共查询到20条相似文献,搜索用时 0 毫秒
1.
N. I. Morehouse N. Mandon J.‐P. Christides M. Body G. Bimbard J. Casas 《Journal of evolutionary biology》2013,26(1):175-185
Seasonal polyphenisms are widespread in nature, yet the selective pressures responsible for their evolution remain poorly understood. Previous work has largely focussed either on the developmental regulation of seasonal polyphenisms or putative ‘top‐down’ selective pressures such as predation that may have acted to drive phenotypic divergence. Much less is known about the influence of seasonal variation in resource availability or seasonal selection on optimal resource allocation. We studied seasonal variation in resource availability, uptake and allocation in Araschnia levana L., a butterfly species that exhibits a striking seasonal colour polyphenism consisting of predominantly orange ‘spring form’ adults and black‐and‐white ‘summer form’ adults. ‘Spring form’ individuals develop as larvae in the late summer, enter a pupal diapause in the fall and emerge in the spring, whereas ‘summer form’ individuals develop directly during the summer months. We find evidence for seasonal declines in host plant quality, and we identify similar reductions in resource uptake in late summer, ‘spring form’ larvae. Further, we report shifts in the body composition of diapausing ‘spring form’ pupae consistent with a physiological cost to overwintering. However, these differences do not translate into detectable differences in adult body composition. Instead, we find minor seasonal differences in adult body composition consistent with augmented flight capacity in ‘summer form’ adults. In comparison, we find much stronger signatures of sex‐specific selection on patterns of resource uptake and allocation. Our results indicate that resource dynamics in A. levana are shaped by seasonal fluctuations in host plant nutrition, climatic conditions and intraspecific interactions. 相似文献
2.
On the fate of seasonally plastic traits in a rainforest butterfly under relaxed selection 下载免费PDF全文
Vicencio Oostra Paul M. Brakefield Yvonne Hiltemann Bas J. Zwaan Oskar Brattström 《Ecology and evolution》2014,4(13):2654-2667
Many organisms display phenotypic plasticity as adaptation to seasonal environmental fluctuations. Often, such seasonal responses entails plasticity of a whole suite of morphological and life‐history traits that together contribute to the adaptive phenotypes in the alternative environments. While phenotypic plasticity in general is a well‐studied phenomenon, little is known about the evolutionary fate of plastic responses if natural selection on plasticity is relaxed. Here, we study whether the presumed ancestral seasonal plasticity of the rainforest butterfly Bicyclus sanaos (Fabricius, 1793) is still retained despite the fact that this species inhabits an environmentally stable habitat. Being exposed to an atypical range of temperatures in the laboratory revealed hidden reaction norms for several traits, including wing pattern. In contrast, reproductive body allocation has lost the plastic response. In the savannah butterfly, B. anynana (Butler, 1879), these traits show strong developmental plasticity as an adaptation to the contrasting environments of its seasonal habitat and they are coordinated via a common developmental hormonal system. Our results for B. sanaos indicate that such integration of plastic traits – as a result of past selection on expressing a coordinated environmental response – can be broken when the optimal reaction norms for those traits diverge in a new environment. 相似文献
3.
4.
Individual variation in resource acquisition should have consequences for life‐history traits and trade‐offs between them because such variation determines how many resources can be allocated to different life‐history functions, such as growth, survival and reproduction. Since resource acquisition can vary across an individual's life cycle, the consequences for life‐history traits and trade‐offs may depend on when during the life cycle resources are limited. We tested for differential and/or interactive effects of variation in resource acquisition in the burying beetle Nicrophorus vespilloides. We designed an experiment in which individuals acquired high or low amounts of resources across three stages of the life cycle: larval development, prior to breeding and the onset of breeding in a fully crossed design. Resource acquisition during larval development and prior to breeding affected egg size and offspring survival, respectively. Meanwhile, resource acquisition at the onset of breeding affected size and number of both eggs and offspring. In addition, there were interactive effects between resource acquisition at different stages on egg size and offspring survival. However, only when females acquired few resources at the onset of breeding was there evidence for a trade‐off between offspring size and number. Our results demonstrate that individual variation in resource acquisition during different stages of the life cycle has important consequences for life‐history traits but limited effects on trade‐offs. This suggests that in species that acquire a fixed‐sized resource at the onset of breeding, the size of this resource has larger effects on life‐history trade‐offs than resources acquired at earlier stages. 相似文献
5.
Atsushi Ikemoto Daiki X. Sato Takashi Makino Masakado Kawata 《Ecology and evolution》2020,10(12):6020-6029
Acquisition or loss of flying ability is evolutionarily linked with maximum life span (MLS) in mammals and birds. Although ecological factors, such as extrinsic mortality, may lead to either shortened or extended life spans through natural selection, MLS is influenced by complex molecular and metabolic processes, and the genetic changes associated with flying ability that have led to either a longer or shorter MLS are unknown. Here, we examine the parallel evolution of flight in mammals and birds and investigate positively selected genes at branches where either the acquisition (in little brown bats and large flying foxes) or loss (in Adélie penguins, emperor penguins, common ostriches, emus, great spotted kiwis, little spotted kiwis, okarito brown kiwis, greater rheas, lesser rheas, and cassowaries) of flight abilities occurred. Although we found no shared genes under selection among all the branches of interest, 7 genes were found to be positively selected in 2 of the branches. Among the 7 genes, only IGF2BP2 is known to affect both life span and energy expenditure. The positively selected mutations detected in IGF2BP2 likely affected the functionality of the encoded protein. IGF2BP2, which has been reported to simultaneously prolong life span and increase energy expenditure, could be responsible for the evolution of shortened MLS associated with the loss of flying ability. 相似文献
6.
Immune responses evolve to balance the benefits of microbial killing against the costs of autoimmunity and energetic resource use. Models that explore the evolution of optimal immune responses generally include a term for constitutive immunity, or the level of immunological investment prior to microbial exposure, and for inducible immunity, or investment in immune function after microbial challenge. However, studies rarely consider the functional form of inducible immune responses with respect to microbial density, despite the theoretical dependence of immune system evolution on microbe‐ versus immune‐mediated damage to the host. In this study, we analyse antimicrobial peptide (AMP) gene expression from seven wild‐caught flour beetle populations (Tribolium spp.) during acute infection with the virulent bacteria Bacillus thuringiensis (Bt) and Photorhabdus luminescens (P.lum) to demonstrate that inducible immune responses mediated by the humoral IMD pathway exhibit natural variation in both microbe density‐dependent and independent temporal dynamics. Beetle populations that exhibited greater AMP expression sensitivity to Bt density were also more likely to die from infection, while populations that exhibited higher microbe density‐independent AMP expression were more likely to survive P. luminescens infection. Reduction in pathway signalling efficiency through RNAi‐mediated knockdown of the imd gene reduced the magnitude of both microbe‐independent and dependent responses and reduced host resistance to Bt growth, but had no net effect on host survival. This study provides a framework for understanding natural variation in the flexibility of investment in inducible immune responses and should inform theory on the contribution of nonequilibrium host‐microbe dynamics to immune system evolution. 相似文献
7.
Size doesn't matter,sex does: a test for boldness in sister species of Brachyrhaphis fishes 下载免费PDF全文
The effect of divergent natural selection on the evolution of behavioral traits has long been a focus of behavioral ecologists. Predation, due to its ubiquity in nature and strength as a selective agent, has been considered an important environmental driver of behavior. Predation is often confounded with other environmental factors that could also play a role in behavioral evolution. For example, environments that contain predators are often more ecologically complex and “risky” (i.e., exposed and dangerous). Previous work shows that individuals from risky environments are often more bold, active, and explorative than those from low‐risk environments. To date, most comparative studies of environmentally driven behavioral divergence are limited to comparisons among populations within species that occur in divergent selective environments but neglect comparisons between species following speciation. This limits our understanding of how behavior evolves post‐speciation. The Central American live‐bearing fish genus Brachyrhaphis provides an ideal system for examining the relationship between selective environments and behavior, within and between species. Here, we test for differences in boldness between sister species B. roseni and B. terrabensis that occur in streams with and without piscivorous predators, respectively. We found that species do differ in boldness, with species that occur with predators being bolder than those that do not. Within each species, we found that sexes differed in boldness, with males being bolder than females. We also tested for a relationship between size (a surrogate for metabolic rate) and boldness, but found no size effects. Therefore, sex, not size, affects boldness. These results are consistent with the hypothesis that complex and risky environments favor individuals with more bold behavioral traits, but they are not consistent with the hypothesis that size (and therefore metabolic rate) drives divergence in boldness. Finally, our results provide evidence that behavioral trait divergence continues even after speciation is complete. 相似文献
8.
Vanika Gupta Saudamini Venkatesan Martik Chatterjee Zeeshan A. Syed Vaishnavi Nivsarkar Nagaraj G. Prasad 《Evolution; international journal of organic evolution》2016,70(4):934-943
Maintenance and deployment of the immune system are costly and are hence predicted to trade‐off with other resource‐demanding traits, such as reproduction. We subjected this longstanding idea to test using laboratory experimental evolution approach. In the present study, replicate populations of Drosophila melanogaster were subjected to three selection regimes—I (Infection with Pseudomonas entomophila), S (Sham‐infection with MgSO4), and U (Unhandled Control). After 30 generations of selection flies from the I regime had evolved better survivorship upon infection with P. entomophila compared to flies from U and S regimes. However, contrary to expectations and previous reports, we did not find any evidence of trade‐offs between immunity and other life history related traits, such as longevity, fecundity, egg hatchability, or development time. After 45 generations of selection, the selection was relaxed for a set of populations. Even after 15 generations, the postinfection survivorship of populations under relaxed selection regime did not decline. We speculate that either there is a negligible cost to the evolved immune response or that trade‐offs occur on traits such as reproductive behavior or other immune mechanisms that we have not investigated in this study. Our research suggests that at least under certain conditions, life‐history trade‐offs might play little role in maintaining variation in immunity. 相似文献
9.
Although alternative life‐history strategies exist within many populations, very little is known about their genetic basis and mechanistic insight into these traits could greatly advance the understanding of eco‐evolutionary dynamics. Many species of butterfly within the genus Colias exhibit a sex‐limited wing colour polymorphism, called Alba, which is correlated with an alternative life‐history strategy. Here, we have taken the first steps in localizing the region carrying Alba in Colias croceus, a species with no genomic resources, by generating whole genome sequence of a single Alba mother and two sequencing pools, one for her Alba and another for her orange, offspring. These data were used in a bulk‐segregant analysis wherein SNPs fulfilling the Mendelian inheritance expectations of Alba were identified. Then, using the conserved synteny in Lepidoptera, the Alba locus was assigned to chromosome 15 in Bombyx mori. We then identified candidate regions within the chromosome by investigating the distribution of Alba SNPs along the chromosome and the difference in nucleotide diversity in exons between the two pools. A region spanning ~ 5.7 Mbp at the 5′ end of the chromosome was identified as likely to contain the Alba locus. These insights set the stage for more detailed genomic scans and mapping of the Alba phenotype, and demonstrate an efficient use of genomic resources in a novel species. 相似文献
10.
One of the strongest biological impacts of climate change has been the movement of species poleward and upward in elevation. Yet, what is not clear is the extent to which the spatial distribution of locally adapted lineages and ecologically important traits may also shift with continued climate change. Here, we take advantage of a transplant experiment mimicking up‐slope seed dispersal for a suite of ecologically diverse populations of yellow monkeyflower (Mimulus guttatus sensu lato) into a high‐elevation common garden during an extreme drought period in the Sierra Nevada mountains, California, USA. We use a demographic approach to quantify fitness and test for selection on life history traits in local versus lower‐elevation populations and in normal versus drought years to test the potential for up‐slope migration and phenotypic selection to alter the distribution of key life history traits in montane environments. We find that lower‐elevation populations tend to outperform local populations, confirming the potential for up‐slope migration. Although selection generally favored some local montane traits, including larger flowers and larger stem size at flowering, drought conditions tended to select for earlier flowering typical of lower‐elevation genotypes. Taken together, this suggests that monkeyflower lineages moving upward in elevation could experience selection for novel trait combinations, particularly under warmer and drier conditions that are predicted to occur with continued climate change. 相似文献
11.
Large genetic variations in starvation tolerance in animals indicate that there are multiple strategies to cope with low‐nutrient conditions. Fruit flies (Drosophila melanogaster) typically respond to starvation by suppressing sleep and enhancing locomotor activity presumably to search for food. However, we hypothesized that in a natural population, there are costs and benefits to sleep suppression under low‐nutrient conditions and that conserving energy through sleep could be a better strategy depending on food availability. In this study, we quantified the variation in sleep‐related traits in 21 wild‐derived inbred lines from Katsunuma, Japan, under fed and starved conditions and analysed the relationship between those traits and starvation tolerance. Although most of the lines responded to starvation by suppressing the total time in sleep, there were indeed two lines that responded by significantly increasing the sleep‐bout durations and thus not reducing the total time in sleep. These genotypes survived longer in acute starvation conditions compared to genotypes that responded by the immediate suppression of sleep, which could be due to the reduced metabolic rate during the long uninterrupted sleep bouts. The coexistence of the enhanced foraging and resting strategies upon starvation within a single population is consistent with the presence of a behavioural trade‐off between food search and energy conservation due to unpredictable food availability in nature. These results provide insights into the evolutionary mechanisms that contribute to the maintenance of genetic variations underlying environmental stress resistance. 相似文献
12.
Context‐dependent effects of yolk androgens on nestling growth and immune function in a multibrooded passerine 下载免费PDF全文
J. Muriel P. Salmón A. Nunez‐Buiza F. de Salas L. Pérez‐Rodríguez M. Puerta D. Gil 《Journal of evolutionary biology》2015,28(8):1476-1488
Female birds may adjust their offspring phenotype to the specific requirements of the environment by differential allocation of physiologically active substances into yolks, such as androgens. Yolk androgens have been shown to accelerate embryonic development, growth rate and competitive ability of nestlings, but they can also entail immunological costs. The balance between costs and benefits of androgen allocation is expected to depend on nestling environment. We tested this hypothesis in a multibrooded passerine, the spotless starling, Sturnus unicolor. We experimentally manipulated yolk androgen levels using a between‐brood design and evaluated its effects on nestling development, survival and immune function. Both in first and replacement broods, the embryonic development period was shorter for androgen‐treated chicks than controls, but there were no differences in second broods. In replacement broods, androgen‐treated chicks were heavier and larger than those hatched from control eggs, but this effect was not observed in the other breeding attempts. Androgen exposure reduced survival with respect to controls only in second broods. Regarding immune function, we detected nonsignificant trends for androgen treatment to activate two important components of innate and adaptive immunity (IL‐6 and Ig‐A levels, respectively). Similarly, androgen‐treated chicks showed greater lymphocyte proliferation than controls in the first brood and an opposite trend in the second brood. Our results indicate that yolk androgen effects on nestling development and immunity depend on the environmental conditions of each breeding attempt. Variation in maternal androgen allocation to eggs could be explained as the result of context‐dependent optimal strategies to maximize offspring fitness. 相似文献
13.
Theory predicts that inbreeding depression should be more pronounced under environmental stress due to an increase in the expression of recessive deleterious alleles. If so, inbred populations may be especially vulnerable to environmental change. Against this background, we here investigate effects of inbreeding, temperature stress and its interactions with inbreeding in the tropical butterfly Bicyclus anynana. We use a full‐factorial design with three levels of inbreeding (F = 0/0.25/0.38) and three temperature treatments (2 h exposure to 1, 27 or 39 °C). Despite using relatively low levels of inbreeding significant inbreeding depression was found in pupal mass, pupal time, thorax mass, abdomen fat content, egg hatching success and fecundity. However, stress resistance traits (heat tolerance, immune function) were not affected by inbreeding and interactions with temperature treatments were virtually absent. We thus found no support for an increased sensitivity of inbred individuals to environmental stress, and suspect that such patterns are restricted to harsher conditions. Our temperature treatments evidently imposed stress, significantly reducing longevity, fecundity, egg hatching success and haemocyte numbers, while fat content, protein content and lysozyme activity remained unaffected. Males and females differed in all traits measured except pupal time, protein content and phenoloxidase (PO) activity. Correlation analyses revealed, among others, a trade‐off between PO and lysozyme activity, and negative correlations between fat content and several other traits. We stress that more data are needed on the effects of inbreeding, temperature variation and sexual differences on insect immune function before more general conclusions can be drawn. 相似文献
14.
Fiona R. Savory Timothy G. Benton Varun Varma Ian A. Hope Steven M. Sait 《Ecology and evolution》2014,4(7):1176-1185
Longevity is modulated by a range of conserved genes in eukaryotes, but it is unclear how variation in these genes contributes to the evolution of longevity in nature. Mutations that increase life span in model organisms typically induce trade‐offs which lead to a net reduction in fitness, suggesting that such mutations are unlikely to become established in natural populations. However, the fitness consequences of manipulating longevity have rarely been assessed in heterogeneous environments, in which stressful conditions are encountered. Using laboratory selection experiments, we demonstrate that long‐lived, stress‐resistant Caenorhabditis elegans age‐1(hx546) mutants have higher fitness than the wild‐type genotype if mixed genotype populations are periodically exposed to high temperatures when food is not limited. We further establish, using stochastic population projection models, that the age‐1(hx546) mutant allele can confer a selective advantage if temperature stress is encountered when food availability also varies over time. Our results indicate that heterogeneity in environmental stress may lead to altered allele frequencies over ecological timescales and indirectly drive the evolution of longevity. This has important implications for understanding the evolution of life‐history strategies. 相似文献
15.
Temperature‐sensitive fitness cost of insecticide resistance in Chinese populations of the diamondback moth Plutella xylostella 下载免费PDF全文
Alleles conferring a higher adaptive value in one environment may have a detrimental impact on fitness in another environment. Alleles conferring resistance to pesticides and drugs provide textbook examples of this trade‐off as, in addition to conferring resistance to these molecules, they frequently decrease fitness in pesticide/drug‐free environments. We show here that resistance to chlorpyrifos, an organophosphate (OP), in Chinese populations of the diamondback moth, Plutella xylostella, is conferred by two mutations of ace1 – the gene encoding the acetylcholinesterase enzyme targeted by OPs – affecting the amino acid sequence of the corresponding protein. These mutations were always linked, consistent with the segregation of a single resistance allele, ace1R, carrying both mutations, in the populations studied. We monitored the frequency of ace1R (by genotyping more than 20 000 adults) and the level of resistance (through bioassays on more than 50 000 individuals) over several generations. We found that the ace1R resistance allele was costly in the absence of insecticide and that this cost was likely recessive. This fitness costs involved a decrease in fecundity: females from resistant strains laid 20% fewer eggs, on average, than females from susceptible strains. Finally, we found that the fitness costs associated with the ace1R allele were greater at high temperatures. At least two life history traits were involved: longevity and fecundity. The relative longevity of resistant individuals was affected only at high temperatures and the relative fecundity of resistant females – which was already affected at temperatures optimal for development – decreased further at high temperatures. The implications of these findings for resistance management are discussed. 相似文献
16.
Abstract 1. In animals with a complex life cycle, larval stressors may carry over to the adult stage. Carry‐over effects not mediated through age and size at metamorphosis have rarely been studied. The present study focuses on the poorly documented immune costs of short‐term food stress both in the larval stage and after metamorphosis in the adult stage. 2. The present study quantified immune function [number of haemocytes, activity of prophenoloxidase (proPO) and phenoloxidase (PO)] in an experiment where larvae of the damselfly Lestes viridis were exposed to a transient starvation period. 3. Directly after starvation, immune variables were reduced in starved larvae. Levels of proPO and PO remained low after starvation, even after metamorphosis. In contrast, haemocyte numbers were fully compensated by the end of the larval stage, yet were lower in previously starved animals after metamorphosis. This can be explained as a cost of the observed compensatory growth after starvation. Focusing only on potential costs of larval stressors within the larval stage may therefore be misleading. 4. The here‐identified immunological cost in the adult stage of larval short‐term food stress and associated compensatory growth strongly indicates that physiological costs may explain hidden carry‐over effects bridging metamorphosis. This adds to the increasing awareness that the larval and adult stages in animals with a complex life cycle should be jointly studied, as trade‐offs may span metamorphosis. 相似文献
17.
Justin R. Eastwood Michelle L. Hall Niki Teunissen Sjouke A. Kingma Nataly Hidalgo Aranzamendi Marie Fan Michael Roast Simon Verhulst Anne Peters 《Molecular ecology》2019,28(5):1127-1137
Poor conditions during early development can initiate trade‐offs that favour current survival at the expense of somatic maintenance and subsequently, future reproduction. However, the mechanisms that link early and late life‐history are largely unknown. Recently it has been suggested that telomeres, the nucleoprotein structures at the terminal end of chromosomes, could link early‐life conditions to lifespan and fitness. In wild purple‐crowned fairy‐wrens, we combined measurements of nestling telomere length (TL) with detailed life‐history data to investigate whether early‐life TL predicts fitness prospects. Our study differs from previous studies in the completeness of our fitness estimates in a highly philopatric population. The association between TL and survival was age‐dependent with early‐life TL having a positive effect on lifespan only among individuals that survived their first year. Early‐life TL was not associated with the probability or age of gaining a breeding position. Interestingly, early‐life TL was positively related to breeding duration, contribution to population growth and lifetime reproductive success because of their association with lifespan. Thus, early‐life TL, which reflects growth, accumulated early‐life stress and inherited TL, predicted fitness in birds that reached adulthood but not noticeably among fledglings. These findings suggest that a lack of investment in somatic maintenance during development particularly affects late life performance. This study demonstrates that factors in early‐life are related to fitness prospects through lifespan, and suggests that the study of telomeres may provide insight into the underlying physiological mechanisms linking early‐ and late‐life performance and trade‐offs across a lifetime. 相似文献
18.
Immunological larval polyphenism in the map butterfly Araschnia levana reveals the photoperiodic modulation of immunity 下载免费PDF全文
Arne Baudach Kwang‐Zin Lee Heiko Vogel Andreas Vilcinskas 《Ecology and evolution》2018,8(10):4891-4898
The bivoltine European map butterfly (Araschnia levana) displays seasonal polyphenism characterized by the formation of two remarkably distinct dorsal wing phenotypes: The spring generation (A. levana levana) is predominantly orange with black spots and develops from diapause pupae, whereas the summer generation (A. levana prorsa) has black, white, and orange bands and develops from subitaneous pupae. The choice between spring or summer imagoes is regulated by the photoperiod during larval and prepupal development, but polyphenism in the larvae has not been investigated before. Recently, it has been found that the prepupae of A. levana display differences in immunity‐related gene expression, so we tested whether larvae destined to become spring (short‐day) or summer (long‐day) morphs also display differences in innate immunity. We measured larval survival following the injection of a bacterial entomopathogen (Pseudomonas entomophila), the antimicrobial activity in their hemolymph and the induced expression of selected genes encoding antimicrobial peptides (AMPs). Larvae of the short‐day generation died significantly later, exhibited higher antibacterial activity in the hemolymph, and displayed higher induced expression levels of AMPs than those of the long‐day generation. Our study expands the seasonal polyphenism of A. levana beyond the morphologically distinct spring and summer imagoes to include immunological larval polyphenism that reveals the photoperiodic modulation of immunity. This may reflect life‐history traits that manifest as trade‐offs between immunity and fecundity. 相似文献
19.
Turbill C Bieber C Ruf T 《Proceedings. Biological sciences / The Royal Society》2011,278(1723):3355-3363
Survival probability is predicted to underlie the evolution of life histories along a slow-fast continuum. Hibernation allows a diverse range of small mammals to exhibit seasonal dormancy, which might increase survival and consequently be associated with relatively slow life histories. We used phylogenetically informed GLS models to test for an effect of hibernation on seasonal and annual survival, and on key attributes of life histories among mammals. Monthly survival was in most cases higher during hibernation compared with the active season, probably because inactivity minimizes predation. Hibernators also have approximately 15 per cent higher annual survival than similar sized non-hibernating species. As predicted, we found an effect of hibernation on the relationships between life history attributes and body mass: small hibernating mammals generally have longer maximum life spans (50% greater for a 50 g species), reproduce at slower rates, mature at older ages and have longer generation times compared with similar-sized non-hibernators. In accordance with evolutionary theories, however, hibernating species do not have longer life spans than non-hibernators with similar survival rates, nor do they have lower reproductive rates than non-hibernators with similar maximum life spans. Thus, our combined results suggest that (i) hibernation is associated with high rates of overwinter and annual survival, and (ii) an increase in survival in hibernating species is linked with the coevolution of traits indicative of relatively slow life histories. 相似文献
20.
Is bigger better? The relationship between size and reproduction in female Asian elephants 下载免费PDF全文
J. A. H. Crawley H. S. Mumby S. N. Chapman M. Lahdenperä K. U. Mar W. Htut A. Thura Soe H. H. Aung V. Lummaa 《Journal of evolutionary biology》2017,30(10):1836-1845
The limited availability of resources is predicted to impose trade‐offs between growth, reproduction and self‐maintenance in animals. However, although some studies have shown that early reproduction suppresses growth, reproduction positively correlates with size in others. We use detailed records from a large population of semi‐captive elephants in Myanmar to assess the relationships between size (height and weight), reproduction and survival in female Asian elephants, a species characterized by slow, costly life history. Although female height gain during the growth period overlapped little with reproductive onset in the population, there was large variation in age at first reproduction and only 81% of final weight had been reached by peak age of reproduction at the population level (19 years). Those females beginning reproduction early tended to be taller and lighter later in life, although these trends were not significant. We found that taller females were more likely to have reproduced by a given age, but such effects diminished with age, suggesting there may be a size threshold to reproduction which is especially important in young females. Because size was not linked with female survival during reproductive ages, the diminishing effect of height on reproduction with age is unlikely to be due to biased survival of larger females. We conclude that although reproduction may not always impose significant costs on growth, height may be a limiting factor to reproduction in young female Asian elephants, which could have important implications considering their birth rates are low and peak reproduction is young – 19 years in this population. 相似文献