首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rates of chimpanzee predation on mammals are calculated using data on 75 kills recorded during focal observation in Gombe National Park, Tanzania, from January 1972 to April 1975. The chimpanzees were members of two study communities (Kanyawara, or Northern, and Kahama, or Southern, community), and were observed as focal individuals for 14,583 hr by more than 30 researchers and field assistants working in pairs. The rate of predation by females was too low to allow reasonable estimates. For males, the mean rate of killing during the study period was 0.31 kills per male per 100 hr (N=17 males), or 4.65 kills per 100 hr in the two communities. In contrast to results from Mahale Mountains, there was no difference in predation rate between wet and dry seasons. However, predation rates varied over time, increasing by four times between the first three and last four seasons of the sample period. In an average year the 15 adult and subadult male chimpanzees are calculated to have killed 204 prey per year in an area of 16 km2, varying between 99 and 420 prey per year in periods of low and high predation rate. Red colobus were the most frequent prey, followed by bushpig and bushbuck. Predation rates varied greatly on different prey species, and were not related to either the proportion of time spent within 200 m of male chimpanzees, or to their population densities. In relation to encounter rates and population density, baboons, blue monkeys, and redtail monkeys were killed at a fraction of the rate of red colobus monkeys, which suffered severe mortality from chimpanzee predation. Predation on bushpig and bushbuck also appears to have been high in relation to population density. The amount of food provided by predation is estimated to have averaged 600 kg per year for chimpanzees in the two communities (totalling 14–17 adult or subadult males, 18–20 adult of subadult females, and about 19 infants or juveniles). This suggests that adult males consumed around 25 kg of meat per year, although any average figure undoubtedly masks considerable individual variation. Present data suggest that chimpanzees in Gombe and Tai National Park, Ivory Coast, prey on mammals at rates higher than other populations.  相似文献   

2.
3.
4.
We describe chimpanzee seed dispersal in the tropical montane forest of Nyungwe National Park (NNP), Rwanda, for a total of three years from January 1998 through May 2000 and May 2006 through March 2007. Relatively few studies have examined chimpanzee seed dispersal in montane communities where there are generally fewer fruiting tree species than in lowland forests. Such studies may reveal new insights into chimpanzee seed dispersal behaviors and the role that they play in forest regeneration processes. Chimpanzees are large‐bodied, highly frugivorous, and tend to deposit the seeds of both large‐ and small‐seeded fruits they consume in a viable state. We found that chimpanzees dispersed a total of 37 fruiting species (20 families) in their feces, 35% of which were large‐seeded trees (≥0.5 cm). A single large‐seeded tree, Syzygium guineense, was the only species to be dispersed in both wadges and feces. Based on phenological patterns of the top five large‐seeded tree species found in chimpanzee feces, our results indicate that chimpanzees do not choose fruits based on their availability. There was, however, a positive relationship between the presence of Ekebergia capensis seeds in chimpanzee feces and S. guineense seeds in chimpanzee wadges and their respective fruit availabilities. Our data reveal that proportionately fewer chimpanzee fecal samples at NNP contained seeds than that reported in two other communities in the Albertine Rift including one at mid‐elevation and one in montane forest. As in other chimpanzee communities, seeds of Ficus spp. were the most common genus in NNP chimpanzee feces. Our data do not support previous studies that describe Ficus spp. as a fallback food for chimpanzees and highlights an intriguing relationship between chimpanzees and the large‐seeded tree species, S. guineense. Am. J. Primatol. 71:901–911, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
Ecological niche models (ENMs) are often used to predict species distribution patterns from datasets that describe abiotic and biotic factors at coarse spatial scales. Ground‐truthing ENMs provide important information about how these factors relate to species‐specific requirements at a scale that is biologically relevant for the species. Chimpanzees are territorial and have a predominantly frugivorous diet. The spatial and temporal variation in fruit availability for different chimpanzee populations is thus crucial, but rarely depicted in ENMs. The genetic and geographic distinction within Nigeria–Cameroon chimpanzee (Pan troglodytes ellioti) populations represents a unique opportunity to understand fine scale species‐relevant ecological variation in relation to ENMs. In Cameroon, P. t. ellioti is composed of two genetically distinct populations that occupy different niches: rainforests in western Cameroon and forest–woodland–savanna mosaic (ecotone) in central Cameroon. We investigated habitat variation at three representative sites using chimpanzee‐relevant environmental variables, including fruit availability, to assess how these variables distinguish these niches from one another. Contrary to the assumption of most ENM studies that intact forest is essential for the survival of chimpanzees, we hypothesized that the ecotone and human‐modified habitats in Cameroon have sufficient resources to sustain large chimpanzee populations. Rainfall, and the diversity, density, and size of trees were higher at the rainforest. The ecotone had a higher density of terrestrial herbs and lianas. Fruit availability was higher at Ganga (ecotone) than at Bekob and Njuma. Seasonal variation in fruit availability was highest at Ganga, and periods of fruit scarcity were longer than at the rainforest sites. Introduced and secondary forest species linked with anthropogenic modification were common at Bekob, which reduced seasonality in fruit availability. Our findings highlight the value of incorporating fine scale species‐relevant ecological data to create more realistic models, which have implications for local conservation planning efforts.  相似文献   

6.
7.

Background

Assessing the range and territories of wild mammals traditionally requires years of data collection and often involves directly following individuals or using tracking devices. Indirect and non-invasive methods of monitoring wildlife have therefore emerged as attractive alternatives due to their ability to collect data at large spatiotemporal scales using standardized remote sensing technologies. Here, we investigate the use of two novel passive acoustic monitoring (PAM) systems used to capture long-distance sounds produced by the same species, wild chimpanzees (Pan troglodytes), living in two different habitats: forest (Taï, Côte d’Ivoire) and savanna-woodland (Issa valley, Tanzania).

Results

Using data collected independently at two field sites, we show that detections of chimpanzee sounds on autonomous recording devices were predicted by direct and indirect indices of chimpanzee presence. At Taï, the number of chimpanzee buttress drums detected on recording devices was positively influenced by the number of hours chimpanzees were seen ranging within a 1 km radius of a device. We observed a similar but weaker relationship within a 500 m radius. At Issa, the number of indirect chimpanzee observations positively predicted detections of chimpanzee loud calls on a recording device within a 500 m but not a 1 km radius. Moreover, using just seven months of PAM data, we could locate two known chimpanzee communities in Taï and observed monthly spatial variation in the center of activity for each group.

Conclusions

Our work shows PAM is a promising new tool for gathering information about the ranging behavior and habitat use of chimpanzees and can be easily adopted for other large territorial mammals, provided they produce long-distance acoustic signals that can be captured by autonomous recording devices (e.g., lions and wolves). With this study we hope to promote more interdisciplinary research in PAM to help overcome its challenges, particularly in data processing, to improve its wider application.
  相似文献   

8.
9.
The composition of Ficus sp. and Musanga leo‐errerae in Chimpanzees’ diet was investigated by faecal analysis and direct observation in the medium altitude forest of Kalinzu, along the albertine rift, south‐western Uganda. The fruit availability of Ficus species showed significant variations while that of Musanga leo‐errerae was consistent and significantly higher than that of Ficus (P = 0.053; t = ?2.034) all year round. Their consumption was not opportunistic as no correlation existed between their fruit abundance and their occurrence in chimpanzee faecal samples/diet (Musanga leo‐errerae: r = 0.153, P = 0.456; Ficus sp.: r = 0.039, P = 0.848). Results showed that Musanga leo‐errerae and Ficus species seeds occurred in 80.2% and 67.2% respectively of the total 2635 chimpanzee faecal samples analyzed. Although there was no significant difference between chimpanzees party size that fed on Musanga leo‐errerae and Ficus tree species, the rate of consumption was significantly different in the low (t = 3.835; P = 0.031) than the high fruiting season (t = 2.379; P = 0.063). Ficus sp. and Musanga leo‐errerae genera function as coexistent keystone fruits for chimpanzees because they perfectly complement each other in terms of chimpanzees’ sustenance. This information has significant implications in the management of tropical forests like Kibale, Budongo, Bwindi Impenetrable, Gombe and Mahale inhabited by primate populations especially the endangered ones like the chimpanzee.  相似文献   

10.
Recent global warming and other anthropogenic changes have caused well‐documented range shifts and population declines in many species over a large spatial extent. Most large‐scale studies focus on birds, large mammals, and threatened species, whereas large‐scale population trends of small to medium‐sized mammals and species that are currently of least concern remain poorly studied. Large‐scale studies are needed because on a smaller scale, important patterns may be masked by local variation and stochastic processes. Here, we utilized snow track census data from Finland and NW Russia to estimate population growth rates of the Eurasian red squirrel Sciurus vulgaris for a period of 17 yr in an area of over 1 000 000 km2. We also studied the effects of changes in summer and winter temperatures, winter precipitation, predator abundance, and canopy cover on estimated red squirrel population growth rates. Our results suggest that red squirrel populations have declined in most parts of the study area, the only remarkable exception being SW Russia. These results are in concordance with previous studies suggesting that species that are still common and of least concern may be declining. However, our findings are in contrast to the common pattern of northern populations of boreal species increasing due to global warming. The estimated population growth rates are in synchrony over vast areas, suggesting that the underlying reasons also operate on a large scale. We indeed find that the population growth rate was lower in regions where winters warmed faster during the study period, suggesting that changes in the environment (or biotic changes associated with it) are linked with the decline of red squirrels.  相似文献   

11.
We present census data for eight primate species spanning 32.9 years along the same transect at Ngogo, Kibale National Park, Uganda, demonstrating major changes in the composition of the primate community. Correlated with an estimated decline of ~89% in the red colobus population was an increase in encounter rates with chimpanzee parties. Our data, along with the unusually high rates of predation by chimpanzees on red colobus at Ngogo and the fact that the chimpanzee community at Ngogo is the largest ever recorded, support the conclusion that the red colobus decline was caused primarily by chimpanzee predation. This seems to be the first documented case of predation by one nonhuman primate causing the population decline in another. We evaluated disease and interspecific competition as other possible causes of the red colobus decline, but judged them to be relatively insignificant compared with predation by chimpanzees. Notable changes in encounter rates with other primate species may have resulted from forest expansion. Those for mangabeys, redtails, and black and white colobus increased significantly. Encounter rates increased for l'Hoest's monkeys too, but the increased sightings may have been an artifact of increased habituation. Sightings of blue monkey and baboon groups declined. There was no significant change in encounter rates for all species combined. The Ngogo primate community seemed to be in a nonequilibrium state, changing from one dominated by two species, a folivore (red colobus) and a frugivorous omnivore (redtails), to one dominated by three species of frugivorous omnivores (redtails, mangabeys, and chimpanzees). This study demonstrates the importance of long-term monitoring in understanding population dynamics and the role of intrinsic variables in shaping the species composition of a community.  相似文献   

12.
13.
The rate of predation on mammals by chimpanzees was determined from carcasses and from fecal specimens found on fresh trails during a 16-month period in the montane forest of Kahuzi-Biega National Park, Zaire. A unit-group of semi-habituated chimpanzees, composed of 22 – 23 individuals including 8 adult or adolescent males, appeared to kill about 18 – 30 mammalian prey (16 – 28Cercopithecus monkeys) per year, if the multiple kills by chimpanzees were not considered. A juvenile l'Hoest's monkey was recorded for the first time as the prey of chimpanzees in this study. Predation occurred in the late dry and the early rainy seasons, when the diversity of ripe fruits was the highest during the year. The Kahuzi chimpanzees tended to kill mammals less frequently but to killCercopithecus monkeys more frequently than chimpanzees in other habitats. The absence of red colobus monkeys, which are the most frequent prey in Gombe, Mahale, and Tai, might be responsible for the low predation rate. However, the estimated rate of predation onCercopithecus monkeys is the highest record among various chimpanzee habitats. At least 11 – 18% of theCercopithecus population seemed to be lost annually as a result of being killed by chimpanzees. Chimpanzees may be the most important predators on these monkeys in the absence of leopards at Kahuzi. The examination of fecal samples and carcasses suggested that adult (probably male) or adolescent chimpanzees tended to eat juvenile or subadult monkeys most frequently, as is also seen for chimpanzees in Gombe, Mahale, and Tai.  相似文献   

14.
Two main mechanisms of egg rejection, the main defence of hosts against brood parasites, have been described: ejection and desertion. Desertion of the parasitized nest is much more costly and is usually exhibited by small‐sized host species unable to remove the parasitic egg. However, nest desertion is frequently assumed to be an anti‐parasite strategy even in medium or large‐sized host species. This assumption should be considered with caution because: 1) large‐sized hosts able to eject the parasitic egg should eject it rather than desert the nest, and 2) breeding birds may desert their nests in response to different disturbances other than brood parasitism. This problem is especially important in the common blackbird Turdus merula because this is a medium‐sized species, potential host of the common cuckoo Cuculus canorus, in which desertion has been frequently reported as a response to cuckoo egg models. Here, we seek to determine whether nest desertion can be considered a response unequivocally directed to the parasitic egg in medium‐sized hosts using the blackbird as the study species. In an experimental study in which we have manipulated levels of mimicry and size of experimental eggs, we have found that both colour (mimetic and non‐mimetic; at least for human vision) and size (small, medium, and large) significantly affected ejection rates but not nest desertion rates. In fact, although large eggs disproportionally provoked nest desertion more frequently than did small or medium‐sized eggs, cuckoo‐sized parasitic eggs were not deserted allowing us to conclude that desertion is unlikely to be an adaptive response to brood parasitism at least for this species.  相似文献   

15.
We investigated hunting in an unusually large community of wild chimpanzees at Ngogo in the Kibale National Park, Uganda. Aspects of predation were recorded with respect to the prey, the predators, and hunting episodes. During 23 months of observation, the Ngogo chimpanzees caught 128 prey items from four primate and three ungulate species. Chimpanzees preyed selectively on immature red colobus primarily during group hunts, with adult males making the majority of kills. Party size and composition were significant predictors of the probability that chimpanzees would hunt and of their success during attempts. Chimpanzees were more likely to hunt red colobus if party size and the number of male hunters were large; party size and the number of male hunters were also significantly larger in successful compared with unsuccessful hunts. The Ngogo chimpanzees did not appear to hunt cooperatively, but reciprocal meat-sharing typically took place after kills. Hunts occurred throughout the year, though there was some seasonality as displayed by periodic hunting binges. The extremely high success rate and large number of kills made per successful hunt are the two most striking aspects of predation by the Ngogo chimpanzees. We compare currently available observations of chimpanzee hunting behavior across study sites and conclude that the large size of the Ngogo community contributes to their extraordinary hunting success. Demographic differences between groups are likely to contribute to other patterns of interpopulation variation in chimpanzee predation. Am J Phys Anthropol 109:439–454, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

16.
Aim Large, charismatic and wide‐ranging animals are often employed as focal species for prioritizing landscape linkages in threatened ecosystems (i.e. ‘connectivity conservation’), but there have been few efforts to assess empirically whether focal species co‐occur with other species of conservation interest within potential linkages. We evaluated whether the African elephant (Loxodonta africana), a world‐recognized flagship species, would serve as an appropriate focal species for other large mammals in a potential linkage between two major protected area complexes. Location A 15,400 km2 area between the Ruaha and Selous ecosystems in central Tanzania, East Africa. Methods We used walking transects to assess habitat, human activity and co‐occurrence of elephants and 48 other large mammal species (> 1 kg) at 63 sites using animal sign and direct sightings. We repeated a subset of transects to estimate species detectability using occupancy modelling. We used logistic regression and AIC model selection to characterize patterns of elephant occurrence and assessed correlation of elephant presence with richness of large mammals and subgroups. We considered other possible focal species, compared habitat‐based linear regression models of large mammal richness and used circuit theory to examine potential connectivity spatially. Results Elephants were detected in many locations across the potential linkage. Elephant presence was highly positively correlated with the richness of large mammals, as well as ungulates, carnivores, large carnivores and species > 45 kg in body mass (‘megafauna’). Outside of protected areas, both mammal richness and elephant presence were negatively correlated with human population density and distance from water. Only one other potential focal species was more strongly correlated with species richness than elephants, but detectability was highest for elephants. Main conclusions Although African elephants have dispersal abilities that exceed most other terrestrial mammals, conserving elephant movement corridors may effectively preserve habitat and potential landscape linkages for other large mammal species among Tanzanian reserves.  相似文献   

17.
With the exception of humans, chimpanzees show the most diverse and complex tool-using repertoires of all extant species. Specific tool repertoires differ between wild chimpanzee populations, but no apparent genetic or environmental factors have emerged as definitive forces shaping variation between populations. However, identification of such patterns has likely been hindered by a lack of information from chimpanzee taxa residing in central Africa. We report our observations of the technological system of chimpanzees in the Goualougo Triangle, located in the Republic of Congo, which is the first study to compile a complete tool repertoire from the Lower Guinean subspecies of chimpanzee (Pan troglodytes troglodytes). Between 1999 and 2006, we documented the tool use of chimpanzees by direct observations, remote video monitoring, and collections of tool assemblages. We observed 22 different types of tool behavior, almost half of which were habitual (shown repeatedly by several individuals) or customary (shown by most members of at least one age-sex class). Several behaviors considered universals among chimpanzees were confirmed in this population, but we also report the first observations of known individuals using tools to perforate termite nests, puncture termite nests, pound for honey, and use leafy twigs for rain cover. Tool behavior in this chimpanzee population ranged from simple tasks to hierarchical sequences. We report three different tool sets and a high degree of tool-material selectivity for particular tasks, which are otherwise rare in wild chimpanzees. Chimpanzees in the Goualougo Triangle are shown to have one of the largest and most complex tool repertoires reported in wild chimpanzee populations. We highlight new insights from this chimpanzee population to our understanding of ape technological systems and evolutionary models of tool-using behavior.  相似文献   

18.
Chimpanzees have complex and variable mating strategies, but most copulations occur when females with full sexual swellings are in parties with multiple males and mate with most or all of those males. Daily copulation rates for fully swollen females vary at different times of a female’s cycle, among females, and across communities and populations. Variation in female age, parity, and cycle stage underlie some of this variation, but possible demographic effects on copulation rates have not been systematically investigated. Demographic variation can affect many aspects of behavior and ecology, including the frequency and success of different mating tactics. Analysis of data from the unusually large chimpanzee community at Ngogo produces two results that are consistent with the hypothesis that demographic variation affects female copulation rates. Copulation rates were high compared with those reported from other research sites, where females had fewer potential mates available. Daily copulation rates of fully swollen females were also positively related to the number of males with whom they associated. Ngogo data also re-confirm results from other studies, of both wild and captive populations, showing that female copulation rates increase during periovulatory periods. This is consistent with the hypothesis that sexual swellings and extended receptivity and proceptivity help to protect females against infanticide by helping to ensure they mate with all potential sires. As at some other sites, parous females at Ngogo copulated at higher rates than nulliparous females. Possible effects of demography on sexual behavior should be considered in assessments of differences between chimpanzees and bonobos and of variation across chimpanzee populations.  相似文献   

19.
Socioecological theory suggests that feeding competition shapes female social relationships. Chimpanzees (Pan troglodytes) live in fission–fusion societies that allow them to react flexibly to increased feeding competition by forming smaller foraging parties when food is scarce. In chimpanzees at Gombe and Kibale, female dominance rank can crucially influence feeding competition and reproductive success as high‐ranking females monopolize core areas of relatively high quality, are more gregarious, and have higher body mass and reproductive success than low‐ranking females. Chimpanzee females in Taï National Park do not monopolize core areas; they use the entire territory as do the males of their community and are highly gregarious. Although female chimpanzees in Taï generally exhibit a linear dominance hierarchy benefits of high rank are currently not well understood. We used a multivariate analysis of long‐term data from two Taï chimpanzee communities to test whether high‐ranking females (1) increase gregariousness and (2) minimize their travel costs. We found that high‐ranking females were more gregarious than low‐rankers only when food was scarce. During periods of food scarcity, high rank allowed females to enjoy benefits of gregariousness, while low‐ranking females strongly decreased their gregariousness. High‐ranking females traveled more than low‐ranking females, suggesting that low‐rankers might follow a strategy to minimize energy expenditure. Our results suggest that, in contrast to other chimpanzee populations and depending on the prevailing ecological conditions, female chimpanzees at Taï respond differently to varying levels of feeding competition. Care needs to be taken before generalizing results found in any one chimpanzee population to the species level. Am. J. Primatol. 73:305–313, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

20.
Estimates of the amount of genetic differentiation in humans among major geographic regions (e.g., Eastern Asia vs. Europe) from quantitative‐genetic analyses of cranial measurements closely match those from classical‐ and molecular‐genetic markers. Typically, among‐region differences account for ~10% of the total variation. This correspondence is generally interpreted as evidence for the importance of neutral evolutionary processes (e.g., genetic drift) in generating among‐region differences in human cranial form, but it was initially surprising because human cranial diversity was frequently assumed to show a strong signature of natural selection. Is the human degree of similarity of cranial and DNA‐sequence estimates of among‐region genetic differentiation unusual? How do comparisons with other taxa illuminate the evolutionary processes underlying cranial diversification? Chimpanzees provide a useful starting point for placing the human results in a broader comparative context, because common chimpanzees (Pan troglodytes) and bonobos (Pan paniscus) are the extant species most closely related to humans. To address these questions, I used 27 cranial measurements collected on a sample of 861 humans and 263 chimpanzees to estimate the amount of genetic differentiation between pairs of groups (between regions for humans and between species or subspecies for chimpanzees). Consistent with previous results, the human cranial estimates are quite similar to published DNA‐sequence estimates. In contrast, the chimpanzee cranial estimates are much smaller than published DNA‐sequence estimates. It appears that cranial differentiation has been limited in chimpanzees relative to humans. Am J Phys Anthropol 154:615–620, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号