首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The outcomes of pancreatic cancer remain dismal due to late clinical presentation and the aggressive nature of the disease. A heterogeneous combination of genetic mutations, including KRAS, INK4a/CDKN2A and p53, underpin the propensity of pancreatic cancer to rapidly invade and disseminate. These oncogenes and tumour suppressors are strongly associated with cellular senescence, therefore suggesting this process as having a key role in malignant transformation. In the context of cancer, oncogenic stimuli trigger the senescent phenotype resulting in cell cycle growth arrest and prevention of progression of premalignant lesions such as PanINs. However mutations of the aforementioned oncogenes or tumour suppressors result in cells escaping senescence and thus allowing tumours to progress. This review presents current evidence regarding both senescence induction and escape with respect to pancreatic cancer, highlighting the key roles of p19ARF, p53, Rb and P16INK4a. The epigenetic regulatory component is also discussed, with relevance to DNA methylation and HDACs. Lastly the role of the tumour microenvironment, and in particular pancreatic stellate cells, is discussed with regards to the induction of a senescence associated secretory phenotype (SASP), with SASP-associated secretory factors contributing to the pro-tumorigenic effects of the surrounding activated stroma. Further work is required in this field to elucidate the most important pathways relating to cellular senescence that contribute to the belligerent nature of this disease, with the aim of discovering therapeutic targets to improve patient outcomes.  相似文献   

3.
Aberrant expression of Sialyl‐Tn (STn) antigen correlates with poor prognosis and reduced patient survival. We demonstrated that expression of Tn and STn in pancreatic ductal adenocarcinoma (PDAC) is due to hypermethylation of Co re 1 s ynthase specific m olecular c haperone (COSMC) and enhanced the malignant properties of PDAC cells with an unknown mechanism. To explore the mechanism, we have genetically deleted COSMC in PDAC cells to express truncated O‐glycans (SimpleCells, SC) which enhanced cell migration and invasion. Since epithelial‐to‐mesenchymal transition (EMT) play a vital role in metastasis, we have analysed the induction of EMT in SC cells. Expressions of the mesenchymal markers were significantly high in SC cells as compared to WT cells. Equally, we found reduced expressions of the epithelial markers in SC cells. Re‐expression of COSMC in SC cells reversed the induction of EMT. In addition to this, we also observed an increased cancer stem cell population in SC cells. Furthermore, orthotopic implantation of T3M4 SC cells into athymic nude mice resulted in significantly larger tumours and reduced animal survival. Altogether, these results suggest that aberrant expression of truncated O‐glycans in PDAC cells enhances the tumour aggressiveness through the induction of EMT and stemness properties.  相似文献   

4.
Activation of K-ras and inactivation of p16 are the most frequently identified genetic alterations in human pancreatic epithelial adenocarcinoma (PDAC). Mouse models engineered with mutant K-ras and deleted p16 recapitulate key pathological features of PDAC. However, a human cell culture transformation model that recapitulates the human pancreatic molecular carcinogenesis is lacking. In this study, we investigated the role of p16 in hTERT-immortalized human pancreatic epithelial nestin-expressing (HPNE) cells expressing mutant K-ras (K-rasG12V). We found that expression of p16 was induced by oncogenic K-ras in these HPNE cells and that silencing of this induced p16 expression resulted in tumorigenic transformation and development of metastatic PDAC in an orthotopic xenograft mouse model. Our results revealed that PI3K/Akt, ERK1/2 pathways and TGFα signaling were activated by K-ras and involved in the malignant transformation of human pancreatic cells. Also, p38/MAPK pathway was involved in p16 up-regulation. Thus, our findings establish an experimental cell-based model for dissecting signaling pathways in the development of human PDAC. This model provides an important tool for studying the molecular basis of PDAC development and gaining insight into signaling mechanisms and potential new therapeutic targets for altered oncogenic signaling pathways in PDAC.  相似文献   

5.
The mechanisms of tumor suppression must be linked to the oncogenic threats that may affect a normal cell. An important cancer causing mechanism is the accidental activation of genes that stimulate cell proliferation (oncogenes) by a variety of endogenous or environmental mutagens. This event has been experimentally modelled by enforcing the expression of oncogenes in primary cells. The astonishing outcome of these manipulations is that oncogenes trigger antiproliferative responses preventing progression to malignant transformation. These responses bring to an end proliferation due to cell death or a permanent cell cycle arrest called senescence. Here we review evidence indicating that oncogene induced senescence (OIS) involves activation of p53 via the DNA damage response (DDR). These results imply mechanisms of DNA damage in cells expressing oncogenes, that may be secondary to reactive oxygen species and/or some form of “oncogenic stress” that affect normal DNA replication. Interestingly, DNA damage signals persist in cells that escape from senescence. The implications of these signals for tumorigenesis are also discussed. Given that DNA damage signals have now been observed in cells treated with any stimuli known to induce senescence, the process can be redefined as a metabolically viable but permanent cell cycle arrest with persistent DNA damage signaling.  相似文献   

6.
7.
Cellular senescence, a stable proliferation arrest, is induced in response to various stresses. Oncogenic stress-induced senescence (OIS) results in blocked proliferation and constitutes a fail-safe program counteracting tumorigenesis. The events that enable a tumor in a benign senescent state to escape from OIS and become malignant are largely unknown. We show that lysyl oxidase activity contributes to the decision to maintain senescence. Indeed, in human epithelial cell the constitutive expression of the LOX or LOXL2 protein favored OIS escape, whereas inhibition of lysyl oxidase activity was found to stabilize OIS. The relevance of these in vitro observations is supported by in vivo findings: in a transgenic mouse model of aggressive pancreatic ductal adenocarcinoma (PDAC), increasing lysyl oxidase activity accelerates senescence escape, whereas inhibition of lysyl oxidase activity was found to stabilize senescence, delay tumorigenesis, and increase survival. Mechanistically, we show that lysyl oxidase activity favors the escape of senescence by regulating the focal-adhesion kinase. Altogether, our results demonstrate that lysyl oxidase activity participates in primary tumor growth by directly impacting the senescence stability.  相似文献   

8.
9.
In response to a variety of stresses, mammalian cells undergo a persistent proliferative arrest known as cellular senescence. Many senescence‐inducing stressors are potentially oncogenic, strengthening the notion that senescence evolved alongside apoptosis to suppress tumorigenesis. In contrast to apoptosis, senescent cells are stably viable and have the potential to influence neighboring cells through secreted soluble factors, which are collectively known as the senescence‐associated secretory phenotype (SASP). However, the SASP has been associated with structural and functional tissue and organ deterioration and may even have tumor‐promoting effects, raising the interesting evolutionary question of why apoptosis failed to outcompete senescence as a superior cell fate option. Here, we discuss the advantages that the senescence program may have over apoptosis as a tumor protective mechanism, as well as non‐neoplastic functions that may have contributed to its evolution. We also review emerging evidence for the idea that senescent cells are present transiently early in life and are largely beneficial for development, regeneration and homeostasis, and only in advanced age do senescent cells accumulate to an organism's detriment.  相似文献   

10.
Senescence is an antiproliferative mechanism that can suppress tumor development and can be induced by oncogenes such as genes of the Ras family. Although studies have implicated bioactive sphingolipids (SL) in senescence, the specific mechanisms remain unclear. Here, using MCF10A mammary epithelial cells, we demonstrate that oncogenic K-Ras (Kirsten rat sarcoma viral oncogene homolog) is sufficient to induce cell transformation as well as cell senescence—as revealed by increases in the percentage of cells in the G1 phase of the cell cycle, p21WAF1/Cip1/CDKN1A (p21) expression, and senescence-associated β-galactosidase activity (SA-β-gal). Furthermore, oncogenic K-Ras altered SL metabolism, with an increase of long-chain (LC) C18, C20 ceramides (Cer), and very-long-chain (VLC) C22:1, C24 Cer, and an increase of sphingosine kinase 1 (SK1) expression. Since Cer and sphingosine-1-phosphate have been shown to exert opposite effects on cellular senescence, we hypothesized that targeting SK1 could enhance oncogenic K-Ras-induced senescence. Indeed, SK1 downregulation or inhibition enhanced p21 expression and SA-β-gal in cells expressing oncogenic K-Ras and impeded cell growth. Moreover, SK1 knockdown further increased LC and VLC Cer species (C18, C20, C22:1, C24, C24:1, C26:1), especially the ones increased by oncogenic K-Ras. Fumonisin B1 (FB1), an inhibitor of ceramide synthases (CerS), reduced p21 expression induced by oncogenic K-Ras both with and without SK1 knockdown. Functionally, FB1 reversed the growth defect induced by oncogenic K-Ras, confirming the importance of Cer generation in the senescent phenotype. More specifically, downregulation of CerS2 by siRNA blocked the increase of VLC Cer (C24, C24:1, and C26:1) induced by SK1 knockdown and phenocopied the effects of FB1 on p21 expression. Taken together, these data show that targeting SK1 is a potential therapeutic strategy in cancer, enhancing oncogene-induced senescence through an increase of VLC Cer downstream of CerS2.Subject terms: Cancer metabolism, Senescence  相似文献   

11.
Mesenchymal stem cells (MSCs) are a popular cell source for stem cell‐based therapy. However, continuous ex vivo expansion to acquire large amounts of MSCs for clinical study induces replicative senescence, causing decreased therapeutic efficacy in MSCs. To address this issue, we investigated the effect of melatonin on replicative senescence in MSCs. In senescent MSCs (late passage), replicative senescence decreased mitophagy by inhibiting mitofission, resulting in the augmentation of mitochondrial dysfunction. Treatment with melatonin rescued replicative senescence by enhancing mitophagy and mitochondrial function through upregulation of heat shock 70 kDa protein 1L (HSPA1L). More specifically, we found that melatonin‐induced HSPA1L binds to cellular prion protein (PrPC), resulting in the recruitment of PrPC into the mitochondria. The HSPA1L‐PrPC complex then binds to COX4IA, which is a mitochondrial complex IV protein, leading to an increase in mitochondrial membrane potential and anti‐oxidant enzyme activity. These protective effects were blocked by knockdown of HSPA1L. In a murine hindlimb ischemia model, melatonin‐treated senescent MSCs enhanced functional recovery by increasing blood flow perfusion, limb salvage, and neovascularization. This study, for the first time, suggests that melatonin protects MSCs against replicative senescence during ex vivo expansion for clinical application via mitochondrial quality control.  相似文献   

12.
The expression of oncogenic ras in normal human cells quickly induces an aberrant proliferation response that later is curtailed by a cell cycle arrest known as cellular senescence. Here, we show that cells expressing oncogenic ras display an increase in the mitochondrial mass, the mitochondrial DNA, and the mitochondrial production of reactive oxygen species (ROS) prior to the senescent cell cycle arrest. By the time the cells entered senescence, dysfunctional mitochondria accumulated around the nucleus. The mitochondrial dysfunction was accompanied by oxidative DNA damage, a drop in ATP levels, and the activation of AMPK. The increase in mitochondrial mass and ROS in response to oncogenic ras depended on intact p53 and Rb tumor suppression pathways. In addition, direct interference with mitochondrial functions by inhibiting the expression of the Rieske iron sulfur protein of complex III or the use of pharmacological inhibitors of the electron transport chain and oxidative phosphorylation was sufficient to trigger senescence. Taking these results together, this work suggests that mitochondrial dysfunction is an effector pathway of oncogene-induced senescence.Mitochondria are central to cell metabolism and energy production. High-energy electrons coming from the oxidation of different carbon sources such as glucose and fatty acids enter the mitochondrial electron transport chain as reduced equivalents, and their energy gradually is converted into a proton gradient. Mitochondria use this gradient to synthesize ATP that later is used for biosynthetic reactions (9, 30). Mitochondria also control decisions for life and death. Changes in mitochondrial membrane permeability lead to the release of proapoptotic mediators that can kill cells with DNA damage or activated oncogenes (16). In this way, mitochondria control one of the major tumor suppressor responses: apoptosis (27). Some oncogenes, such as RasV12, STAT5, and Bcl2, have antiapoptotic activity, and some cell types have a high apoptosis threshold. Another tumor suppressor response, called cellular senescence, serves as a fail-safe mechanism against the transforming activity of antiapoptotic oncogenes (29, 40, 43). However, currently it is unknown whether mitochondria also can play a role in oncogene-induced senescence (OIS).OIS is phenotypically similar to the senescence response triggered by short telomeres, also known as replicative senescence (6). Replicative senescence is, in essence, the consequence of a DNA damage response triggered by short telomeres (11). OIS also involves the DNA damage response (2, 15, 28), but the mechanism of DNA damage and the contribution of mitochondria to it are unclear. It has been demonstrated that mitochondria play a critical role in replicative senescence, and several mitochondrial changes, including an increase in the production of reactive oxygen species (ROS), were reported in cells with short telomeres (34, 35). Mitochondrion-derived ROS contribute to the senescent phenotype by damaging the DNA (35) and therefore amplifying the DNA damage signals originally caused by short telomeres. We reasoned that a similar amplifying mechanism involving the mitochondria could operate in cells expressing oncogenes.Here, we use Ha-RasV12, an oncogenic allele of Ha-Ras, to study the role of mitochondria in OIS. RasV12 is a very important human oncogene and was the first linked to the senescence program (43). We report that oncogenic ras induces an increase in mitochondrial mass, mitochondrial DNA, and mitochondrial superoxide production before any sign of senescent cell cycle arrest. With time, these mitochondrial changes evolved into a severe mitochondrial dysfunction characterized by a further increase in ROS production, the accumulation of depolarized mitochondria around the cell nucleus, a decrease in ATP, and the activation of AMPK. The mechanism of the increase in mitochondrial mass and ROS in response to oncogenic ras was found to be dependent on either p53 or Rb. In addition, direct interference with mitochondrial functions by downregulating the mitochondrial Rieske iron sulfur protein (RISP) or by using pharmacological inhibitors of oxidative phosphorylation induced senescence. We suggest that the senescence effector mechanism acting downstream of p53 and Rb involves mitochondrial dysfunction.  相似文献   

13.
The monitoring of pancreatic ductal adenocarcinoma (PDAC) in high-risk populations is essential. Cathepsin E (CTSE) is specifically and highly expressed in PDAC and pancreatic intraepithelial neoplasias (PanINs), and its expression gradually increases along with disease progression. In this study, we first established an in situ 7,12-dimethyl-1,2-benzanthracene (DMBA)-induced rat model for PanINs and PDAC and then confirmed that tumorigenesis properties in this model were consistent with those of human PDAC in that CTSE expression gradually increased with tumor development using histology and immunohistochemistry. Then, using in vivo imaging of heterotopically implanted tumors generated from CTSE- overexpressing cells (PANC-1-CTSE) in nude mice and in vitro imaging of PanINs and PDAC in DMBA-induced rats, the specificity of the synthesized CTSE-activatable probe was verified. Quantitative determination identified that the fluorescence signal ratio of pancreatic tumor to normal pancreas gradually increased in association with progressive pathological grades, with the exception of no significant difference between PanIN-II and PanIN-III grades. Finally, we monitored pancreatic carcinogenesis in vivo using confocal laser endomicroscopy (CLE) in combination with the CTSE-activatable probe. A prospective double-blind control study was performed to evaluate the accuracy of this method in diagnosing PDAC and PanINs of all grades (>82.7%). This allowed us to establish effective diagnostic criteria for CLE in PDAC and PanINs to facilitate the monitoring of PDAC in high-risk populations.  相似文献   

14.
Cellular senescence suppresses cancer by arresting cell proliferation, essentially permanently, in response to oncogenic stimuli, including genotoxic stress. We modified the use of antibody arrays to provide a quantitative assessment of factors secreted by senescent cells. We show that human cells induced to senesce by genotoxic stress secrete myriad factors associated with inflammation and malignancy. This senescence-associated secretory phenotype (SASP) developed slowly over several days and only after DNA damage of sufficient magnitude to induce senescence. Remarkably similar SASPs developed in normal fibroblasts, normal epithelial cells, and epithelial tumor cells after genotoxic stress in culture, and in epithelial tumor cells in vivo after treatment of prostate cancer patients with DNA-damaging chemotherapy. In cultured premalignant epithelial cells, SASPs induced an epithelial–mesenchyme transition and invasiveness, hallmarks of malignancy, by a paracrine mechanism that depended largely on the SASP factors interleukin (IL)-6 and IL-8. Strikingly, two manipulations markedly amplified, and accelerated development of, the SASPs: oncogenic RAS expression, which causes genotoxic stress and senescence in normal cells, and functional loss of the p53 tumor suppressor protein. Both loss of p53 and gain of oncogenic RAS also exacerbated the promalignant paracrine activities of the SASPs. Our findings define a central feature of genotoxic stress-induced senescence. Moreover, they suggest a cell-nonautonomous mechanism by which p53 can restrain, and oncogenic RAS can promote, the development of age-related cancer by altering the tissue microenvironment.  相似文献   

15.
Targeting of oncogenic Kras to the pancreatic Nestin-expressing embryonic progenitor cells and subsequently to the adult acinar compartment and Nestin-expressing cells is sufficient for the development of low grade pancreatic intraepithelial neoplasia (PanIN) between 2 and 4 months. The mice die around 6 month-old of unrelated causes, and it is therefore not possible to assess whether the lesions will progress to carcinoma. We now report that two brief episodes of caerulein-induced acute pancreatitis in 2 month-old mice causes rapid PanIN progression and pancreatic ductal adenocarcinoma (PDAC) development by 4 months of age. These events occur with similar frequency as observed in animals where the oncogene is targeted during embryogenesis to all pancreatic cell types. Thus, these data show that oncogenic Kras-driven PanIN originating in a non-ductal compartment can rapidly progress to PDAC when subjected to a brief inflammatory insult.  相似文献   

16.
Senescence is thought to be triggered by DNA damage, usually indirectly assessed as activation of the DNA damage response (DDR), but direct surveys of genetic damage are lacking. Here, we mitotically reactivate senescent human fibroblasts to evaluate their cytogenetic damage. We show that replicative senescence is generally characterized by telomeric fusions. However, both telomeric and extratelomeric aberrations are prevented by hTERT, indicating that even non‐telomeric damage descends from the lack of telomerase. Compared with replicative senescent cells, oncogene‐induced senescent fibroblasts display significantly higher levels of DNA damage, depicting how oncogene activation can catalyze the generation of further, potentially tumorigenic, genetic damage.  相似文献   

17.
Here, we developed a model system to evaluate the metabolic effects of oncogene(s) on the host microenvironment. A matched set of “normal” and oncogenically transformed epithelial cell lines were co-cultured with human fibroblasts, to determine the “bystander” effects of oncogenes on stromal cells. ROS production and glucose uptake were measured by FACS analysis. In addition, expression of a panel of metabolic protein biomarkers (Caveolin-1, MCT1, and MCT4) was analyzed in parallel. Interestingly, oncogene activation in cancer cells was sufficient to induce the metabolic reprogramming of cancer-associated fibroblasts toward glycolysis, via oxidative stress. Evidence for “metabolic symbiosis” between oxidative cancer cells and glycolytic fibroblasts was provided by MCT1/4 immunostaining. As such, oncogenes drive the establishment of a stromal-epithelial “lactate-shuttle”, to fuel the anabolic growth of cancer cells. Similar results were obtained with two divergent oncogenes (RAS and NFκB), indicating that ROS production and inflammation metabolically converge on the tumor stroma, driving glycolysis and upregulation of MCT4. These findings make stromal MCT4 an attractive target for new drug discovery, as MCT4 is a shared endpoint for the metabolic effects of many oncogenic stimuli. Thus, diverse oncogenes stimulate a common metabolic response in the tumor stroma. Conversely, we also show that fibroblasts protect cancer cells against oncogenic stress and senescence by reducing ROS production in tumor cells. Ras-transformed cells were also able to metabolically reprogram normal adjacent epithelia, indicating that cancer cells can use either fibroblasts or epithelial cells as “partners” for metabolic symbiosis. The antioxidant N-acetyl-cysteine (NAC) selectively halted mitochondrial biogenesis in Ras-transformed cells, but not in normal epithelia. NAC also blocked stromal induction of MCT4, indicating that NAC effectively functions as an “MCT4 inhibitor”. Taken together, our data provide new strategies for achieving more effective anticancer therapy. We conclude that oncogenes enable cancer cells to behave as selfish “metabolic parasites”, like foreign organisms (bacteria, fungi, viruses). Thus, we should consider treating cancer like an infectious disease, with new classes of metabolically targeted “antibiotics” to selectively starve cancer cells. Our results provide new support for the “seed and soil” hypothesis, which was first proposed in 1889 by the English surgeon, Stephen Paget.  相似文献   

18.
19.
YAP/TAZ, downstream transducers of the Hippo pathway, are powerful regulators of cancer growth. How these factors control proliferation remains poorly defined. Here, we found that YAP/TAZ directly regulate expression of key enzymes involved in deoxynucleotide biosynthesis and maintain dNTP precursor pools in human cancer cells. Regulation of deoxynucleotide metabolism is required for YAP‐induced cell growth and underlies the resistance of YAP‐addicted cells to chemotherapeutics targeting dNTP synthesis. During RAS‐induced senescence, YAP/TAZ bypass RAS‐mediated inhibition of nucleotide metabolism and control senescence. Endogenous YAP/TAZ targets and signatures are inhibited by RAS/MEK1 during senescence, and depletion of YAP/TAZ is sufficient to cause senescence‐associated phenotypes, suggesting a role for YAP/TAZ in suppression of senescence. Finally, mechanical cues, such as ECM stiffness and cell geometry, regulate senescence in a YAP‐dependent manner. This study indicates that YAP/TAZ couples cell proliferation with a metabolism suited for DNA replication and facilitates escape from oncogene‐induced senescence. We speculate that this activity might be relevant during the initial phases of tumour progression or during experimental stem cell reprogramming induced by YAP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号