首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.

Background

Single-cell genome sequencing has the potential to allow the in-depth exploration of the vast genetic diversity found in uncultured microbes. We used the marine cyanobacterium Prochlorococcus as a model system for addressing important challenges facing high-throughput whole genome amplification (WGA) and complete genome sequencing of individual cells.

Methodology/Principal Findings

We describe a pipeline that enables single-cell WGA on hundreds of cells at a time while virtually eliminating non-target DNA from the reactions. We further developed a post-amplification normalization procedure that mitigates extreme variations in sequencing coverage associated with multiple displacement amplification (MDA), and demonstrated that the procedure increased sequencing efficiency and facilitated genome assembly. We report genome recovery as high as 99.6% with reference-guided assembly, and 95% with de novo assembly starting from a single cell. We also analyzed the impact of chimera formation during MDA on de novo assembly, and discuss strategies to minimize the presence of incorrectly joined regions in contigs.

Conclusions/Significance

The methods describe in this paper will be useful for sequencing genomes of individual cells from a variety of samples.  相似文献   

6.
7.
Viral metagenomics, also known as virome studies, have yielded an unprecedented number of novel sequences, essential in recognizing and characterizing the etiological agent and the origin of emerging infectious diseases. Several tools and pipelines have been developed, to date, for the identification and assembly of viral genomes. Assembly pipelines often result in viral genomes contaminated with host genetic material, some of which are currently deposited into public databases. In the current report, we present a group of deposited sequences that encompass ribosomal RNA (rRNA) contamination. We highlight the detrimental role of chimeric next generation sequencing reads, between host rRNA sequences and viral sequences, in virus genome assembly and we present the hindrances these reads may pose to current methodologies. We have further developed a refining pipeline, the Zero Waste Algorithm (ZWA) that assists in the assembly of low abundance viral genomes. ZWA performs context-depended trimming of chimeric reads, precisely removing their rRNA moiety. These, otherwise discarded, reads were fed to the assembly pipeline and assisted in the construction of larger and cleaner contigs making a substantial impact on current assembly methodologies. ZWA pipeline may significantly enhance virus genome assembly from low abundance samples and virus metagenomics approaches in which a small number of reads determine genome quality and integrity.  相似文献   

8.
9.
10.
11.
12.
Full genome sequencing of organisms with large and complex genomes is intractable and cost ineffective under most research budgets. Cycads (Cycadales) represent one of the oldest lineages of the extant seed plants and, partly due to their age, have incredibly large genomes up to ~60 Gbp. Restriction site‐associated DNA sequencing (RADseq) offers an approach to find genome‐wide informative markers and has proven to be effective with both model and nonmodel organisms. We tested the application of RADseq using ezRAD across all 10 genera of the Cycadales including an example data set of Cycas calcicola representing 72 samples from natural populations. Using previously available plastid and mitochondrial genomes as references, reads were mapped recovering plastid and mitochondrial genome regions and nuclear markers for all of the genera. De novo assembly generated up to 138,407 high‐depth clusters and up to 1,705 phylogenetically informative loci for the genera, and 4,421 loci for the example assembly of C. calcicola. The number of loci recovered by de novo assembly was lower than previous RADseq studies, yet still sufficient for downstream analysis. However, the number of markers could be increased by relaxing our assembly parameters, especially for the C. calcicola data set. Our results demonstrate the successful application of RADseq across the Cycadales to generate a large number of markers for all genomic compartments, despite the large number of plastids present in a typical plant cell. Our modified protocol was adapted to be applied to cycads and other organisms with large genomes to yield many informative genome‐wide markers.  相似文献   

13.
The proliferation of genomic sequencing approaches has significantly impacted the field of phylogenetics. Target capture approaches provide a cost-effective, fast and easily applied strategy for phylogenetic inference of non-model organisms. However, several existing target capture processing pipelines are incapable of incorporating whole genome sequencing (WGS). Here, we develop a new pipeline for capture and de novo assembly of the targeted regions using whole genome re-sequencing reads. This new pipeline captured targeted loci accurately, and given its unbiased nature, can be used with any target capture probe set. Moreover, due to its low computational demand, this new pipeline may be ideal for users with limited resources and when high-coverage sequencing outputs are required. We demonstrate the utility of our approach by incorporating WGS data into the first comprehensive phylogenomic reconstruction of the freshwater mussel family Margaritiferidae. We also provide a catalogue of well-curated functional annotations of these previously uncharacterized freshwater mussel-specific target regions, representing a complementary tool for scrutinizing phylogenetic inferences while expanding future applications of the probe set.  相似文献   

14.
Laboratory techniques for high‐throughput sequencing have enhanced our ability to generate DNA sequence data from millions of natural history specimens collected prior to the molecular era, but remain poorly tested at shallower evolutionary time scales. Hybridization capture using restriction site‐associated DNA probes (hyRAD) is a recently developed method for population genomics with museum specimens. The hyRAD method employs fragments produced in a restriction site‐associated double digestion as the basis for probes that capture orthologous loci in samples of interest. While promising in that it does not require a reference genome, hyRAD has yet to be applied across study systems in independent laboratories. Here, we provide an independent assessment of the effectiveness of hyRAD on both fresh avian tissue and dried tissue from museum specimens up to 140 years old and investigate how variable quantities of input DNA affect sequencing, assembly, and population genetic inference. We present a modified bench protocol and bioinformatics pipeline, including three steps for detection and removal of microbial and mitochondrial DNA contaminants. We confirm that hyRAD is an effective tool for sampling thousands of orthologous SNPs from historic museum specimens to describe phylogeographic patterns. We find that modern DNA performs significantly better than historical DNA better during sequencing but that assembly performance is largely equivalent. We also find that the quantity of input DNA predicts %GC content of assembled contiguous sequences, suggesting PCR bias. We caution against sampling schemes that include taxonomic or geographic autocorrelation across modern and historic samples.  相似文献   

15.
16.
During the last three decades, both genome mapping and sequencing methods have advanced significantly to provide a foundation for scientists to understand genome structures and functions in many species. Generally speaking, genome mapping relies on genome sequencing to provide basic materials, such as DNA probes and markers for their localizations, thus constructing the maps. On the other hand, genome sequencing often requires a high-resolution map as a skeleton for whole genome assembly. However, both genome mapping and sequencing have never come together in one pipeline. After reviewing mapping and next-generation sequencing methods, we would like to share our thoughts with the genome community on how to combine the HAPPY mapping technique with the new-generation sequencing, thus integrating two systems into one pipeline, called HAPPY pipeline. The pipeline starts with preparation of a HAPPY panel, followed by multiple displacement amplification for producing a relatively large quantity of DNA. Instead of conventional marker genotyping, the amplified panel DNA samples are subject to new-generation sequencing with barcode method, which allows us to determine the presence/absence of a sequence contig as a traditional marker in the HAPPY panel. Statistical analysis will then be performed to infer how close or how far away from each other these contigs are within a genome and order the whole genome sequence assembly as well. We believe that such a universal approach will play an important role in genome sequencing, mapping, and assembly of many species; thus advancing genome science and its applications in biomedicine and agriculture.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号