共查询到20条相似文献,搜索用时 0 毫秒
1.
Camilla Raven Richard Shine Matthew Greenlees Timothy M. Schaerf Ashley J. W. Ward 《Ethology : formerly Zeitschrift fur Tierpsychologie》2017,123(10):724-735
Tadpoles of the cane toad (Rhinella marina) form dense aggregations in the field, but the proximate cues eliciting this behavior are not well understood. We sampled water‐bodies in the Northern Territory of Australia, finding that the density of cane toad tadpoles increased with increasing temperature. Furthermore, we conducted laboratory experiments to explore the roles of biotic factors (attraction to conspecifics; chemical cues from an injured conspecific; food) and spatially heterogeneous abiotic factors (light levels, water depth, physical structure) to identify the cues that induce tadpole aggregation. Annulus and binary choice trials demonstrated weak but significant attraction between conspecifics. Tadpoles decreased swimming speeds, but did not increase grouping in response to cues from an injured conspecific. Larvae aggregated in response to abiotic cues (high levels of illumination and proximity to physical structures) and were strongly attracted to feeding conspecifics. Overall, aggregation by cane toad tadpoles is likely driven by weak social attraction coupled with a shared preference for specific abiotic features, creating loose aggregations that are then reinforced by movement toward feeding conspecifics. 相似文献
2.
Cameron M. Hudson Gregory P. Brown Richard Shine 《Biological journal of the Linnean Society. Linnean Society of London》2016,119(4):992-999
Although primarily terrestrial, cane toads (Rhinella marina) sometimes climb near‐vertical surfaces (tree‐trunks, cliffs, fences) during foraging or dispersal activities. We scored climbing ability (in laboratory trials) of 288 cane toads from four regions in Australia, plus two sites on the island of Hawai'i. We found strong divergence in climbing ability associated not only with sex and relative limb length, but also population of origin. Within each population, longer‐limbed individuals (and hence, males rather than females) were better climbers, although the geographical divergence in climbing ability remained significant even when sex and limb length were included in multivariate regression models. The geographical difference in climbing ability (but not morphology) disappeared when the progeny were raised in captivity under identical conditions, without climbing opportunities. Although influenced by morphology, climbing ability in wild‐caught cane toads appears to be driven primarily by local environmental conditions that facilitate and/or reward arboreal activity. 相似文献
3.
Samantha McCann Michael Crossland Matthew Greenlees Richard Shine 《Ecology and evolution》2020,10(18):10177-10185
- Laboratory experiments have shown that the viability of embryos of the invasive cane toad (Rhinella marina) can be reduced by exposure to chemical cues from older conspecific larvae. These effects (very strong in laboratory trials) may offer an exciting new approach to controlling this problematic invasive species in Australia. However, the degree to which the method works in natural environments has yet to be assessed.
- Our experiments in the laboratory and in seminatural outdoor waterbodies show that chemical cues from tadpoles do indeed suppress the growth, development, and survival of conspecific larvae that are exposed as embryos and do so in a dose‐dependent manner; higher tadpole densities cause greater suppression of embryos.
- In seminatural outdoor waterbodies, suppressor‐exposed tadpoles were less than half as likely to survive to metamorphosis as were controls, and were much smaller when they did so and hence, less likely to survive the metamorph stage. Additionally, female cane toads were less likely to oviposit in a waterbody containing free‐ranging (but not cage‐enclosed) tadpoles, suggesting that the presence of tadpoles (rather than the chemical cues they produce) may discourage oviposition.
- Broadly, our results suggest that the suppression effect documented in laboratory studies does indeed occur in the field also, and hence that we may be able to translate that approach to develop new and more effective ways to reduce rates of recruitment of peri‐urban populations of cane toads in their invasive range.
4.
Cameron M. Hudson Benjamin L. Phillips Gregory P. Brown Richard Shine 《Biological journal of the Linnean Society. Linnean Society of London》2015,116(4):743-747
The rapid evolution of increased dispersal rate during a population's range expansion provides a unique opportunity to detect trade‐offs between dispersal and reproduction. If a high reproductive rate slows down an individual's dispersal, vanguard individuals should exhibit a lower reproductive output than conspecifics from long‐colonized areas. In the present study, we demonstrate a reduction in reproductive rate in highly dispersive invasion‐front populations of cane toads in tropical Australia. 相似文献
5.
Commonly, invaders have different impacts in different places. The spread of cane toads (Rhinella marina: Bufonidae) has been devastating for native fauna in tropical Australia, but the toads' impact remains unstudied in temperate‐zone Australia. We surveyed habitat characteristics and fauna in campgrounds along the central eastern coast of Australia, in eight sites that have been colonized by cane toads and another eight that have not. The presence of cane toads was associated with lower faunal abundance and species richness, and a difference in species composition. Populations of three species of large lizards (land mullets Bellatorias major, eastern water dragons Intellagama lesueurii, and lace monitors Varanus varius) and a snake (red‐bellied blacksnake Pseudechis porphyriacus) were lower (by 84 to 100%) in areas with toads. The scarcity of scavenging lace monitors in toad‐invaded areas translated into a 52% decrease in rates of carrion removal (based on camera traps at bait stations) and an increase (by 61%) in numbers of brush turkeys (Alectura lathami). The invasion of cane toads through temperate‐zone Australia appears to have reduced populations of at least four anurophagous predators, facilitated other taxa, and decreased rates of scavenging. Our data identify a paradox: The impacts of cane toads are at least as devastating in southern Australia as in the tropics, yet we know far more about toad invasion in the sparsely populated wilderness areas of tropical Australia than in the densely populated southeastern seaboard. 相似文献
6.
7.
8.
The invasion of toxic cane toads (Rhinella marina) is a major threat to northern quolls (Dasyurus hallucatus) which are poisoned when they attack this novel prey item. Quolls are now endangered as a consequence of the toad invasion. Conditioned taste aversion can be used to train individual quolls to avoid toads, but we currently lack a training technique that can be used at a landscape scale to buffer entire populations from toad impact. Broad‐scale deployment requires a bait that can be used for training, but there is no guarantee that such a bait will ultimately elicit aversion to toads. Here, we test a manufactured bait – a ‘toad sausage’ – in a small captive trial, for its ability to elicit aversion to toads in northern quolls. To do this, we exposed one group of quolls to a toad sausage and another to a control sausage and compared the quolls' predatory responses when presented with a dead adult toad. Captive quolls that consumed a single toad sausage showed a reduced interest in cane toads, interacting with them for less than half the time of their untrained counterparts and showing reduced Attack behaviour. We also quantified bait uptake in the field, by both quolls and non‐target species. These field trials showed that wild quolls were the most frequent species attracted to the baits, and that approx. 61% of quolls consumed toad‐aversion baits when first encountered. Between 40% and 68% of these animals developed aversion to further bait consumption. Our results suggest that toad‐aversion sausages may be used to train wild quolls to avoid cane toads. This opens the possibility for broad‐scale quoll training with toad aversion sausages: a technique that may allow wildlife managers to prevent quoll extinctions at a landscape scale. 相似文献
9.
Climate change and biological invasions are two major global environmental challenges. Both may interact, e.g. via altered impact and distribution of invasive alien species. Even though invasive species play a key role for compromising the health of honey bees, the impact of climate change on the severity of such species is still unknown. The small hive beetle (SHB, Aethina tumida, Murray) is a parasite of honey bee colonies. It is endemic to sub‐Saharan Africa and has established populations on all continents except Antarctica. Since SHBs pupate in soil, pupation performance is governed foremost by two abiotic factors, soil temperature and moisture, which will be affected by climate change. Here, we investigated SHB invasion risk globally under current and future climate scenarios. We modelled survival and development time during pupation (=pupal performance) in response to soil temperature and soil moisture using published and novel experimental data. Presence data on SHB distribution were used for model validation. We then linked the model with global soil data in order to classify areas (resolution: 10 arcmin; i.e. 18.6 km at the equator) as unsuitable, marginal and suitable for SHB pupation performance. Under the current climate, the results show that many areas globally yet uninvaded are actually suitable, suggesting considerable SHB invasion risk. Future scenarios of global warming project a vehement increase in climatic suitability for SHB and corresponding potential for invasion, especially in the temperate regions of the Northern hemisphere, thereby creating demand for enhanced and adapted mitigation and management. Our analysis shows, for the first time, effects of global warming on a honey bee pest and will help areas at risk to prepare adequately. In conclusion, this is a clear case for global warming promoting biological invasion of a pest species with severe potential to harm important pollinator species globally. 相似文献
10.
James Scott MacIvor Adriano N. Roberto Darwin S. Sodhi Thomas M. Onuferko Marc W. Cadotte 《Ecology and evolution》2017,7(20):8456-8462
In eastern North America, the field milkweed, Asclepias syriaca L. (Asclepiadaceae), is used in planting schemes to promote biodiversity conservation for numerous insects including the endangered monarch butterfly, Danaus plexippus (Linnaeus) (Nymphalidae). Less is known about its pollinators, and especially in urban habitats where it is planted often despite being under increasing pressure from invasive plant species, such as the related milkweed, the dog‐strangling vine (DSV), Vincetoxicum rossicum (Kleopow) Barbar. (Asclepiadaceae). During the A. syriaca flowering period in July 2016, we surveyed bees in open habitats along a DSV invasion gradient and inspected 433 individuals of 25 bee species in 12 genera for pollinia: these were affixed to bees that visited A. syriaca for nectar and contain pollen packets that are vectored (e.g., transferred) between flowers. Of all bees sampled, pollinia were found only on the nonindigenous honeybee, Apis mellifera (43% of all bees identified), as well as one individual bumblebee, Bombus impatiens Cresson. Pollinia were recorded from 45.2% of all honeybees collected. We found no relationship between biomass of DSV and biomass of A. syriaca per site. There was a significant positive correlation between A. syriaca biomass and the number of pollinia, and the proportion vectored. No relationship with DSV biomass was detected for the number of pollinia collected by bees but the proportion of vectored pollinia declined with increasing DSV biomass. Although we find no evidence of DSV flowers attracting potential pollinators away from A. syriaca and other flowering plants, the impacts on native plant–pollinator mutualisms relate to its ability to outcompete native plants. As wild bees do not appear to visit DSV flowers, it could be altering the landscape to one which honeybees are more tolerant than native wild bees. 相似文献
11.
《Evolutionary Applications》2017,10(3):226-230
Recent major losses of managed honeybee, Apis mellifera, colonies at a global scale have resulted in a multitude of research efforts to identify the underlying mechanisms. Numerous factors acting singly and/or in combination have been identified, ranging from pathogens, over nutrition to pesticides. However, the role of apiculture in limiting natural selection has largely been ignored. This is unfortunate, because honeybees are more exposed to environmental stressors compared to other livestock and management can severely compromise bee health. Here, we briefly review apicultural factors that influence bee health and focus on those most likely interfering with natural selection, which offers a broad range of evolutionary applications for field practice. Despite intense breeding over centuries, natural selection appears to be much more relevant for the health of managed A. mellifera colonies than previously thought. We conclude that sustainable solutions for the apicultural sector can only be achieved by taking advantage of natural selection and not by attempting to limit it. 相似文献
12.
Zachary M. Portman Vincent J. Tepedino Amber D. Tripodi 《Insect Conservation and Diversity》2019,12(3):183-192
- The Mojave Desert of the southwestern U.S. is home to two protected species of poppy in the genus Arctomecon Torr. & Frém. (Papaveraceae). A pollinator of these species is the specialist bee Perdita meconis Griswold (Andrenidae) a specialist on poppy pollen.
- Recently, the easternmost population of P. meconis, which was associated with A. humilis Coville in Utah, has become locally extinct, and other historically associated bee pollinators have become scarce. Implicated in the disruption of this pollination system is invasion by the Africanised honey bee.
- Here we report on the status of P. meconis in historic populations associated with congener A. californica Torr. & Frém., 100 km west in Clark Co., Nevada where the Africanised honey bee is also adventive.
- We surveyed flower visitors at eight A. californica populations in 2017, six of which had been surveyed in 1995. In general, we found no disruptions of the historic pollination system of A. californica despite the presence of abundant Africanised honey bees, which largely foraged at other flower species.
- The most likely cause of the disparate effects of the Africanised honey bee in Utah and Nevada is livestock grazing. Grazing in Utah has been continuous for over three decades and while cattle do not graze A. humilis, they graze its floral competitors, forcing honey bees to forage on poppy flowers. In Nevada, protections afforded to the desert tortoise halted grazing approximately when the Africanised honey bee invaded, making diverse floral forage available for honey bees.
13.
K. Stainton J. Hall G. E. Budge N. Boonham J. Hodgetts 《Journal of Applied Entomology》2018,142(6):610-616
The yellow‐legged Asian hornet (Vespa velutina nigrithorax) is an invasive species that presents a threat to apiculture in Europe; first introduced into France in 2004, it has subsequently spread into neighbouring European countries. There is a risk of invasion and establishment in the UK, and in 2016, nests were found and destroyed in Alderney in the Channel Islands, and in Tetbury, Gloucestershire, illustrating a need for screening of suspect specimens so that invading hornets can be rapidly identified, and their nests destroyed. In this study, loop‐mediated isothermal amplification (LAMP) and real‐time PCR assays were developed to enable both in‐field and laboratory testing. Species‐specific identification assays and generic invertebrate control assays were developed. All the assays were validated according to the European Plant Protection Organisation standard PM 7/98. The assays were tested successfully against V. velutina nigrithorax obtained from France, Asia and the UK. Eight non‐target species, that were closely related or morphologically similar to the Asian hornet, gave negative results with the species‐specific assays, and positive results with the control assays. The assays could be used to detect target DNA at concentrations as low as 5 pg per reaction. LAMP was rapid, and cable of generating positive results within 10 min. Using simplified sample homogenization protocols that could be performed in the field, the LAMP assay was successful when tested against all developmental stages and nest samples, assisting with identification of samples that cannot be determined morphologically and allowing detection away from the laboratory. These assays provide a valuable tool for fast and reliable detection of this invasive species, offering the ability to identify damaged/incomplete specimens and immature life‐stages. 相似文献
14.
Andrew G. Birt Szu‐Hung V. Chen Kristen A. Baum Maria D. Tchakerian Robert N. Coulson 《Entomologia Experimentalis et Applicata》2017,162(3):315-327
Urban landscapes provide habitat for many species, including domesticated and feral honey bees, Apis mellifera L. (Hymenoptera: Apidae). With recent losses of managed honey bee colonies, there is increasing interest in feral honey bee colonies and their potential contribution to pollination services in agricultural, natural, and urban settings. However, in some regions the feral honey bee population consists primarily of Africanized honey bees. Africanized honey bees (AHB) are hybrids between European honey bees and the African honey bee, Apis mellifera scutellataLepeletier, and have generated economic, ecological, and human health concerns because of their aggressive behavior. In this study, we used two long‐term datasets (7–10 years) detailing the spatial and temporal distribution of AHB colonies in Tucson, AZ, USA, where feral colonies occupy a variety of cavities including water meter boxes. A stage‐structured matrix model was used to elucidate the implications of nest site selection and the effects of colony terminations on the structure and dynamics of the AHB population. Our results suggest that Tucson's AHB population is driven by a relatively small number of ‘source’ colonies that escape termination (ca. 0.165 colonies per km2 or 125 colonies in total), although immigrating swarms and absconding colonies from the surrounding area may have also contributed to the stability of the Tucson AHB population. Furthermore, the structure of the population has likely been impacted by the number and spatial distribution of water meter boxes across the city. The study provides an example of how urban wildlife populations are driven by interactions among landscape structure, human management, and behavioral traits conferred by an invasive genotype. 相似文献
15.
Host shifts are a key mechanism of parasite evolution and responsible for the emergence of many economically important pathogens. Varroa destructor has been a major factor in global honeybee (Apis mellifera) declines since shifting hosts from the Asian honeybee (Apis cerana) > 50 years ago. Until recently, only two haplotypes of V. destructor (Korea and Japan) had successfully host shifted to A. mellifera. In 2008, the sister species V. jacobsoni was found for the first time parasitizing A. mellifera in Papua New Guinea (PNG). This recent host shift presents a serious threat to world apiculture but also provides the opportunity to examine host shifting in this system. We used 12 microsatellites to compare genetic variation of V. jacobsoni on A. mellifera in PNG with mites on A. cerana in both PNG and surrounding regions. We identified two distinct lineages of V. jacobsoni reproducing on A. mellifera in PNG. Our analysis indicated independent host shift events have occurred through small numbers of mites shifting from local A. cerana populations. Additional lineages were found in the neighbouring Papua and Solomon Islands that had partially host shifted to A. mellifera, that is producing immature offspring on drone brood only. These mites were likely in transition to full colonization of A. mellifera. Significant population structure between mites on the different hosts suggested host shifted V. jacobsoni populations may not still reproduce on A. cerana, although limited gene flow may exist. Our studies provide further insight into parasite host shift evolution and help characterize this new Varroa mite threat to A. mellifera worldwide. 相似文献
16.
Emily J. Remnant Anna Koetz Ken Tan Eloise Hinson Madeleine Beekman Benjamin P. Oldroyd 《Molecular ecology》2014,23(5):1096-1107
Reproductive isolation between closely related species is often incomplete. The Western honeybee, Apis mellifera, and the Eastern hive bee, Apis cerana, have been allopatric for millions of years, but are nonetheless similar in morphology and behaviour. During the last century, the two species were brought into contact anthropogenically, providing potential opportunities for interspecific matings. Hybrids between A. mellifera and A. cerana are inviable, so natural interspecific matings are of concern because they may reduce the viability of A. cerana and A. mellifera populations – two of the world's most important pollinators. We examined the mating behaviour of A. mellifera and A. cerana queens and drones from Caoba Basin, China and Cairns, Australia. Drone mating flight times overlap in both areas. Analysis of the spermathecal contents of queens with species‐specific genetic markers indicated that in Caoba Basin, 14% of A. mellifera queens mated with at least one A. cerana male, but we detected no A. cerana queens that had mated with A. mellifera males. Similarly, in Cairns, no A. cerana queens carried A. mellifera sperm, but one‐third of A. mellifera queens had mated with at least one A. cerana male. No hybrid embryos were detected in eggs laid by interspecifically mated A. mellifera queens in either location. However, A. mellifera queens artificially inseminated with A. cerana sperm produced inviable hybrid eggs or unfertilized drones. This suggests that reproductive interference will impact the viability of honeybee populations wherever A. cerana and A. mellifera are in contact. 相似文献
17.
Oceanic islands have reduced resources and natural enemies and potentially affect life history traits of arriving organisms. Among the most spectacular invasions in the Western hemisphere is that of the Africanized honeybee. We hypothesized that in the oceanic island Puerto Rico, Africanized bees will exhibit differences from the mainland population such as for defensiveness and other linked traits. We evaluated the extent of Africanization through three typical Africanized traits: wing size, defensive behavior, and resistance to Varroa destructor mites. All sampled colonies were Africanized by maternal descent, with over 65% presence of European alleles at the S‐3 nuclear locus. In two assays evaluating defense, Puerto Rican bees showed low defensiveness similar to European bees. In morphology and resistance to mites, Africanized bees from Puerto Rico are similar to other Africanized bees. In behavioral assays on mechanisms of resistance to Varroa, we directly observed that Puerto Rican Africanized bees groomed‐off and bit the mites as been observed in other studies. In no other location, Africanized bees have reduced defensiveness while retaining typical traits such as wing size and mite resistance. This mosaic of traits that has resulted during the invasion of an oceanic island has implications for behavior, evolution, and agriculture. 相似文献
18.
As the human population has increased, so too has the demand for biotically pollinated crops. Bees (Apoidea) are essential for pollen transfer and fruit production in many crops, and their visit patterns can be influenced by floral morphology. Here, we considered the role of floral morphology on visit rates and behaviour of managed honey bees (Apis mellifera) and wild bumble bees (genus Bombus), for four highbush blueberry cultivars (Vaccinium corymbosum L.). We measured five floral traits for each cultivar, finding significant variation among cultivars. Corolla throat diameter may be the main morphological determinant of visit rates of honey bees, which is significantly higher on the wider flowers of cv. ‘Duke’ than on ‘Bluecrop’ or ‘Draper’. Honey bees also visited cv. ‘Duke’ legitimately but were frequent nectar robbers on the long, narrow flowers of cv. ‘Bluecrop’. Bumble bees were infrequent (and absent on cv. ‘Draper’) but all observed visits were legitimate. Crop yield was highest for the cultivar with the highest combined (honey bee + bumble bee) visit rate, suggesting that aspects of floral morphology that affect pollinator visit patterns should be considered in crop breeding initiatives. 相似文献
19.
Meral Kence Devrim Oskay Tugrul Giray Aykut Kence 《Entomologia Experimentalis et Applicata》2013,149(1):36-43
Honey bee [Apis mellifera L. (Hymenoptera: Apidae)] genetic diversity may be the key to responding to novel health challenges faced by this important pollinator. In this study, we first compared colonies of four honey bee races, A. m. anatoliaca, A. m. carnica, A. m. caucasica, and A. m. syriaca from Turkey, with respect to honey storage, bee population size, and defenses against varroa. The mite Varroa destructor Anderson & Trueman (Acari: Varroidae) is an important pest of honey bee colonies. There are genetic correlates with two main defenses of bees against this parasite: hygienic behavior, or removing infested brood, and grooming, which involves shaking and swiping off mites and biting them. In the second part of this study, we examined the relationship of these two types of defenses, hygiene and grooming, and their correlation with infestation rates in 32 genetically diverse colonies in a ‘common garden’ apiary. Mite biting was found to be negatively correlated with mite infestation levels. 相似文献
20.
Bees are considered the most important plant pollinators in many ecosystems, yet little is known about pollination of native plants by bees in many Australian ecosystems including the alpine region. Here we consider bee pollination in this region by constructing a bee visitation network and investigating the degree of specialism and network ‘nestedness’, which are related to the robustness of the network to perturbations. Bees and flowers were collected and observed from 10 sites across the Bogong High Plains/Mt Hotham region in Victoria. Low nestedness and a low degree of specialism were detected, consistent with patterns in other alpine regions. Twenty‐one native and one non‐indigenous bee species were observed visiting 46 of the 67 flower species recorded. The introduced Apis mellifera had a large floral overlap with native bees, which may reduce fecundity of native bees through competition. The introduced plant, Hypochaeris radicata (Asteraceae), had the largest and most sustained coverage of any flower and had the most visitations and bee species of any flower. The network developed in this study is a first step in understanding pollination patterns in the alpine/subalpine region and serves as a baseline for future comparisons. 相似文献