首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The recent global spread of the amphibian‐killing fungus [Batrachochytrium dendrobatidis (Bd)] has been closely tied to anthropogenic activities; however, regional patterns of spread are not completely understood. Using historical samples, we can test whether Bd was a spreading or endemic pathogen in a region within a particular time frame, because those two disease states provide different predictions for the regional demographic dynamics and population genetics of Bd. Testing historical patterns of pathogen prevalence and population genetics under these predictions is key to understanding the evolution and origin of Bd. Focusing on the Atlantic Forest (AF) of Brazil, we used qPCR assays to determine the presence or absence of Bd on 2799 preserved postmetamorphic anurans collected between 1894 and 2010 and used semi‐nested PCRs to determine the frequency of rRNA ITS1 haplotypes from 52 samples. Our earliest date of detection was 1894. A mean prevalence of 23.9% over time and spatiotemporal patterns of Bd clusters indicate that Bd has been enzootic in the Brazilian AF with no evidence of regional spread within the last 116 years. ITS1 haplotypes confirm the long‐term presence of two divergent strains of Bd (BdGPL and Bd‐Brazil) and three spatiotemporally broad genetic demes within BdGPL, indicating that Bd was not introduced into southeast Brazil by the bullfrog trade. Our data show that the evolutionary history and pathogen dynamics of Bd in Brazil is better explained by the endemic pathogen hypothesis.  相似文献   

3.
Chytridiomycosis, due to the fungus Batrachochytrium dendrobatidis (Bd), has been associated with the alarming decline and extinction crisis of amphibians worldwide. Because conservation programs are implemented locally, it is essential to understand how the complex interactions among host species, climate and human activities contribute to Bd occurrence at regional scales. Using weighted phylogenetic regressions and model selection, we investigated geographic patterns of Bd occurrence along a latitudinal gradient of 1500 km within a biodiversity hot spot in Chile (1845 individuals sampled from 253 sites and representing 24 species), and its association with climatic, socio‐demographic and economic variables. Analyses show that Bd prevalence decreases with latitude although it has increased by almost 10% between 2008 and 2013, possibly reflecting an ongoing spread of Bd following the introduction of Xenopus laevis. Occurrence of Bd was higher in regions with high gross domestic product (particularly near developed centers) and with a high variability in rainfall regimes, whereas models including other bioclimatic or geographic variables, including temperature, exhibited substantially lower fit and virtually no support based on Akaike weights. In addition, Bd prevalence exhibited a strong phylogenetic signal, with five species having high numbers of infected individuals and higher prevalence than the average of 13.3% across all species. Taken together, our results highlight that Bd in Chile might still be spreading south, facilitated by a subset of species that seem to play an important epidemiological role maintaining this pathogen in the communities, in combination with climatic and human factors affecting the availability and quality of amphibian breeding sites. This information may be employed to design conservation strategies and mitigate the impacts of Bd in the biodiversity hot spot of southern Chile, and similar studies may prove useful to disentangle the role of different factors contributing to the emergence and spread of this catastrophic disease.  相似文献   

4.
5.
Global climate change is increasing the frequency of unpredictable weather conditions; however, it remains unclear how species‐level and geographic factors, including body size and latitude, moderate impacts of unusually warm or cool temperatures on disease. Because larger and lower‐latitude hosts generally have slower acclimation times than smaller and higher‐latitude hosts, we hypothesised that their disease susceptibility increases under ‘thermal mismatches’ or differences between baseline climate and the temperature during surveying for disease. Here, we examined how thermal mismatches interact with body size, life stage, habitat, latitude, elevation, phylogeny and International Union for Conservation of Nature (IUCN) conservation status to predict infection prevalence of the chytrid fungus Batrachochytrium dendrobatidis (Bd) in a global analysis of 32 291 amphibian hosts. As hypothesised, we found that the susceptibility of larger hosts and hosts from lower latitudes to Bd was influenced by thermal mismatches. Furthermore, hosts of conservation concern were more susceptible than others following thermal mismatches, suggesting that thermal mismatches might have contributed to recent amphibian declines.  相似文献   

6.
Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is the emerging infectious disease implicated in recent population declines and extinctions of amphibian species worldwide. Bd strains from regions of disease‐associated amphibian decline to date have all belonged to a single, hypervirulent clonal genotype (Bd‐GPL). However, earlier studies in the Atlantic Forest of southeastern Brazil detected a novel, putatively enzootic lineage (Bd‐Brazil), and indicated hybridization between Bd‐GPL and Bd‐Brazil. Here, we characterize the spatial distribution and population history of these sympatric lineages in the Brazilian Atlantic Forest. To investigate the genetic structure of Bd in this region, we collected and genotyped Bd strains along a 2400‐km transect of the Atlantic Forest. Bd‐Brazil genotypes were restricted to a narrow geographic range in the southern Atlantic Forest, while Bd‐GPL strains were widespread and largely geographically unstructured. Bd population genetics in this region support the hypothesis that the recently discovered Brazilian lineage is enzootic in the Atlantic Forest of Brazil and that Bd‐GPL is a more recently expanded invasive. We collected additional hybrid isolates that demonstrate the recurrence of hybridization between panzootic and enzootic lineages, thereby confirming the existence of a hybrid zone in the Serra da Graciosa mountain range of Paraná State. Our field observations suggest that Bd‐GPL may be more infective towards native Brazilian amphibians, and potentially more effective at dispersing across a fragmented landscape. We also provide further evidence of pathogen translocations mediated by the Brazilian ranaculture industry with implications for regulations and policies on global amphibian trade.  相似文献   

7.
8.
Parasites typically have broader thermal limits than hosts, so large performance gaps between pathogens and their cold‐ and warm‐adapted hosts should occur at relatively warm and cold temperatures, respectively. We tested this thermal mismatch hypothesis by quantifying the temperature‐dependent susceptibility of cold‐ and warm‐adapted amphibian species to the fungal pathogen Batrachochytrium dendrobatidis (Bd) using laboratory experiments and field prevalence estimates from 15 410 individuals in 598 populations. In both the laboratory and field, we found that the greatest susceptibility of cold‐ and warm‐adapted hosts occurred at relatively warm and cool temperatures, respectively, providing support for the thermal mismatch hypothesis. Our results suggest that as climate change shifts hosts away from their optimal temperatures, the probability of increased host susceptibility to infectious disease might increase, but the effect will depend on the host species and the direction of the climate shift. Our findings help explain the tremendous variation in species responses to Bd across climates and spatial, temporal and species‐level variation in disease outbreaks associated with extreme weather events that are becoming more common with climate change.  相似文献   

9.
Phenotypic divergence is often unrelated to genotypic divergence. An extreme example is rapid phenotypic differentiation despite genetic similarity. Another extreme is morphological stasis despite substantial genetic divergence. These opposite patterns have been viewed as reflecting opposite properties of the lineages. In this study, phenotypic radiation accompanied by both rapid divergence and long‐term conservatism is documented in the inferred molecular phylogeny of the micro land snails Cavernacmella (Assimineidae) on the Ogasawara Islands. The populations of Cavernacmella on the Sekimon limestone outcrop of Hahajima Island showed marked divergence in shell morphology. Within this area, one lineage diversified into types with elongated turret shells, conical shells and flat disc‐like shells without substantial genetic differentiation. Additionally, a co‐occurring species with these types developed a much larger shell size. Moreover, a lineage adapted to live inside caves in this area. In contrast, populations in the other areas exhibited no morphological differences despite high genetic divergence among populations. Accordingly, the phenotypic evolution of Cavernacmella in Ogasawara is characterized by a pattern of long‐term stasis and periodic bursts of change. This pattern suggests that even lineages with phenotypic conservatism could shift to an alternative state allowing rapid phenotypic divergence.  相似文献   

10.
For the past 17 years, scientists have been compiling a list of amphibian species susceptible to infection by the amphibian‐killing chytrid fungus, Batrachochytrium dendrobatidis (Bd), all over the world, with >500 species infected on every continent except Antarctica (Olson et al. 2013 ). Where Bd has been found, the impacts on amphibians has been one of two types: either Bd arrives into a naïve amphibian population followed by a mass die‐off and population declines (e.g. Lips et al. 2006 ), or Bd is present at some moderate prevalence, usually infecting many species but at apparently nonlethal intensities for a long time. In this issue of Molecular Ecology, Rodriguez et al. ( 2014 ) discover that the Atlantic Coastal Forest of Brazil is home to two Bd lineages: the Global Pandemic Lineage (Bd‐GPL) – the strain responsible for mass die‐offs and population declines – and a lineage endemic to Brazil (Bd‐Bz). Even more surprising was that both lineages have been present in this area for the past 100 years, making these the oldest records of Bd infecting amphibians. The team also described a moderate but steady prevalence of ~20% across all sampled anuran families for over 100 years, indicating that Brazil has been in an enzootic disease state for over a century. Most amphibians were infected with Bd‐GPL, suggesting this lineage may be a better competitor than Bd‐Bz or may be replacing the Bd‐Bz lineage. Rodriguez et al. ( 2014 ) also detected likely hybridization of the two Bd lineages, as originally described by Schloegel et al. ( 2012 ).  相似文献   

11.
Chytridiomycosis, caused by the pathogenic fungus Batrachochytrium dendrobatidis (Bd), is one of the largest threats to wildlife and is putatively linked to the extirpation of numerous amphibians. Despite over a decade of research on Bd, conflicting results from a number of studies make it difficult to forecast where future epizootics will occur and how to manage this pathogen effectively. Here, we emphasize how resolving these conflicts will advance Bd management and amphibian conservation efforts. We synthesize current knowledge on whether Bd is novel or endemic, whether amphibians exhibit acquired resistance to Bd, the importance of host resistance versus tolerance to Bd, and how biotic (e.g. species richness) and abiotic factors (e.g. climate change) affect Bd abundance. Advances in our knowledge of amphibian–chytrid interactions might inform the management of fungal pathogens in general, which are becoming more common and problematic globally.  相似文献   

12.
Host behavior can interact with environmental context to influence outcomes of pathogen exposure and the impact of disease on species and populations. Determining whether the thermal behaviors of individual species influence susceptibility to disease can help enhance our ability to explain and predict how and when disease outbreaks are likely to occur. The widespread disease chytridiomycosis (caused by the fungal pathogen Batrachochytrium dendrobatidis, Bd) often has species‐specific impacts on amphibian communities; some host species are asymptomatic, whereas others experience mass mortalities and population extirpation. We determined whether the average natural thermal regimes experienced by sympatric frog species in nature, in and of themselves, can account for differences in vulnerability to disease. We did this by growing Bd under temperatures mimicking those experienced by frogs in the wild. At low and high elevations, the rainforest frogs Litoria nannotis, L. rheocola, and L. serrata maintained mean thermal regimes within the optimal range for pathogen growth (15–25°C). Thermal regimes for L. serrata, which has recovered from Bd‐related declines, resulted in slower pathogen growth than the cooler and less variable thermal regimes for the other two species, which have experienced more long‐lasting declines. For L. rheocola and L. serrata, pathogen growth was faster in thermal regimes corresponding to high elevations than in those corresponding to low elevations, where temperatures were warmer. For L. nannotis, which prefers moist and thermally stable microenvironments, pathogen growth was fastest for low‐elevation thermal regimes. All of the thermal regimes we tested resulted in pathogen growth rates equivalent to, or significantly faster than, rates expected from constant‐temperature experiments. The effects of host body temperature on Bd can explain many of the broad ecological patterns of population declines in our focal species, via direct effects on pathogen fitness. Understanding the functional response of pathogens to conditions experienced by the host is important for determining the ecological drivers of disease outbreaks.  相似文献   

13.
14.
Accurate pathogen detection is essential for developing management strategies to address emerging infectious diseases, an increasingly prominent threat to wildlife. Sampling for free‐living pathogens outside of their hosts has benefits for inference and study efficiency, but is still uncommon. We used a laboratory experiment to evaluate the influences of pathogen concentration, water type, and qPCR inhibitors on the detection and quantification of Batrachochytrium dendrobatidis (Bd) using water filtration. We compared results pre‐ and post‐inhibitor removal, and assessed inferential differences when single versus multiple samples were collected across space or time. We found that qPCR inhibition influenced both Bd detection and quantification in natural water samples, resulting in biased inferences about Bd occurrence and abundance. Biases in occurrence could be mitigated by collecting multiple samples in space or time, but biases in Bd quantification were persistent. Differences in Bd concentration resulted in variation in detection probability, indicating that occupancy modeling could be used to explore factors influencing heterogeneity in Bd abundance among samples, sites, or over time. Our work will influence the design of studies involving amphibian disease dynamics and studies utilizing environmental DNA (eDNA) to understand species distributions.  相似文献   

15.
Environmentally inducible phenotypic plasticity is a major player in plant responses to climate change. However, metabolic responses and their role in determining the phenotypic plasticity of plants that are subjected to temperature variations remain poorly understood. The metabolomic profiles and metabolite levels in the leaves of three maize inbred lines grown in different temperature conditions were examined with a nuclear magnetic resonance metabolomic technique. The relationship of functional traits to metabolome profiles and the metabolic mechanism underlying temperature variations were then explored. A comparative analysis showed that during heat and cold stress, maize plants shared common plastic responses in biomass accumulation, carbon, nitrogen, sugars, some amino acids and compatible solutes. We also found that the plastic response of maize plants to heat stress was different from that under cold stress, mainly involving biomass allocation, shikimate and its aromatic amino acid derivatives, and other non‐polar metabolites. The plastic responsiveness of functional traits of maize lines to temperature variations was low, while the metabolic responsiveness in plasticity was high, indicating that functional and metabolic plasticity may play different roles in maize plant adaptation to temperature variations. A linear regression analysis revealed that the maize lines could adapt to growth temperature variations through the interrelation of plastic responses in the metabolomes and functional traits, such as biomass allocation and the status of carbon and nitrogen. We provide valuable insight into the plastic response strategy of maize plants to temperature variations that will permit the optimisation of crop cultivation in an increasingly variable environment.  相似文献   

16.
17.
Chytridiomycosis is an amphibian disease of global conservation concern that is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Since the discovery of Bd in 1998, several methods have been used for detection of Bd; among these polymerase chain reaction (PCR) from skin swabs is accepted as the best method due to its noninvasiveness, high sensitivity and ease of use. However, PCR is not without problems – to be successful, this technique is dependent upon the presence of nondegraded DNA template and reaction contents that are free from inhibitors. Here, we report on an investigation of several techniques aimed at improving the reliability of the Bd PCR assay by minimizing the effects of humic acid (HA), a potent PCR inhibitor. We compared the effectiveness of four DNA extraction kits (DNeasy, QIAamp DNA Stool, PowerLyzer Power Soil and PrepMan Ultra) and four PCR methods (Amplitaq Gold, bovine serum albumin, PowerClean DNA Clean‐up and inhibitor resistant Taq Polymerase). The results of this and previous studies indicate that chytridiomycosis studies that use PCR methods for disease detection may be significantly underestimating the occurrence of Bd. Our results suggest that to minimize the inhibitory effects of HA, DNeasy should be used for sample DNA extraction and Amplitaq Gold with bovine serum albumin should be used for the Bd PCR assay. We also outline protocols tested, show the results of our methods comparisons and discuss the pros and cons of each method.  相似文献   

18.
Understanding the effects of temperature on ecological and evolutionary processes is crucial for generating future climate adaptation scenarios. Using experimental evolution, we evolved the model ciliate Tetrahymena thermophila in an initially novel high temperature environment for more than 35 generations, closely monitoring population dynamics and morphological changes. We observed initially long lag phases in the high temperature environment that over about 26 generations reduced to no lag phase, a strong reduction in cell size and modifications in cell shape at high temperature. When exposing the adapted populations to their original temperature, most phenotypic traits returned to the observed levels in the ancestral populations, indicating phenotypic plasticity is an important component of this species thermal stress response. However, persistent changes in cell size were detected, indicating possible costs related to the adaptation process. Exploring the molecular basis of thermal adaptation will help clarify the mechanisms driving these phenotypic responses.  相似文献   

19.
In climate change ecology, simplistic research approaches may yield unrealistically simplistic answers to often more complicated problems. In particular, the complexity of vegetation responses to global climate change begs a better understanding of the impacts of concomitant changes in several climatic drivers, how these impacts vary across different climatic contexts, and of the demographic processes underlying population changes. Using a replicated, factorial, whole‐community transplant experiment, we investigated regional variation in demographic responses of plant populations to increased temperature and/or precipitation. Across four perennial forb species and 12 sites, we found strong responses to both temperature and precipitation change. Changes in population growth rates were mainly due to changes in survival and clonality. In three of the four study species, the combined increase in temperature and precipitation reflected nonadditive, antagonistic interactions of the single climatic changes for population growth rate and survival, while the interactions were additive and synergistic for clonality. This disparity affects the persistence of genotypes, but also suggests that the mechanisms behind the responses of the vital rates differ. In addition, survival effects varied systematically with climatic context, with wetter and warmer + wetter transplants showing less positive or more negative responses at warmer sites. The detailed demographic approach yields important mechanistic insights into how concomitant changes in temperature and precipitation affect plants, which makes our results generalizable beyond the four study species. Our comprehensive study design illustrates the power of replicated field experiments in disentangling the complex relationships and patterns that govern climate change impacts across real‐world species and landscapes.  相似文献   

20.
Temperature is one of the most important environmental parameters with crucial impacts on nearly all biological processes. Due to anthropogenic activity, average air temperatures are expected to increase by a few degrees in coming decades, accompanied by an increased occurrence of extreme temperature events. Such global trends are likely to have various major impacts on human society through their influence on natural ecosystems, food production and biotic interactions, including diseases. In this study, we used a combination of statistical genetics, experimental evolution and common garden experiments to investigate the evolutionary potential for thermal adaptation in the potato late blight pathogen, Phytophthora infestans, and infer its likely response to changing temperatures. We found a trade‐off associated with thermal adaptation to heterogeneous environments in P. infestans, with the degree of the trade‐off peaking approximately at the pathogen's optimum growth temperature. A genetic trade‐off in thermal adaptation was also evidenced by the negative association between a strain's growth rate and its thermal range for growth, and warm climates selecting for a low pathogen growth rate. We also found a mirror effect of phenotypic plasticity and genetic adaptation on growth rate. At below the optimum, phenotypic plasticity enhances pathogen's growth rate but nature selects for slower growing genotypes when temperature increases. At above the optimum, phenotypic plasticity reduces pathogen's growth rate but natural selection favours for faster growing genotypes when temperature increases further. We conclude from these findings that the growth rate of P. infestans will only be marginally affected by global warming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号