首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Biodiversity studies are more efficient when large numbers of breeds belonging to several countries are involved, as they allow for an in‐depth analysis of the within‐ and between‐breed components of genetic diversity. A set of 21 microsatellites was used to investigate the genetic composition of 24 Creole goat breeds (910 animals) from 10 countries to estimate levels of genetic variability, infer population structure and understand genetic relationships among populations across the American continent. Three commercial transboundary breeds were included in the analyses to investigate admixture with Creole goats. Overall, the genetic diversity of Creole populations (mean number of alleles = 5.82 ± 1.14, observed heterozygosity = 0.585 ± 0.074) was moderate and slightly lower than what was detected in other studies with breeds from other regions. The Bayesian clustering analysis without prior information on source populations identified 22 breed clusters. Three groups comprised more than one population, namely from Brazil (Azul and Graúna; Moxotó and Repartida) and Argentina (Long and shorthair Chilluda, Pampeana Colorada and Angora‐type goat). Substructure was found in Criolla Paraguaya. When prior information on sample origin was considered, 92% of the individuals were assigned to the source population (threshold q ≥ 0.700). Creole breeds are well‐differentiated entities (mean coefficient of genetic differentiation = 0.111 ± 0.048, with the exception of isolated island populations). Dilution from admixture with commercial transboundary breeds appears to be negligible. Significant levels of inbreeding were detected (inbreeding coefficient > 0 in most Creole goat populations, P < 0.05). Our results provide a broad perspective on the extant genetic diversity of Creole goats, however further studies are needed to understand whether the observed geographical patterns of population structure may reflect the mode of goat colonization in the Americas.  相似文献   

2.
Uganda has a large population of goats, predominantly from indigenous breeds reared in diverse production systems, whose existence is threatened by crossbreeding with exotic Boer goats. Knowledge about the genetic characteristics and relationships among these Ugandan goat breeds and the potential admixture with Boer goats is still limited. Using a medium‐density single nucleotide polymorphism (SNP) panel, we assessed the genetic diversity, population structure and admixture in six goat breeds in Uganda: Boer, Karamojong, Kigezi, Mubende, Small East African and Sebei. All the animals had genotypes for about 46 105 SNPs after quality control. We found high proportions of polymorphic SNPs ranging from 0.885 (Kigezi) to 0.928 (Sebei). The overall mean observed (HO) and expected (HE) heterozygosity across breeds was 0.355 ± 0.147 and 0.384 ± 0.143 respectively. Principal components, genetic distances and admixture analyses revealed weak population sub‐structuring among the breeds. Principal components separated Kigezi and weakly Small East African from other indigenous goats. Sebei and Karamojong were tightly entangled together, whereas Mubende occupied a more central position with high admixture from all other local breeds. The Boer breed showed a unique cluster from the Ugandan indigenous goat breeds. The results reflect common ancestry but also some level of geographical differentiation. admixture and f4 statistics revealed gene flow from Boer and varying levels of genetic admixture among the breeds. Generally, moderate to high levels of genetic variability were observed. Our findings provide useful insights into maintaining genetic diversity and designing appropriate breeding programs to exploit within‐breed diversity and heterozygote advantage in crossbreeding schemes.  相似文献   

3.
Information about genetic diversity and population structure among goat breeds is essential for genetic improvement, understanding of environmental adaptation as well as utilization and conservation of goat breeds. Here, we measured genetic diversity and population structure in multiple Chinese goat populations, namely, Nanjiang, Qinggeda, Arbas Cashmere, Jining Grey, Luoping Yellow and Guangfeng goats. A total of 193 individuals were genotyped for about 47 401 autosomal single nucleotide polymorphisms (SNPs). We found a high proportion of informative SNPs, ranging from 69.5% in the Luoping Yellow to 93.9% in the Jining Grey goat breeds with an average mean of 84.7%. Diversity, as measured by expected heterozygosity, ranged from 0.371 in Luoping Yellow to 0.405 in Jining Grey goat populations. The average estimated pair‐wise genetic differentiation (FST) among the populations was 8.6%, ranging from 0.2% to 16% and indicating low to moderate genetic differentiation. Principal component analysis, genetic structure and phylogenetic tree analysis revealed a clustering of six Chinese goat populations according to geographic distribution. The results from this study can contribute valuable genetic information and can properly assist with within‐breed diversity, which provides a good opportunity for sustainable utilization of and maintenance of genetic resource improvements in the Chinese goat populations.  相似文献   

4.
5.
This study assessed the genetic diversity in the growth hormone 1 gene (GH1) within and between South African goat breeds. Polymerase chain reaction‐targeted gene amplification together with Illumina MiSeq next‐generation sequencing (NGS) was used to generate the full length (2.54 kb) of the growth hormone 1 gene and screen for SNPs in the South African Boer (SAB) (= 17), Tankwa (= 15) and South African village (= 35) goat populations. A range of 27–58 SNPs per population were observed. Mutations resulting in amino acid changes were observed at exons 2 and 5. Higher within‐breed diversity of 97.37% was observed within the population category consisting of SA village ecotypes and the Tankwa goats. Highest pairwise FST values ranging from 0.148 to 0.356 were observed between the SAB and both the South African village and Tankwa feral goat populations. Phylogenetic analysis indicated nine genetic clusters, which reflected close relationships between the South African populations and the other international breeds with the exception of the Italian Sarda breeds. Results imply greater potential for within‐population selection programs, particularly with SA village goats.  相似文献   

6.
We used genotype data from the caprine 50k Illumina BeadChip for the assessment of genetic diversity within and between 10 local Swiss goat breeds. Three different cluster methods allowed the goat samples to be assigned to the respective breed groups, whilst the samples of Nera Verzasca and Tessin Grey goats could not be differentiated from each other. The results of the different genetic diversity measures show that Appenzell, Toggenburg, Valais and Booted goats should be prioritized in future conservation activities. Furthermore, we examined runs of homozygosity (ROH) and compared genomic inbreeding coefficients based on ROH (FROH) with pedigree‐based inbreeding coefficients (FPED). The linear relationship between FROH and FPED was confirmed for goats by including samples from the three main breeds (Saanen, Chamois and Toggenburg goats). FROH appears to be a suitable measure for describing levels of inbreeding in goat breeds with missing pedigree information. Finally, we derived selection signatures between the breeds. We report a total of 384 putative selection signals. The 25 most significant windows contained genes known for traits such as: coat color variation (MITF, KIT, ASIP), growth (IGF2, IGF2R, HRAS, FGFR3) and milk composition (PITX2). Several other putative genes involved in the formation of populations, which might have been selected for adaptation to the alpine environment, are highlighted. The results provide a contemporary background for the management of genetic diversity in local Swiss goat breeds.  相似文献   

7.
Guanzhong (= 321) and Boer (= 191) goat breeds were used to detect single nucleotide polymorphisms (SNPs) in the coding regions of the prolactin receptor (PRLR) gene by DNA sequencing and PCR‐RFLP. Two SNPs (c.1457G>A and c.1645G>A) were identified that caused amino acid variations p.Ser485Asn and p.Val548Met respectively. Statistical results indicated that the c.1457G>A and c.1645G>A SNPs were significantly associated with litter size in Boer and Guanzhong goat breeds. Further analysis revealed that combined genotype C4 (GGGG) and haplotype G‐G were better than the others for litter size in both goat breeds. These results might contribute to goat genetic resources and breeding.  相似文献   

8.
The objective of genome mapping is to achieve valuable insight into the connection between gene variants (genotype) and observed traits (phenotype). Part of that objective is to understand the selective forces that have operated on a population. Finding links between genotype–phenotype changes makes it possible to identify selective sweeps by patterns of genetic variation and linkage disequilibrium. Based on Illumina 50KSNP chip data, two approaches, XP‐EHH (cross‐population extend haplotype homozygosity) and FST (fixation index), were carried out in this research to identify selective sweeps in the genome of three Iranian local sheep breeds: Baluchi (= 86), Lori‐Bakhtiari (= 45) and Zel (= 45). Using both methods, 93 candidate genomic regions were identified as harboring putative selective sweeps. Bioinformatics analysis of the genomic regions showed that signatures of selection related to multiple candidate genes, such as HOXB9, HOXB13, ACAN, NPR2, TRIL, AOX1, CSF2, GHR, TNS2, SPAG8, HINT2, ALS2, AAAS, RARG, SYCP2, CAV1, PPP1R3D, PLA2G7, TTLL7 and C20orf10, that play a role in skeletal system and tail, sugar and energy metabolisms, growth, reproduction, immune and nervous system traits. Our findings indicated diverse genomic selection during the domestication of Iranian sheep breeds.  相似文献   

9.
Since mutations on POU1F1 gene possibly resulted in deficiency of GH, PRL, TSH and POU1F1, this study revealed the polymorphism of goat POU1F1-AluI locus and analyzed the distribution of alleles on 13 indigenous Chinese goat breeds. The PCR-RFLP analysis showed the predominance of TT genotype and the frequencies of allele T varied from 0.757 to 0.976 in the analyzed populations (SBWC, Bo, XH and HM). Further study, distributions of genotypic and allelic frequencies at this locus were found to be significantly different among populations based on a χ2-test (P < 0.001), suggesting that the breed factor significantly affected the molecular genetic character of POU1F1 gene. The genetic diversity analysis revealed that Chinese indigenous populations had a wide spectrum of genetic diversity in goat POU1F1-AluI locus. However, the ANOVA analysis revealed no significant differences for gene homozygosty, gene heterozygosty, effective allele numbers and PIC (polymorphism information content) among meat, dairy and cashmere utility types (P > 0.05), suggesting that goat utility types had no significant effect on the spectrum of genetic diversity. X. Y. Lan and M. J. Li equally contributed to this work.  相似文献   

10.
L. Ming  L. Yi  R. Sa  Z. X. Wang  Z. Wang  R. Ji 《Animal genetics》2017,48(2):217-220
The Bactrian camel includes various domestic (Camelus bactrianus) and wild (Camelus ferus) breeds that are important for transportation and for their nutritional value. However, there is a lack of extensive information on their genetic diversity and phylogeographic structure. Here, we studied these parameters by examining an 809‐bp mtDNA fragment from 113 individuals, representing 11 domestic breeds, one wild breed and two hybrid individuals. We found 15 different haplotypes, and the phylogenetic analysis suggests that domestic and wild Bactrian camels have two distinct lineages. The analysis of molecular variance placed most of the genetic variance (90.14%, < 0.01) between wild and domestic camel lineages, suggesting that domestic and wild Bactrian camel do not have the same maternal origin. The analysis of domestic Bactrian camels from different geographical locations found there was no significant genetic divergence in China, Russia and Mongolia. This suggests a strong gene flow due to wide movement of domestic Bactrian camels.  相似文献   

11.
利用PCR-RFLP技术对西农萨能奶山羊、关中奶山羊、陕南白山羊、安哥拉山羊和波尔山羊5个山羊品种的170个个体的αs 2酪蛋白(CSN1S2)基因进行多态性分析,结果表明:扩增大小为310 bp的片段经限制性内切酶Alw26I酶切后表现多态,且5个山羊品种该基因座位均处于Hardy-Weinberg平衡状态。西农萨能奶山羊、关中奶山羊、陕南白山羊、安哥拉山羊和波尔山羊的基因杂合度/有效等位基因数/Shaanon信息熵/PIC值分别为0.1589/1.1889/0.2955/0.1463, 0.4114/1.6981/0.6017/0.5171,0.1653/1.1980/0.3046/0.1516,0.0646/1.0691/0.1463/0.0625,0.0541/1.0572/ 0.1270/ 0.0526。分析结果显示,关中奶山羊的遗传多样性最丰富,表现为高度多态;其次是西农萨能奶山羊和陕南白山羊,而安哥拉山羊和波尔山羊的遗传变异程度最低。  相似文献   

12.
Sweet cherry (Prunus avium L.) trees are both economically important fruit crops but also important components of natural forest ecosystems in Europe, Asia and Africa. Wild and domesticated trees currently coexist in the same geographic areas with important questions arising on their historical relationships. Little is known about the effects of the domestication process on the evolution of the sweet cherry genome. We assembled and annotated the genome of the cultivated variety “Big Star*” and assessed the genetic diversity among 97 sweet cherry accessions representing three different stages in the domestication and breeding process (wild trees, landraces and modern varieties). The genetic diversity analysis revealed significant genome‐wide losses of variation among the three stages and supports a clear distinction between wild and domesticated trees, with only limited gene flow being detected between wild trees and domesticated landraces. We identified 11 domestication sweeps and five breeding sweeps covering, respectively, 11.0 and 2.4 Mb of the P. avium genome. A considerable fraction of the domestication sweeps overlaps with those detected in the related species, Prunus persica (peach), indicating that artificial selection during domestication may have acted independently on the same regions and genes in the two species. We detected 104 candidate genes in sweep regions involved in different processes, such as the determination of fruit texture, the regulation of flowering and fruit ripening and the resistance to pathogens. The signatures of selection identified will enable future evolutionary studies and provide a valuable resource for genetic improvement and conservation programs in sweet cherry.  相似文献   

13.
The heterogeneity of climate and different agro-ecological conditions in Iran have resulted in development of 27 indigenous sheep breeds. Wild Asiatic mouflon (Ovis orientalis) is believed to be the ancestor of Iranian sheep. Evaluation of genetic diversity and population structure within and among domestic breeds has important implications for animal breeding programs and genetic resources management. Based on 50K SNP genotype data, we studied the genetic diversity of five indigenous Iranian sheep breeds: Afshari (n = 37), Moghani (n = 34), Qezel (n = 35), Zel (n = 46) and Lori-Bakhtiari (n = 46), and Asiatic mouflon (n = 8) sampled from Iran. Furthermore, genetic diversity and the breed admixture of Iranian sheep were assessed on a larger geographic scale using a reference panel comprising: three indigenous Afghan breeds – Arabi (n = 15), Balouchi (n = 15) and Gadik (n = 15); three indigenous breeds from Turkey and Cyprus – Cyprus Fat Tail (n = 30), Karakas (n = 18) and Norduz (n = 20); and three commercial European breeds – Suffolk (n = 19), Comisana (n = 24) and Engadine Red Sheep (n = 24). The results revealed that the investigated breeds are divided into five genetically distinct clusters according to their geographic origin. Afshari was closest to the local mouflon population and showed signs of mouflon admixture. Qezel was identified as a hybrid sheep breed. Much evidence supported the Afghan breeds being identical. Inbreeding values, which were estimated based on ROHs, were highest for Suffolk (FROH = 0.0544) and lowest for Balouchi (FROH = 0.0078). In conclusion, analysis of selected breeds from neighboring countries along with Asiatic mouflon gave a deeper insight into the evolutionary history and origin of Iranian sheep with important implications for future breed management.  相似文献   

14.
PCR–SSCP and DNA sequencing methods were employed to screen the genetic variation of vascular endothelial growth factor (VEGF) gene in 675 individuals belonging to three Chinese indigenous cattle breeds including Qinchuan (QC), Jiaxian Red (JX) and Nanyang (NY) breed. Three new single nucleotide polymorphisms (SNPs) (g.6765T > C ss130456744, g.6860A > G ss130456745, g.6893T > C ss130456746) were found. One SNP (g.6765T > C) was detected in intron II of VEGF gene in all three breeds and the other two SNPs (g.6860A > G, g.6893T > C) were in exon III of VEGF gene only in NY breed. Among them, two synonymous mutations of exon III were identified: CCA (Pro) > CCG (Pro) at position 65th amino acid (aa) and TGT (Cys) > TGC (Cys) at position 76th aa of VEGF(190aa) in NY breed. Our study revealed that NY breed exhibited the most abundant genetic diversity in VEGF gene within the three cattle breeds. Furthermore, JX cattle breed was more similar to QC breed than to NY breed. Our genetic data in the present study supported the hypothesis that the distribution pattern of Chinese indigenous cattle breeds was closely related to the geographical and climatic background again.  相似文献   

15.
Introgression of genomic variation between and within related crop species is a significant evolutionary approach for population differentiation, genome reorganization and trait improvement. Using the Illumina Infinium Brassica 60K SNP array, we investigated genomic changes in a panel of advanced generation new‐type Brassica napus breeding lines developed from hundreds of interspecific crosses between 122 Brassica rapa and 74 Brassica carinata accessions, and compared them with representative accessions of their three parental species. The new‐type B. napus population presented rich genetic diversity and abundant novel genomic alterations, consisting of introgressions from B. rapa and B. carinata, novel allelic combinations, reconstructed linkage disequilibrium patterns and haplotype blocks, and frequent deletions and duplications (nonrandomly distributed), particularly in the C subgenome. After a much shorter, but very intensive, selection history compared to traditional B. napus, a total of 15 genomic regions with strong selective sweeps and 112 genomic regions with putative signals of selective sweeps were identified. Some of these regions were associated with important agronomic traits that were selected for during the breeding process, while others were potentially associated with restoration of genome stability and fertility after interspecific hybridization. Our results demonstrate how a novel method for population‐based crop genetic improvement can lead to rapid adaptation, restoration of genome stability and positive responses to artificial selection.  相似文献   

16.
A set of eleven pig breeds originating from six European countries, and including a small sample of wild pigs, was chosen for this study of genetic diversity. Diversity was evaluated on the basis of 18 microsatellite markers typed over a total of 483 DNA samples collected. Average breed heterozygosity varied from 0.35 to 0.60. Genotypic frequencies generally agreed with Hardy-Weinberg expectations, apart from the German Landrace and Schwäbisch-Hällisches breeds, which showed significantly reduced heterozygosity. Breed differentiation was significant as shown by the high among-breed fixation index (overall FST = 0.27), and confirmed by the clustering based on the genetic distances between individuals, which grouped essentially all individuals in 11 clusters corresponding to the 11 breeds. The genetic distances between breeds were first used to construct phylogenetic trees. The trees indicated that a genetic drift model might explain the divergence of the two German breeds, but no reliable phylogeny could be inferred among the remaining breeds. The same distances were also used to measure the global diversity of the set of breeds considered, and to evaluate the marginal loss of diversity attached to each breed. In that respect, the French Basque breed appeared to be the most "unique" in the set considered. This study, which remains to be extended to a larger set of European breeds, indicates that using genetic distances between breeds of farm animals in a classical taxonomic approach may not give clear resolution, but points to their usefulness in a prospective evaluation of diversity.  相似文献   

17.
The Piétrain pig originates from the Belgian village Piétrain some time between 1920 and 1950. Owing to its superior conformation, the Piétrain has spread worldwide since the 1960s. As initial population sizes were limited and close inbreeding was commonplace, the breed’s genetic diversity has been questioned. Therefore, this study examines Piétrain breed substructure, diversity and selection signatures using SNP data in comparison with Duroc, Landrace and Large White populations. Principal component analysis indicated three subpopulations, and FST analysis showed that US Piétrains differ most from European Piétrains. Average inbreeding based on runs of homozygosity (ROH) segments larger than 4 Mb ranged between 16.7 and 20.9%. The highest chromosomal inbreeding levels were found on SSC8 (42.7%). ROH islands were found on SSC8, SSC15 and SSC18 in all Piétrain populations, but numerous population-specific ROH islands were also detected. Moreover, a large ROH island on SSC8 (34–126 Mb) appears nearly fixed in all Piétrain populations, with a unique genotype. Chromosomal ROH patterns were similar between Piétrain populations. This study shows that Piétrain populations are genetically diverging, with at least three genetically distinct populations worldwide. Increasing genetic diversity in local Piétrain populations by introgression from other Piétrain populations seems to be only limited. Moreover, a unique 90 Mb region on SSC8 appeared largely fixed in the Piétrain breed, indicating that fixation was already present before the 1960s. We believe that strong selection and inbreeding during breed formation fixed these genomic regions in Piétrains. Finally, we hypothesize that independent coat color selection may have led to large ROH pattern similarities on SSC8 between unrelated pig breeds.  相似文献   

18.
Lan X  Zhao H  Wu C  Hu S  Pan C  Lei C  Chen H 《Molecular biology reports》2012,39(4):4981-4988
In this study, genetic variability at codon 42 within prion protein (PRNP) gene and its associations with production traits were investigated in 2002 goats from four Chinese domestic breeds. The frequencies of allele “A” ranged from 0.353 to 0.562 in analyzed goat breeds with Hardy–Weinberg equilibrium (P > 0.05) except Xinong Sannen (XNSN) dairy breed. The establishment of relationships between different genotypes and growth traits was performed in Inner Mongolia white Cashmere (IMWC) breed and revealed an association of the polymorphism with body weight at 7-year-old goats (P = 0.033). The individuals with genotype GG showed heavier body weight than those with genotype AA. Moreover, association analysis detected two significant associations between different genotypes and cashmere yield and fiber length in IMWC breed (P = 0.009, P = 0.048, respectively). In addition, three significant associations of different genotypes with density of milk (a.m. and p.m.), solids-not-fat of milk (P = 0.013, P = 0.009 and P = 0.002), respectively, were found in XNSN breed. Genotype GG had better milk quality than others. These findings suggested that the polymorphism of codon 42 within PRNP was a useful DNA marker for eliminating or selecting excellent individuals in relation to production traits in marker-assist selection breeding of goat.  相似文献   

19.
A dataset consisting of 787 animals with high‐density SNP chip genotypes (346 774 SNPs) and 939 animals with medium‐density SNP chip genotypes (33 828 SNPs) from eight indigenous Swiss sheep breeds was analyzed to characterize population structure, quantify genomic inbreeding based on runs of homozygosity and identify selection signatures. In concordance with the recent known history of these breeds, the highest genetic diversity was observed in Engadine Red sheep and the lowest in Valais Blacknose sheep. Correlation between FPED and FROH was around 0.50 and thereby lower than that found in similar studies in cattle. Mean FROH estimates from medium‐density data and HD data were highly correlated (0.95). Signatures of selection and candidate gene analysis revealed that the most prominent signatures of selection were found in the proximity of genes associated with body size (NCAPG, LCORL, LAP3, SPP1, PLAG1, ALOX12, TP53), litter size (SPP1), milk production (ABCG2, SPP1), coat color (KIT, ASIP, TBX3) and horn status (RXFP2). For the Valais Blacknose sheep, the private signatures in proximity of genes/QTL influencing body size, coat color and fatty acid composition were confirmed based on runs of homozygosity analysis. These private signatures underline the genetic uniqueness of the Valais Blacknose sheep breed. In conclusion, we identified differences in the genetic make‐up of Swiss sheep breeds, and we present relevant candidate genes responsible for breed differentiation in locally adapted breeds.  相似文献   

20.
Genetic diversity within and between breeds (and lines) of pigs was investigated. The sample comprised 68 European domestic breeds (and lines), including 29 local breeds, 18 varieties of major international breeds, namely Duroc, Hampshire, Landrace, Large White and Piétrain, and 21 commercial lines either purebred or synthetic, to which the Chinese Meishan and a sample of European wild pig were added. On average 46 animals per breed were sampled (range 12–68). The genetic markers were microsatellites (50 loci) and AFLP (amplified fragment length polymorphism, 148 loci). The analysis of diversity showed that the local breeds accounted for 56% of the total European between-breed microsatellite diversity, and slightly less for AFLP, followed by commercial lines and international breeds. Conversely, the group of international breeds contributed most to within-breed diversity, followed by commercial lines and local breeds. Individual breed contributions to the overall European between- and within-breed diversity were estimated. The range in between-breed diversity contributions among the 68 breeds was 0.04–3.94% for microsatellites and 0.24–2.94% for AFLP. The within-breed diversity contributions varied very little for both types of markers, but microsatellite contributions were negatively correlated with the between-breed contributions, so care is needed in balancing the two types of contribution when making conservation decisions. By taking into account the risks of extinction of the 29 local breeds, a cryopreservation potential (priority) was estimated for each of them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号