when a trait evolved towards the wild phenotype, wild QTL alleles associated with that trait did not consistently increase in frequency. We discuss these results in the context of crop allele introgression into wild populations and implications for the management of GM crops.  相似文献   

19.
20.
To support microsatellite data communication, we have developed a convenient method for creating locus‐specific microsatellite allele ladders used to align data from different laboratories. The ladders were constructed by pooling polymerase chain reaction (PCR) products to create a template for amplification. Four ladders were field‐tested in six different laboratories using different genotyping platforms. Despite substantial differences in absolute size estimates of DNA fragments, each laboratory correctly scored unknown sample genotypes according to the ladder designations. The results indicate that our simple preparation method provides reliable allele ladders in a time‐efficient manner for verifying microsatellite genotypes across platforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号