首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BackgroundDual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A) is a significant pathogenic factor in Down syndrome (DS), wherein DYRK1A is overexpressed by 1.5-fold because of trisomy of human chromosome 21. Thus, DYRK1A inhibition is considered a therapeutic strategy to modify the disease.PurposeThis study aims to identify a novel DYRK1A inhibitor and validate its therapeutic potential in DS-related pathological conditions.Study designIn order to identify a novel DYRK1A inhibitor, we carried out two-step screening: a structure-based virtual screening of > 300,000 chemical library (first step) and cell-based nuclear factor of activated T-cells (NFAT)-response element (RE) promoter assay (second step). Primary hits were evaluated for their DYRK1A inhibitory activity using in vitro kinase assay and Tau phosphorylation in mammalian cells. Confirmed hit was further evaluated in pathological conditions including DYRK1A-overexpressing fibroblasts, flies, and mice.ResultsWe identified aristolactam BIII, a natural product derived from herbal plants, as a novel DYRK1A inhibitor. It potently inhibited the kinase activity of DYRK1A in vitro (IC50 = 9.67 nM) and effectively suppressed DYRK1A-mediated hyperphosphorylation of Tau in mammalian cells. Aristolactam BIII rescued the proliferative defects of DYRK1A transgenic (TG) mouse-derived fibroblasts and neurological and phenotypic defects of DS-like Drosophila models. Oral administration of aristolactam BIII acutely suppressed Tau hyperphosphorylation in the brain of DYRK1A TG mice. In the open field test, aristolactam BIII significantly ameliorated the exploratory behavioral deficit of DYRK1A TG mice.ConclusionOur work revealed that aristolactam BIII as a novel DYRK1A inhibitor rescues DS phenotypes in cells and in vivo and suggested its therapeutic potential for the treatment of DYRK1A-related diseases.  相似文献   

2.
The dual‐specificity tyrosine phosphorylation‐regulated kinase 1A (DYRK1A) gene is located within the Down Syndrome (DS) critical region on chromosome 21 and is implicated in the generation of Tau and amyloid pathologies that are associated with the early onset Alzheimer's Disease (AD) observed in DS. DYRK1A is also found associated with neurofibrillary tangles in sporadic AD and phosphorylates key AD players (Tau, amyloid precursor, protein, etc). Thus, DYRK1A may be an important therapeutic target to modify the course of Tau and amyloid beta (Aβ) pathologies. Here, we describe EHT 5372 (methyl 9‐(2,4‐dichlorophenylamino) thiazolo[5,4‐f]quinazoline‐2‐carbimidate), a novel, highly potent (IC50 = 0.22 nM) DYRK1A inhibitor with a high degree of selectivity over 339 kinases. Models in which inhibition of DYRK1A by siRNA reduced and DYRK1A over‐expression induced Tau phosphorylation or Aβ production were used. EHT 5372 inhibits DYRK1A‐induced Tau phosphorylation at multiple AD‐relevant sites in biochemical and cellular assays. EHT 5372 also normalizes both Aβ‐induced Tau phosphorylation and DYRK1A‐stimulated Aβ production. DYRK1A is thus as a key element of Aβ‐mediated Tau hyperphosphorylation, which links Tau and amyloid pathologies. EHT 5372 and other compounds in its class warrant in vivo investigation as a novel, high‐potential therapy for AD and other Tau opathies.

  相似文献   


3.
Haspin is a serine/threonine kinase required for completion of normal mitosis that is highly expressed during cell proliferation, including in a number of neoplasms. Consequently, it has emerged as a potential therapeutic target in oncology. A high throughput screen of approximately 140,000 compounds identified an acridine analog as a potent haspin kinase inhibitor. Profiling against a panel of 270 kinases revealed that the compound also exhibited potent inhibitory activity for DYRK2, another serine/threonine kinase. An optimization study of the acridine series revealed that the structure–activity relationship (SAR) of the acridine series for haspin and DYRK2 inhibition had many similarities. However, several structural differences were noted that allowed generation of a potent haspin kinase inhibitor (33, IC50 <60 nM) with 180-fold selectivity over DYRK2. In addition, a moderately potent DYRK2 inhibitor (41, IC50 <400 nM) with a 5.4-fold selectivity over haspin was also identified.  相似文献   

4.
A series of 5-(1,3-benzothiazol-6-yl)-4-(4-methyl-1,3-thiazol-2-yl)-1H-imidazole derivatives was synthesized as transforming growth factor-β (TGF-β) type I receptor (also known as activin-like kinase 5 or ALK5) inhibitors. These compounds were evaluated for their ALK5 inhibitory activity in an enzyme assay and for their TGF-β-induced Smad2/3 phosphorylation inhibitory activity in a cell-based assay. As a representative compound, 16i was a potent and selective ALK5 inhibitor, exhibiting a good enzyme inhibitory activity (IC50 = 5.5 nM) as well as inhibitory activity against TGF-β-induced Smad2/3 phosphorylation at a cellular level (IC50 = 36 nM). Furthermore, the topical application of 3% 16i lotion significantly inhibited Smad2 phosphorylation in Mouse skin (90% inhibition compared with vehicle-treated animals).  相似文献   

5.
Leptin is a centrally acting hormone controlling metabolic pathways. Recently, it was shown that leptin can reduce amyloid β levels both in vitro and in vivo. Herein, phosphorylation of tau was investigated following treatment of neuronal cells with leptin and insulin. Specifically, phosphorylation of tau at amino acid residues Ser202, Ser396 and Ser404 was monitored in retinoic acid induced, human cell lines: SH-SY5Y and NTera-2. Both hormones induced a concentration- and time-dependent reduction of tau phosphorylation, and were synergistic at suboptimum concentrations. Importantly, leptin was 300-fold more potent than insulin (IC50L = 46.9 nM vs. IC50I = 13.8 μM). A central role for AMP-dependent kinase as a mediator of leptin’s action is demonstrated by the ability of 5-aminoimidazole-4-carboxyamide ribonucleoside (AICAR) to decrease tau phosphorylation, and by blocking leptin in the presence of Compound C. Thus, leptin, which ameliorates both amyloid β and tau-related pathological pathways, holds promise as a novel therapeutic for Alzheimer’s disease.  相似文献   

6.
DYRK1A has been associated with Down’s syndrome and neurodegenerative diseases, therefore it is an important target for novel pharmacological interventions. We combined a ligand-based pharmacophore design with a structure-based protein/ligand docking using the software MOE in order to evaluate the underlying structure/activity relationship. Based on this knowledge we synthesized several novel β-carboline derivatives to validate the theoretical model. Furthermore we identified a modified lead structure as a potent DYRK1A inhibitor (IC50 = 130 nM) with significant selectivity against MAO-A, DYRK2, DYRK3, DYRK4 & CLK2.  相似文献   

7.
Cyclin dependent kinase 5 (CDK5) is a serine/threonine kinase belonging to the cyclin dependent kinase (CDK) family. CDK5 is involved in numerous neuronal diseases (including Alzheimer’s or Parkinson’s diseases, stroke, traumatic brain injury), pain signaling and cell migration. In the present Letter, we describe syntheses and biological evaluations of new 2,6,9-trisubstituted purines, structurally related to roscovitine, a promising CDK inhibitor currently in clinical trials (CDK1/Cyclin B, IC50 = 350 nM; CDK5/p25, IC50 = 200 nM). These new molecules were synthesized using an original Buchwald–Hartwig catalytic procedure; several compounds (3j, 3k, 3l, 3e, 4k, 6b, 6c) displayed potent kinase inhibitory potencies against CDK5 (IC50 values ranging from 17 to 50 nM) and showed significant cell death inducing activities (IC50 values ranging from 2 to 9 μM on SH-SY5Y). The docking of the inhibitors into the ATP binding domain of the CDK5 catalytic site highlighted the discriminatory effect of a hydrogen bond involving the CDK5 Lys-89. In addition, the calculated final energy balances for complexation measured for several inhibitors is consistent with the ranking of the IC50 values. Lastly, we observed that several compounds exhibit submicromolar activities against DYRK1A (dual specificity, tyrosine phosphorylation regulated kinase 1A), a kinase involved in Down syndrome and Alzheimer’s disease (3g, 3h, 4m; IC50 values ranging from 300 to 400 nM).  相似文献   

8.
A fundamental question in neurobiology is how the balance between proliferation and differentiation of neuronal precursors is maintained to ensure that the proper number of brain neurons is generated. Substantial evidence implicates DYRK1A (dual specificity tyrosine-phosphorylation-regulated kinase 1A) as a candidate gene responsible for altered neuronal development and brain abnormalities in Down syndrome. Recent findings support the hypothesis that DYRK1A is involved in cell cycle control. Nonetheless, how DYRK1A contributes to neuronal cell cycle regulation and thereby affects neurogenesis remains poorly understood. In the present study we have investigated the mechanisms by which DYRK1A affects cell cycle regulation and neuronal differentiation in a human cell model, mouse neurons, and mouse brain. Dependent on its kinase activity and correlated with the dosage of overexpression, DYRK1A blocked proliferation of SH-SY5Y neuroblastoma cells within 24 h and arrested the cells in G1 phase. Sustained overexpression of DYRK1A induced G0 cell cycle exit and neuronal differentiation. Furthermore, we provide evidence that DYRK1A modulated protein stability of cell cycle-regulatory proteins. DYRK1A reduced cellular Cyclin D1 levels by phosphorylation on Thr286, which is known to induce proteasomal degradation. In addition, DYRK1A phosphorylated p27Kip1 on Ser10, resulting in protein stabilization. Inhibition of DYRK1A kinase activity reduced p27Kip1 Ser10 phosphorylation in cultured hippocampal neurons and in embryonic mouse brain. In aggregate, these results suggest a novel mechanism by which overexpression of DYRK1A may promote premature neuronal differentiation and contribute to altered brain development in Down syndrome.  相似文献   

9.
In order to explore novel Aurora kinase inhibitors, a series of novel 2,4-disubstituted pyrimidines were designed, synthesized and evaluated their in vitro anti-proliferative activities against a panel of cancerous cell lines (A549, HCT-116 and MCF-7). Among them, compound 12a showed the moderate to high anti-proliferative activities against A549 (IC50 = 12.05 ± 0.45 μM), HCT-116 (IC50 = 1.31 ± 0.41 μM) and MCF-7 (IC50 = 20.53 ± 6.13 μM) cells, as well as the Aurora A and Aurora B inhibitory activities with the IC50 values of 309 nM and 293 nM, respectively. Furthermore, compound 12a induced apoptosis by upregulated the pro-apoptotic proteins Bax and decreased the anti-apoptotic protein Bcl-xl in HCT-116 cells. Moreover, the molecular docking study showed that compound 12a had good binding modes with Aurora A and Aurora B and the bioinformatics prediction discovered that compound 12a exhibited good drug likeness using SwissADME. Taken together, these results indicated that 12a may be a potential anticancer compound that was worthy of further development as Aurora kinase inhibitor.  相似文献   

10.
Sporadic Alzheimer's disease (AD) is the most prevalent form of dementia, but no clear disease‐initiating mechanism is known. Aβ deposits and neuronal tangles composed of hyperphosphorylated tau are characteristic for AD. Here, we analyze the contribution of microRNA‐125b (miR‐125b), which is elevated in AD. In primary neurons, overexpression of miR‐125b causes tau hyperphosphorylation and an upregulation of p35, cdk5, and p44/42‐MAPK signaling. In parallel, the phosphatases DUSP6 and PPP1CA and the anti‐apoptotic factor Bcl‐W are downregulated as direct targets of miR‐125b. Knockdown of these phosphatases induces tau hyperphosphorylation, and overexpression of PPP1CA and Bcl‐W prevents miR‐125b‐induced tau phosphorylation, suggesting that they mediate the effects of miR‐125b on tau. Conversely, suppression of miR‐125b in neurons by tough decoys reduces tau phosphorylation and kinase expression/activity. Injecting miR‐125b into the hippocampus of mice impairs associative learning and is accompanied by downregulation of Bcl‐W, DUSP6, and PPP1CA, resulting in increased tau phosphorylation in vivo. Importantly, DUSP6 and PPP1CA are also reduced in AD brains. These data implicate miR‐125b in the pathogenesis of AD by promoting pathological tau phosphorylation.  相似文献   

11.
Background: Paired helical filaments (PHFs) are a characteristic pathological feature of Alzheimer's disease; their principal component is the microtubule-associated protein tau. The tau in PHFs (PHF-tau) is hyperphosphorylated, but the cellular mechanisms responsible for this hyperphosphorylation have yet to be elucidated. A number of kinases, including mitogen-activated protein (MAP) kinase, glycogen synthase kinase (GSK)-3α, GSK-3β and cyclin-dependent kinase-5, phosphorylate recombinant tau in vitro so that it resembles PHF-tau as judged by its reactivity with a panel of antibodies capable of discriminating between normal tau and PHF-tau, and by a reduced electrophoretic mobility that is characteristic of PHF-tau. To determine whether MAP kinase, GSK-3α and GSK-3β can also induce Alzheimer's disease-like phosphorylation of tau in mammalian cells, we studied the phosphorylation status of tau in primary neuronal cultures and transfected COS cells following changes in the activities of MAP kinase and GSK-3.Results Activating MAP kinase in cultures of primary neurons or transfected COS cells expressing tau isoforms did not increase the level of phosphorylation for any PHF-tau epitope investigated. But elevating GSK-3 activity in the COS cells by co-transfection with GSK-3α or GSK-3β decreased the electrophoretic mobility of tau so that it resembled that of PHF-tau, and induced reactivity with eight PHF-tau-selective monoclonal antibodies.Conclusion Our data indicate that GSK-3α and/or GSK-3β, but not MAP kinase, are good candidates for generating PHF-type phosphorylation of tau in Alzheimer's disease. The involvement of other kinases in the generation of PHFs cannot, however, be eliminated. Our results suggest that aberrant regulation of GSK-3 may be a pathogenic mechanism in Alzheimer's disease.  相似文献   

12.
13.
A series of thieno[2,3-d]pyrimidine-based hydroxamic acid hybrids was designed and synthesised as multitarget anti-cancer agents, through incorporating the pharmacophore of EGFR, VEGFR2 into the inhibitory functionality of HDAC6. Three compounds (12c, 15b and 20b) were promising hits, whereas (12c) exhibited potent VEGFR2 inhibition (IC50=185 nM), potent EGFR inhibition (IC50=1.14 µM), and mild HDAC6 inhibition (23% inhibition). Moreover, compound (15c) was the most potent dual inhibitor among all the synthesised compounds, as it exhibited potent EGFR and VEGFR2 inhibition (IC50=19 nM) and (IC50=5.58 µM), respectively. While compounds (20d) and (7c) displayed nanomolar selective kinase inhibition with EGFR IC50= 68 nM and VEGFR2 IC50= 191 nM, respectively. All of the synthesised compounds were screened in vitro for their cytotoxic effect on 60 human NCI tumour cell lines. Additionally, molecular docking studies and ADMET studies were carried out to gain further insight into their binding mode and predict the pharmacokinetic properties of all the synthesised inhibitors.  相似文献   

14.
In cultured bovine adrenal chromaffin cells expressing Nav1.7 sodium channel isoform, veratridine increased Ser473-phosphorylation of Akt and Ser9-phosphorylation of glycogen synthase kinase-3β by 217 and 195%, while decreasing Ser396-phosphorylation of tau by 36% in a concentration (EC50 = 2.1 μM)- and time (t1/2 = 2.7 min)-dependent manner. These effects of veratridine were abolished by tetrodotoxin or extracellular Ca2+ removal. Veratridine (10 μM for 5 min) increased translocation of Ca2+-dependent conventional protein kinase C-α from cytoplasm to membranes by 47%; it was abolished by tetrodotoxin, extracellular Ca2+ removal, or Gö6976 (an inhibitor of protein kinase C-α), and partially attenuated by LY294002 (an inhibitor of phosphatidylinositol 3-kinase). LY294002 (but not Gö6976) abrogated veratridine-induced Akt phosphorylation. In contrast, either LY294002 or Gö6976 alone attenuated veratridine-induced glycogen synthase kinase-3β phosphorylation by 65 or 42%; however, LY294002 plus Gö6976 completely blocked it. Veratridine (10 μM for 5 min)-induced decrease of tau phosphorylation was partially attenuated by LY294002 or Gö6976, but completely blocked by LY294002 plus Gö6976; okadaic acid or cyclosporin A (inhibitors of protein phosphatases 1, 2A, and 2B) failed to alter tau phosphorylation. These results suggest that Na+ influx via Nav1.7 sodium channel and the subsequent Ca2+ influx via voltage-dependent calcium channel activated (1) Ca2+/protein kinase C-α pathway, as well as (2) Ca2+/phosphatidylinositol 3-kinase/Akt and (3) Ca2+/phosphatidylinositol 3-kinase/protein kinase C-α pathways; these parallel pathways converged on inhibitory phosphorylation of glycogen synthase kinase-3β, decreasing tau phosphorylation.  相似文献   

15.
Potent sulfone-containing di- and trisubstituted cyclohexanes were synthesized and evaluated as CC chemokine receptor 2 (CCR2) antagonists. This led to the trisubstituted derivative 54, which exhibited excellent binding (CCR2 IC50 = 1.3 nM) and functional antagonism (calcium flux IC50 = 0.5 nM and chemotaxis IC50 = 0.2 nM). The superiority of the trisubstituted scaffold was rationalized to be the result of a conformational rigidification, which provided insight into the bioactive conformation of this chemotype.  相似文献   

16.
A series of anthranilamide derivatives were designed and synthesized as novel smoothened (SMO) inhibitors based on the SMO inhibitor taladegib (LY2940680), which can also inhibit the SMO-D473H mutant, via a ring-opening strategy. The phthalazine core in LY2940680 was replaced with anthranilamide, which retained the inhibitory activity towards the hedgehog (Hh) signaling pathway as evidenced by a dual luciferase reporter gene assay. Compound 12a displayed the best inhibitory activity against the Hh signaling pathway with IC50 value of 34.09 nM, and exhibited better proliferation inhibitory activity towards the Daoy cell line (IC50 = 0.48 μM) than LY2940680 (IC50 = 0.79 μM).  相似文献   

17.
Rivastigmine, a dual inhibitor of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), has been approved by U.S. Food and Drug Administration to treat Alzheimer’s disease (AD) and Parkinson’s disease (PD) dementia. In the current work, a bambuterol derivative lacking one of the carbamoyloxy groups on the benzene ring (BMC-1) and its analogues were synthesized using 1-(3-hydroxyphenyl) ethan-1-one and 1-(4-hydroxyphenyl) ethan-1-one as starting materials. In-vitro cholinesterase assay established that nine compounds were more potent to inhibit both electric eel AChE and equine serum BChE than rivastigmine under the same experimental conditions. Further study confirmed that among the nine carbamates, BMC-3 (IC50(AChE) = 792 nM, IC50(BChE) = 2.2 nM) and BMC-16 (IC50(AChE) = 266 nM, IC50(BChE) = 10.6 nM) were excellent cholinesterase inhibitors with potential of permeating through the blood-brain barrier. These carbamates could be used as potential dual inhibitors of AChE and BChE and to discover novel drugs for the treatment of AD and PD dementia.  相似文献   

18.
The RAS–RAF–MEK–ERK pathway is hyperactivated in 30% of human cancers. BRAF is a serine–threonine kinase, belonging to this pathway that is mutated with high frequency in human melanoma and other cancers thus BRAF is an important therapeutic target in melanoma. We have designed inhibitors of BRAF based on 2,4,5-trisubstituted imidazoles with naphthyl and benzothiophene-4-substituents. Two compounds were discovered to be potent BRAF inhibitors: 1-(6-{2-[4-(2-dimethylamino-ethoxy)phenyl]-5-(pyridin-4-yl)-1H-imidazol-4-yl} benzo[b]thiophen-3-yl)-2,2,2-trifluoroethanol (1i) with BRAF IC50 = 190 nM and with cellular GI50 = 2100 nM, and 6-{2-[4-(2-dimethylamino-ethoxy)-phenyl]-5-pyridin-4-yl-3H-imidazol-4-yl}-naphthalen-1-ol (1q) with IC50 = 9 nM and GI50 = 220 nM.  相似文献   

19.
Tau protein hyperphosphorylation triggers tau aggregation and its toxicity, leading to neuronal death and cell-to-cell toxicity. Hence, inhibition of protein kinases is a viable tool toward reduction of tau toxicity. By targeting various epitopes of Tau441 protein immobilized on Au surface, the protein kinase inhibition by anti-tau antibodies was measured by surface electrochemistry. The electrochemical impedance spectroscopy was used to measure the charge transfer resistance (Rct) of nonphosphorylated tau–Au film (nTau–Au) and compared with the phosphorylated tau–Au film (pTau–Au). The pTau–Au films were characterized by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (TOF–SIMS), which indicated high phosphorus content. The Rct factor was used as the measure of inhibition efficacies by anti-tau antibodies (D8, A10, P262, and Tau46) in addition to antibody formulation intravenous immunoglobulin (IVIG). The Rct factor for pTau–Au in the absence of antibodies was 0.25 ± 0.08, indicating a dramatic decrease in Rct on phosphorylation. The Rct factors for Tau46 and A10 were 0.57 ± 0.22 and 0.65 ± 0.26, respectively, indicating phosphorylation inhibition. All antibodies exhibited similar binding to nTau–Au. The proposed electrochemical assay may be used for detection of other posttranslational modifications.  相似文献   

20.
Indirubin derivatives were identified as potent FLT3 tyrosine kinase inhibitors with anti-proliferative activity at acute myeloid leukemic cell lines, RS4;11 and MV4;11 which express FLT3-WT and FLT3-ITD mutation, respectively. Among several 5 and 5′-substituted indirubin derivatives, 5-fluoro analog, 13 exhibited potent inhibitory activity at FLT3 (IC50 = 15 nM) with more than 100-fold selectivity versus 6 other kinases and potent anti-proliferative effect for MV4;11 cells (IC50 = 72 nM) with 30-fold selectivity versus RS4;11 cells. Cell cycle analysis indicated that compound 13 induced cell cycle arrest at G0/G1 phase in MV4;11 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号