首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Populus alba is widely distributed and cultivated in Europe and Asia. This species has been used for diverse studies. In this study, we assembled a de novo genome sequence of P. alba var. pyramidalis (= P. bolleana) and confirmed its high transformation efficiency and short transformation time by experiments. Through a process of hybrid genome assembly, a total of 464 M of the genome was assembled. Annotation analyses predicted 37 901 protein‐coding genes. This genome is highly collinear to that of P. trichocarpa, with most genes having orthologs in the two species. We found a marked expansion of gene families related to histone and the hormone auxin but loss of disease resistance genes in P. alba if compared with the closely related P. trichocarpa. The genome sequence presented here represents a valuable resource for further molecular functional analyses of this species as a new tree model, poplar breeding practices and comparative genomic analyses across different poplars.  相似文献   

2.
Developing genomic insights is challenging in nonmodel species for which resources are often scarce and prohibitively costly. Here, we explore the potential of a recently established approach using Pool‐seq data to generate a de novo genome assembly for mining exons, upon which Pool‐seq data are used to estimate population divergence and diversity. We do this for two pairs of sympatric populations of brown trout (Salmo trutta): one naturally sympatric set of populations and another pair of populations introduced to a common environment. We validate our approach by comparing the results to those from markers previously used to describe the populations (allozymes and individual‐based single nucleotide polymorphisms [SNPs]) and from mapping the Pool‐seq data to a reference genome of the closely related Atlantic salmon (Salmo salar). We find that genomic differentiation (FST) between the two introduced populations exceeds that of the naturally sympatric populations (FST = 0.13 and 0.03 between the introduced and the naturally sympatric populations, respectively), in concordance with estimates from the previously used SNPs. The same level of population divergence is found for the two genome assemblies, but estimates of average nucleotide diversity differ ( ≈ 0.002 and  ≈ 0.001 when mapping to S. trutta and S. salar, respectively), although the relationships between population values are largely consistent. This discrepancy might be attributed to biases when mapping to a haploid condensed assembly made of highly fragmented read data compared to using a high‐quality reference assembly from a divergent species. We conclude that the Pool‐seq‐only approach can be suitable for detecting and quantifying genome‐wide population differentiation, and for comparing genomic diversity in populations of nonmodel species where reference genomes are lacking.  相似文献   

3.
Common ragweed (Ambrosia artemisiifolia L.) is an invasive, wind‐pollinated plant nearly ubiquitous in disturbed sites in its eastern North American native range and present across growing portions of Europe, Africa, Asia, and Australia. Phenotypic divergence between European and native‐range populations has been described as rapid evolution. However, a recent study demonstrated major human‐mediated shifts in ragweed genetic structure before introduction to Europe and suggested that native‐range genetic structure and local adaptation might fully explain accelerated growth and other invasive characteristics of introduced populations. Genomic differentiation that potentially influenced this structure has not yet been investigated, and it remains unclear whether substantial admixture during historical disturbance of the native range contributed to the development of invasiveness in introduced European ragweed populations. To investigate fine‐scale population genetic structure across the species' native range, we characterized diallelic SNP loci via a reduced‐representation genotyping‐by‐sequencing (GBS) approach. We corroborate phylogeographic domains previously discovered using traditional sequencing methods, while demonstrating increased power to resolve weak genetic structure in this highly admixed plant species. By identifying exome polymorphisms underlying genetic differentiation, we suggest that geographic differentiation of this important invasive species has occurred more often within pathways that regulate growth and response to defense and stress, which may be associated with survival in North America's diverse climatic regions.  相似文献   

4.
Drosophila melanogaster is postulated to have colonized North America in the past several 100 years in two waves. Flies from Europe colonized the east coast United States while flies from Africa inhabited the Caribbean, which if true, make the south‐east US and Caribbean Islands a secondary contact zone for African and European D. melanogaster. This scenario has been proposed based on phenotypes and limited genetic data. In our study, we have sequenced individual whole genomes of flies from populations in the south‐east US and Caribbean Islands and examined these populations in conjunction with population sequences from the west coast US, Africa, and Europe. We find that west coast US populations are closely related to the European population, likely reflecting a rapid westward expansion upon first settlements into North America. We also find genomic evidence of African and European admixture in south‐east US and Caribbean populations, with a clinal pattern of decreasing proportions of African ancestry with higher latitude. Our genomic analysis of D. melanogaster populations from the south‐east US and Caribbean Islands provides more evidence for the Caribbean Islands as the source of previously reported novel African alleles found in other east coast US populations. We also find the border between the south‐east US and the Caribbean island to be the admixture hot zone where distinctly African‐like Caribbean flies become genomically more similar to European‐like south‐east US flies. Our findings have important implications for previous studies examining the generation of east coast US clines via selection.  相似文献   

5.
Prioritizing and making efficient conservation plans for threatened populations requires information at both evolutionary and ecological timescales. Nevertheless, few studies integrate multidisciplinary approaches, mainly because of the difficulty for conservationists to assess simultaneously the evolutionary and ecological status of populations. Here, we sought to demonstrate how combining genetic and demographic analyses allows prioritizing and initiating conservation plans. To do so, we combined snapshot microsatellite data and a 30‐year‐long demographic survey on a threatened freshwater fish species (Parachondrostoma toxostoma) at the river basin scale. Our results revealed low levels of genetic diversity and weak effective population sizes (<63 individuals) in all populations. We further detected severe bottlenecks dating back to the last centuries (200–800 years ago), which may explain the differentiation of certain populations. The demographic survey revealed a general decrease in the spatial distribution and abundance of P. toxostoma over the last three decades. We conclude that demo‐genetic approaches are essential for (1) identifying populations for which both evolutionary and ecological extinction risks are high; and (2) proposing conservation plans targeted toward these at risk populations, and accounting for the evolutionary history of populations. We suggest that demo‐genetic approaches should be the norm in conservation practices.  相似文献   

6.
Advances in DNA extraction and next‐generation sequencing have made a vast number of historical herbarium specimens available for genomic investigation. These specimens contain not only genomic information from the individual plants themselves, but also from associated microorganisms such as bacteria and fungi. These microorganisms may have colonized the living plant (e.g., pathogens or host‐associated commensal taxa) or may result from postmortem colonization that may include decomposition processes or contamination during sample handling. Here we characterize the metagenomic profile from shotgun sequencing data from herbarium specimens of two widespread plant species (Ambrosia artemisiifolia and Arabidopsis thaliana) collected up to 180 years ago. We used blast searching in combination with megan and were able to infer the metagenomic community even from the oldest herbarium sample. Through comparison with contemporary plant collections, we identify three microbial species that are nearly exclusive to herbarium specimens, including the fungus Alternaria alternata, which can comprise up to 7% of the total sequencing reads. This species probably colonizes the herbarium specimens during preparation for mounting or during storage. By removing the probable contaminating taxa, we observe a temporal shift in the metagenomic composition of the invasive weed Am. artemisiifolia. Our findings demonstrate that it is generally possible to use herbarium specimens for metagenomic analyses, but that the results should be treated with caution, as some of the identified species may be herbarium contaminants rather than representing the natural metagenomic community of the host plant.  相似文献   

7.
8.
During population establishment, genetic drift can be the key driver of changes in genetic diversity, particularly while the population is small. However, natural selection can also play a role in shaping diversity at functionally important loci. We used a well‐studied, re‐introduced population of the threatened Stewart Island robin (= 722 pedigreed individuals) to determine whether selection shaped genetic diversity at innate immunity toll‐like receptor (TLR) genes, over a 9‐year period of population growth following establishment with 12 genetic founders. We found no evidence for selection operating with respect to TLR diversity on first‐year overwinter survival for the majority of loci, genotypes and alleles studied. However, survival of individuals with TLR4BE genotype was significantly improved: these birds were less than half as likely to die prior to maturity compared with all other TLR4 genotypes. Furthermore, the population frequency of this genotype, at a two‐fold excess over Hardy–Weinberg expectation, was increased by nonrandom mating. Near‐complete sampling and full pedigree and reproductive data enabled us to eliminate other potential causes of these patterns including inbreeding, year effects, density dependence, selection on animals at earlier life history stages or genome‐level association of the TLR4E allele with ‘good genes’. However, comparison of observed levels of gene diversity to predictions under simulated genetic drift revealed results consistent with neutral expectations for all loci, including TLR4. Although selection favoured TLR4BE heterozygotes in this population, these effects were insufficient to outweigh genetic drift. This is the first empirical study to show that genetic drift can overwhelm natural selection in a wild population immediately following establishment.  相似文献   

9.
Climate is an important factor limiting tree distributions and adaptation to different thermal environments may influence how tree populations respond to climate warming. Given the current rate of warming, it has been hypothesized that tree populations in warmer, more thermally stable climates may have limited capacity to respond physiologically to warming compared to populations from cooler, more seasonal climates. We determined in a controlled environment how several provenances of widely distributed Eucalyptus tereticornis and E. grandis adjusted their photosynthetic capacity to +3.5°C warming along their native distribution range (~16–38°S) and whether climate of seed origin of the provenances influenced their response to different growth temperatures. We also tested how temperature optima (Topt) of photosynthesis and Jmax responded to higher growth temperatures. Our results showed increased photosynthesis rates at a standardized temperature with warming in temperate provenances, while rates in tropical provenances were reduced by about 40% compared to their temperate counterparts. Temperature optima of photosynthesis increased as provenances were exposed to warmer growth temperatures. Both species had ~30% reduced photosynthetic capacity in tropical and subtropical provenances related to reduced leaf nitrogen and leaf Rubisco content compared to temperate provenances. Tropical provenances operated closer to their thermal optimum and came within 3% of the Topt of Jmax during the daily temperature maxima. Hence, further warming may negatively affect C uptake and tree growth in warmer climates, whereas eucalypts in cooler climates may benefit from moderate warming.  相似文献   

10.
Lye GC  Lepais O  Goulson D 《Molecular ecology》2011,20(14):2888-2900
Four British bumblebee species (Bombus terrestris, Bombus hortorum, Bombus ruderatus and Bombus subterraneus) became established in New Zealand following their introduction at the turn of the last century. Of these, two remain common in the United Kingdom (B. terrestris and B. hortorum), whilst two (B. ruderatus and B. subterraneus) have undergone marked declines, the latter being declared extinct in 2000. The presence of these bumblebees in New Zealand provides an unique system in which four related species have been isolated from their source population for over 100 years, providing a rare opportunity to examine the impacts of an initial bottleneck and introduction to a novel environment on their population genetics. We used microsatellite markers to compare modern populations of B. terrestris, B. hortorum and B. ruderatus in the United Kingdom and New Zealand and to compare museum specimens of British B. subterraneus with the current New Zealand population. We used approximate Bayesian computation to estimate demographic parameters of the introduction history, notably to estimate the number of founders involved in the initial introduction. Species-specific patterns derived from genetic analysis were consistent with the predictions based on the presumed history of these populations; demographic events have left a marked genetic signature on all four species. Approximate Bayesian analyses suggest that the New Zealand population of B. subterraneus may have been founded by as few as two individuals, giving rise to low genetic diversity and marked genetic divergence from the (now extinct) UK population.  相似文献   

11.
Species occupying habitats subjected to frequent natural and/or anthropogenic changes are a challenge for conservation management. We studied one such species, Viola uliginosa, an endangered perennial wetland species typically inhabiting sporadically flooded meadows alongside rivers/lakes. In order to estimate genomic diversity, population structure, and history, we sampled five sites in Finland, three in Estonia, and one each in Slovenia, Belarus, and Poland using genomic SNP data with double‐digest restriction site‐associated DNA sequencing (ddRAD‐seq). We found monophyletic populations, high levels of inbreeding (mean population FSNP = 0.407–0.945), low effective population sizes (Ne = 0.8–50.9), indications of past demographic expansion, and rare long‐distance dispersal. Our results are important in implementing conservation strategies for V. uliginosa, which should include founding of seed banks, ex situ cultivations, and reintroductions with individuals of proper origin, combined with continuous population monitoring and habitat management.  相似文献   

12.
High‐throughput sequencing has revolutionized population and conservation genetics. RAD sequencing methods, such as 2b‐RAD, can be used on species lacking a reference genome. However, transferring protocols across taxa can potentially lead to poor results. We tested two different IIB enzymes (AlfI and CspCI) on two species with different genome sizes (the loggerhead turtle Caretta caretta and the sharpsnout seabream Diplodus puntazzo) to build a set of guidelines to improve 2b‐RAD protocols on non‐model organisms while optimising costs. Good results were obtained even with degraded samples, showing the value of 2b‐RAD in studies with poor DNA quality. However, library quality was found to be a critical parameter on the number of reads and loci obtained for genotyping. Resampling analyses with different number of reads per individual showed a trade‐off between number of loci and number of reads per sample. The resulting accumulation curves can be used as a tool to calculate the number of sequences per individual needed to reach a mean depth ≥20 reads to acquire good genotyping results. Finally, we demonstrated that selective‐base ligation does not affect genomic differentiation between individuals, indicating that this technique can be used in species with large genome sizes to adjust the number of loci to the study scope, to reduce sequencing costs and to maintain suitable sequencing depth for a reliable genotyping without compromising the results. Here, we provide a set of guidelines to improve 2b‐RAD protocols on non‐model organisms with different genome sizes, helping decision‐making for a reliable and cost‐effective genotyping.  相似文献   

13.
Using next‐generation sequencing, we developed the first whole‐genome resources for two hybridizing Nothofagus species of the Patagonian forests that crucially lack genomic data, despite their ecological and industrial value. A de novo assembly strategy combining base quality control and optimization of the putative chloroplast gene map yielded ~32 000 contigs from 43% of the reads produced. With 12.5% of assembled reads, we covered ~96% of the chloroplast genome and ~70% of the mitochondrial gene content, providing functional and structural annotations for 112 and 52 genes, respectively. Functional annotation was possible on 15% of the contigs, with ~1750 potentially novel nuclear genes identified for Nothofagus species. We estimated that the new resources (13.41 Mb in total) included ~4000 gene regions representing ~6.5% of the expected genic partition of the genome, the remaining contigs potentially being nongenic DNA. A high‐quality single nucleotide polymorphisms resource was developed by comparing various filtering methods, and preliminary results indicate a strong conservation of cpDNA genomes in contrast to numerous exclusive nuclear polymorphisms in both species. Finally, we characterized 2274 potential simple sequence repeat (SSR) loci, designed primers for 769 of them and validated nine of 29 loci in 42 individuals per species. Nothofagus obliqua had more alleles (4.89) on average than N. nervosa (2.89), 8 SSRs were efficient to discriminate species, and three were successfully transferred in three other Nothofagus species. These resources will greatly help for future inferences of demographic, adaptive and hybridizing events in Nothofagus species, and for conserving and managing natural populations.  相似文献   

14.
Restriction site‐associated DNA sequencing (RAD‐Seq), a next‐generation sequencing‐based genome ‘complexity reduction’ protocol, has been useful in population genomics in species with a reference genome. However, the application of this protocol to natural populations of genomically underinvestigated species, particularly under low‐to‐medium sequencing depth, has not been well justified. In this study, a Bayesian method was developed for calling genotypes from an F2 population of bottle gourd [Lagenaria siceraria (Mol.) Standl.] to construct a high‐density genetic map. Low‐depth genome shotgun sequencing allowed the assembly of scaffolds/contigs comprising approximately 50% of the estimated genome, of which 922 were anchored for identifying syntenic regions between species. RAD‐Seq genotyping of a natural population comprising 80 accessions identified 3226 single nuclear polymorphisms (SNPs), based on which two sub‐gene pools were suggested for association with fruit shape. The two sub‐gene pools were moderately differentiated, as reflected by the Hudson's FST value of 0.14, and they represent regions on LG7 with strikingly elevated FST values. Seven‐fold reduction in heterozygosity and two times increase in LD (r2) were observed in the same region for the round‐fruited sub‐gene pool. Outlier test suggested the locus LX3405 on LG7 to be a candidate site under selection. Comparative genomic analysis revealed that the cucumber genome region syntenic to the high FST island on LG7 harbors an ortholog of the tomato fruit shape gene OVATE. Our results point to a bright future of applying RAD‐Seq to population genomic studies for non‐model species even under low‐to‐medium sequencing efforts. The genomic resources provide valuable information for cucurbit genome research.  相似文献   

15.
The genomic era has led to an unprecedented increase in the availability of genome‐wide data for a broad range of taxa. Wildlife management strives to make use of these vast resources to enable refined genetic assessments that enhance biodiversity conservation. However, as new genomic platforms emerge, problems remain in adapting the usually complex approaches for genotyping of noninvasively collected wildlife samples. Here, we provide practical guidelines for the standardized development of reduced single nucleotide polymorphism (SNP) panels applicable for microfluidic genotyping of degraded DNA samples, such as faeces or hairs. We demonstrate how microfluidic SNP panels can be optimized to efficiently monitor European wildcat (Felis silvestris S.) populations. We show how panels can be set up in a modular fashion to accommodate informative markers for relevant population genetics questions, such as individual identification, hybridization assessment and the detection of population structure. We discuss various aspects regarding the implementation of reduced SNP panels and provide a framework that will allow both molecular ecologists and practitioners to help bridge the gap between genomics and applied wildlife conservation.  相似文献   

16.
Social insects are the target of numerous pathogens. This is because the high density of closely‐related individuals frequently interacting with each other enhances the transmission and establishment of pathogens. This high selective pressure results in the rapid evolution of immune genes, which might be counteracted by a reduced effective population size (Ne) lowering the effectiveness of selection. We tested the effect of Ne on the evolutionary rate of an important immune gene for the antimicrobial peptide Hymenoptaecin in two common central European bumblebee species: Bombus terrestris and Bombus lapidarius. Both species are similar in their biology and are expected to be under similar selective pressures because pathogen prevalence does not differ between species. However, previous studies indicated a higher Ne in B. terrestris compared to B. lapidarius. We found high intraspecific variability in the coding sequence but low variability for silent polymorphisms in B. lapidarius. Estimates of long‐ and short‐term Ne were three‐ to four‐fold higher Ne in B. terrestris, although the species did not differ in census population sizes. The difference in Ne might result in less efficient selection and suboptimal adaptation of immune genes (e.g. hymenoptaecin) in B. lapidarius, and thus this species might become less resistant and more tolerant, turning into a superspreader of diseases.  相似文献   

17.
18.
19.
Human‐induced transformations of ecosystems usually result in fragmented populations subject to increased extinction risk. Fragmentation is also often associated with novel environmental heterogeneity, which in combination with restricted gene flow may increase the opportunity for local adaptation. To manage at‐risk populations in these landscapes, it is important to understand how gene flow is changing, and how populations respond to habitat loss. We conducted a landscape genomics analysis using Restriction‐site Associated DNA sequencing to investigate the evolutionary response of the critically endangered Dahl's Toad‐headed turtle (Mesoclemmys dahli) to severe habitat modification. The species has lost almost all of its natural habitat in the southwestern part of its range and about 70% in the northeast. Based on least cost path analysis across different resistance surfaces for 3,211 SNPs, we found that the landscape matrix is restricting gene flow, causing the fragmentation of the species into at least six populations. Genome scans and allele‐environment association analyses indicate that the population fragments in the deforested grasslands of the southwest are adaptively different from those in the more forested northeast. Populations in areas with no forest had low levels of adaptive genetic diversity and the fixation of ancestrally‐polymorphic SNPs, consistent with directional selection in this novel environment. Our results suggest that this forest‐stream specialist is adapting to pond‐grassland conditions, but it is also suffering from negative consequences of habitat loss, including genetic erosion, isolation, small effective population sizes, and inbreeding. We recommend gene flow restoration via genetic rescue to counteract these threats, and provide guidance for this strategy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号