首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Atrial natriuretic peptide in the heart and pancreas   总被引:1,自引:0,他引:1  
We used antisera to pure atrial natriuretic peptide to localise this peptide by immunocytochemistry in rat and human tissue. We showed that both rat and human atrial cardiocytes gave a positive reaction while ventricular cardiocytes were consistently negative. Peripheral islet cells in rat but not in human pancreas also showed positive staining for ANP. We showed by double labelling techniques that the ANP was present in the glucagon containing cells.  相似文献   

3.
4.
5.
Cardiomyocytes of vertebrates combine contractile and endocrine functions. They synthesize and secrete atrial natriuretic peptide (ANP), which is localized in their specific granules. The presence of ANP has been shown in some tissues of invertebrates, including the heart of molluscs. We have studied localization of ANP in cells of the snail heart. METHOD: The atrial and ventricular tissues of the snail Helix pomatia were studied by electron microscope immunocytochemistry, using anti-ANP antibodies. ANP-immunoreactivity has been detected in granules of granular cells located on the luminal surface of the snail myocardium. These cells are abundant in the atrium being very rare in the ventricle. Granular cells at different stages of maturation were revealed. Immature granular cells have light granules of moderate size with homogeneous tight content, while mature granular cells are huge in size and all their granules are fused together. The material of these granules loosens up and almost completely fills up the cytoplasm. No ANP-immunoreactivity was observed in muscle cells or nerve fibers. A possible origin of granular cells from the cardiac endothelial cells is discussed. The molluscan heart, similar to that of vertebrates, is a bifunctional organ. However, contrary to the heart of vertebrates, in the molluscan heart contractile and endocrine functions are separated between different types of cells.  相似文献   

6.
The concentration of plasma immunoreactive atrial natriuretic peptide is positively associated with right atrial and pulmonary capillary wedge pressure, suggesting that blood volume and hence atrial pressure govern its release. Expansion of plasma volume is a central physiological adjustment in normal pregnancy. Conversely, pregnancies complicated by pre-eclampsia are associated with a reduction in plasma volume and central venous pressure. A study was therefore undertaken to test the hypothesis that plasma atrial natriuretic peptide concentrations are low in pre-eclampsia owing to deficient secretion. Concentrations of the peptide were measured by a specific radioimmunoassay. The mean plasma immunoreactive atrial natriuretic peptide concentration in healthy pregnant women (n = 22; third trimester) was higher (56 (1 SD 29) ng/l) than in 25 young, non-pregnant controls (37 (19) ng/l). Concentrations in patients suffering from mild pre-eclampsia (n = 9) were higher (127 (60) ng/l) than in normal pregnant women, and in patients with severe pre-eclampsia (n = 6) concentrations were higher still (392 (225) ng/l). Despite failure of plasma volume expansion and low central venous and pulmonary capillary wedge pressures in pre-eclampsia this condition is associated with greatly increased plasma concentrations of plasma immunoreactive atrial natriuretic peptide, which increase still further with the severity of the disease. These findings are clear evidence that atrial pressure may not be the principal determinant of the release of the natriuretic peptide in pre-eclampsia.  相似文献   

7.
To study atrial natriuretic peptide (ANP) physiology in the chronically catheterized pregnant sheep model we developed a heterologous radioimmunoassay for ovine ANP using an antiserum raised against 1-28 human ANP. This antiserum (Tor I) is specific for the aminoterminus of the human ANP molecule and shows little cross reaction with any carboxyterminus ANP fragments. Ovine ANP immunoreactivity was characterized using this antiserum and a commercially available carboxyterminus ANP antiserum obtained from Peninsula Laboratories. Each antiserum detected 2 peaks of immunoreactivity in ovine atrial extracts chromatographed on a Biogel P-10 column. The minor peak migrated at a position close to 125I-human ANP whereas the major peak represented a larger molecular weight species of ANP. Examination of gel filtration eluates of ovine plasma extracts showed one immunoreactive ANP peak using the Tor I assay system and 2 peaks with the Peninsula Laboratories assay. Plasma immunoreactive ANP levels were determined in 9 sheep using both radioimmunoassay systems. Mean (+/- SEM) levels were similar using the Peninsula Laboratories and the Tor I assay systems (57 +/- 8 pg/ml versus 43 +/- 4 pg/ml, P greater than 0.05). Using the Tor I antiserum, fetal plasma immunoreactive ANP levels were found to be significantly higher than maternal levels (188 +/- 17 versus 48 +/- 8 pg/ml, P less than 0.01) whereas pregnant and nonpregnant adult sheep had similar plasma immunoreactive ANP levels (48 +/- 8 versus 43 +/- 4 pg/ml, P greater than 0.05). Disappearance curves of synthetic human ANP from the plasma of maternal and fetal sheep were assessed using both immunoassay systems and found to be similar.  相似文献   

8.
Removal of exogenously administered rat ANF (99-126) (rANF) from the rabbit coronary vasculature was investigated. Rabbit hearts were perfused using a modified Langendorff technique and ANF concentrations in the perfusate were measured by a radio-receptor assay. Under these conditions no major degradation of ANF was observed. On perfusion, however, the heart liberated large amounts of ANF. This release peaked 15 minutes after the initiation of perfusion, (685 + 220 pM) and then fell to a sustained basal level (305 + 80 pM) after 45 minutes. Although an increase in the perfusate flow rate reduced the ANF concentration, there was no significant difference in the rate of ANF release between the two flow rates used. After momentary cessation of flow ANF concentration fell to a significantly lower level, however, once again no significant change in rate of release occurred. These results suggest that the heart is not a major site of ANF degradation and that alterations in flow rate through the coronary vascular bed can cause changes in amounts of ANF released.  相似文献   

9.
Atrial natriuretic peptide in hypoxia   总被引:4,自引:0,他引:4  
Chen YF 《Peptides》2005,26(6):1068-1077
A growing number of mammalian genes whose expression is inducible by hypoxia have been identified. Among them, atrial natriuretic peptide (ANP) synthesis and secretion is increased during hypoxic exposure and plays an important role in the normal adaptation to hypoxia and in the pathogenesis of cardiopulmonary diseases, including chronic hypoxia-induced pulmonary hypertension and vascular remodeling, and right ventricular hypertrophy and right heart failure. This review discusses the roles of ANP and its receptors in hypoxia-induced pulmonary hypertension. We and other investigators have demonstrated that ANP gene expression is enhanced by exposure to hypoxia and that the ANP so generated protects against the development of hypoxic pulmonary hypertension. Results also show that hypoxia directly stimulates ANP gene expression and ANP release in cardiac myocytes in vitro. Several cis-responsive elements of the ANP promoter are involved in the response to changes in oxygen tension. Further, the ANP clearance receptor NPR-C, but not the biological active NPR-A and NPR-B receptors, is downregulated in hypoxia adapted lung. Hypoxia-sensitive tyrosine kinase receptor-associated growth factors, including fibroblast growth factor (FGF) and platelet derived growth factor (PDGF)-BB, but not hypoxia per se, inhibit NPR-C gene expression in pulmonary arterial smooth muscle cells in vitro. The reductions in NPR-C in the hypoxic lung retard the clearance of ANP and allow more ANP to bind to biological active NPR-A and NPR-B in the pulmonary circulation, relaxing preconstricted pulmonary vessels, reducing pulmonary arterial pressure, and attenuating the development of hypoxia-induced pulmonary hypertension and vascular remodeling.  相似文献   

10.
The release of immunoreactive (ir-) rat atrial natriuretic peptide (rANP) with volume expansion in in situ retrograde perfused rat heart was examined. The volume expansion induced by the infusion of the perfusion medium into the right atrium increased the mean right atrial pressure and the ir-rANP release without changing the rate of the heart beat. There was a significant correlation between the peak values of ir-rANP release and those of mean atrial pressure. The bilateral cervical vagotomy did not effect the ir-rANP release induced by the volume expansion. Therefore, it is highly likely that the stimulatory effect of volume expansion on rANP release is due to, at least in part, the atrial distension accompanied by an increase in mean atrial pressure, not involving a vagal system.  相似文献   

11.
Atrial natriuretic peptide hormonal system in plants.   总被引:1,自引:0,他引:1  
To determine if atrial natriuretic peptides are present in plants as well as animals, where they are important for water and sodium metabolism, the leaves and stems of the Florida Beauty (Dracena godseffiana) were examined. The N-terminus consisting of amino acids (a.a.) 1-98 (i.e., pro ANF 1-98), the mid portion of the N-terminus (a.a. 31-67; pro ANF 31-67), and C-terminus (a.a. 99-126; ANF) of the 126 a.a. atrial natriuretic factor (ANF) prohormone were all present in the leaves and stems of this plant. The concentrations of pro ANF 1-98, pro ANF 31-67 and ANF-like peptides of 120 +/- 20, 123 +/- 21, and 129 +/- 20 ng/g of plant tissue in leaves and 109 +/- 20, 96 +/- 21, and 124 +/- 18 ng/g of tissue, respectively, in the stems were lower (P less than 0.05) than their concentrations in rat (Rattus norvegicus) heart atria of 196 +/- 40, 192 +/- 28, and 189 +/- 15 ng/g of tissue respectively, but higher (P less than 0.001) than their respective concentrations of 4.3 +/- 1.4, 4.1 +/- 1.2, and 3.9 +/- 1 ng/g of rat heart ventricular tissue. We conclude that the atrial natriuretic peptide-like hormonal system is present in the plant kingdom as well as in the animal kingdom.  相似文献   

12.
We elucidated the role of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in human and bovine adrenocortical steroidogenesis. The urinary volume, sodium excretion and cyclic GMP (cGMP) excretion and plasma cGMP were markedly increased by the synthetic alpha-human ANP (alpha-hANP) infusion in healthy volunteers. Plasma arginine vasopressin (AVP) and aldosterone levels were significantly suppressed. Both ANP and BNP inhibited aldosterone, 19-OH-androstenedione, cortisol and DHEA secretion dose-dependently and increased the accumulation of intracellular cGMP in cultured human and bovine adrenal cells. alpha-hANP significantly suppressed P450scc-mRNA in cultured bovine adrenal cells stimulated by ACTH. Autoradiography and affinity labeling of [125I]hANP, and Scatchard plot demonstrated a specific ANP receptor in bovine and human adrenal glands. Purified ANP receptor from bovine adrenal glands identified two distinct types of ANP receptors, one is biologically active, the other is silent. A specific BNP receptor was also identified on the human and bovine adrenocortical cell membranes. The binding sites were displaced by unlabelled ANP as well as BNP. BNP showed an effect possibly via a receptor which may be shared with ANP. The mean basal plasma alpha-hANP level was 25 +/- 5 pg/ml in young men. We confirmed the presence of ANP and BNP in bovine and porcine adrenal medulla. Plasma or medullary ANP or BNP may directly modulate the adrenocortical steroidogenesis. We demonstrated that the lack of inhibitory effect of alpha-hANP on cultured aldosterone-producing adenoma (APA) cells was due to the decrease of ANP-specific receptor, which caused the loss of suppression of aldosterone and an increase in intracellular cGMP.  相似文献   

13.
Atrial natriuretic peptide (ANP) and nitric oxide (NO) induce diuresis, natriuresis and diminish vascular tone. Our previous studies showed NO system is involved in ANP hypotensive effect. The aim was to investigate ANP effects on renal and cardiac NO-synthase (NOS) activity. Rats were divided into two groups: group I, infused with saline (1 h, 0.05 ml/min); group II, received ANP bolus (5 microg/kg)+ANP infusion (1 h, 0.2 microg/kg x min). NADPH-diaphorase activity (NADPH-d) was determined in kidney and heart. NOS catalytic activity was determined in renal medulla and cortex and cardiac atria and ventricle by measuring the conversion of l-[U(14)C]-arginine to l-[U(14)C]-citrulline. In group I, NOS activity was determined in basal conditions and plus 1 microM ANP and in group II, NOS activity was determined in basal conditions. NADPH-d was higher in group II than in group I in glomeruli, proximal tubule, cortical and medullar collecting duct, right atria and left ventricle. NOS activity was increased by in vitro ANP addition and, in vivo, ANP infusion in all the studied tissues. ANP treatment increases renal and cardiac NO synthesis. This effect would be independent on the hemodynamic changes induced by ANP. The activation of NO pathway would be one of the mechanisms involved in diuretic, natriuretic and hypotensive effects of ANP.  相似文献   

14.
Antagonistic control of cell fates by JNK and p38-MAPK signaling   总被引:2,自引:0,他引:2  
During the development and organogenesis of all multicellular organisms, cell fate decisions determine whether cells undergo proliferation, differentiation, or aging. Two independent stress kinase signaling pathways, p38-MAPK, and JNKs, have evolved that relay developmental and environmental cues to determine cell responses. Although multiple stimuli can activate these two stress kinase pathways, the functional interactions and molecular cross-talks between these common second signaling cascades are poorly elucidated. Here we report that JNK and p38-MAPK pathways antagonistically control cellular senescence, oncogenic transformation, and proliferation in primary mouse embryonic fibroblasts (MEFs). Similarly, genetic inactivation of the JNK pathway results in impaired proliferation of fetal hepatoblasts in vitro and defective adult liver regeneration in vivo, which is rescued by inhibition of the p38-MAPK pathway. Thus, the balance between the two stress-signaling pathways, MKK7-JNK and MKK3/6-p38-MAPK, determines cell fate and links environmental and developmental stress to cell cycle arrest, senescence, oncogenic transformation, and adult tissue regeneration.  相似文献   

15.
Summary The distribution of binding sites for atrial natriuretic peptide in cardiac ventricles of several mammalian species, including rat and human, was determined by in vitro autoradiography. The results revealed a unique anatomic localization of atrial natriuretic peptide binding sites to endomural vessels (Thebesian vessels), which communicate directly with the ventricular chambers. Digital image analysis indicated that these vascular channels possessed binding site densities comparable to those of the renal glomeruli a major target site for circulating atrial natriuretic peptide. In contrast, no specific labeling of branches of the coronary arteries and veins was detected. The discrete localization of atrial natriuretic peptide binding sites to this primitive cardiac circulatory system allows speculation as to the role of this hormone in the regulation of endocardialcirculation during cardiac development, normal ventricular function, and in coronary insufficiency.  相似文献   

16.
Atrial natriuretic peptide in acute mountain sickness   总被引:2,自引:0,他引:2  
To test the hypothesis that elevated atrial natriuretic peptide (ANP) may be involved in altered fluid homeostasis at high altitude, we examined 25 mountaineers at an altitude of 550 m and 6, 18, and 42 h after arrival at an altitude of 4,559 m, which was climbed in 24 h starting from 3,220 m. In 14 subjects, symptoms of acute mountain sickness (AMS) were absent or mild (group A), whereas 11 subjects had severe AMS (group B). Fluid intake was similar in both groups. In group B, urine flow decreased from 61 +/- 8 (base line) to 36 +/- 3 (SE) ml/h (maximal decrease) (P less than 0.05) and sodium excretion from 7.9 +/- 0.9 to 4.6 +/- 0.7) mmol.l-1.h-1 (P less than 0.05); ANP increased from 31 +/- 4 to 87 +/- 26 pmol/l (P less than 0.001), plasma aldosterone from 191 +/- 27 to 283 +/- 55 pmol/l (P less than 0.01 compared with group A), and antidiuretic hormone (ADH) from 1.0 +/- 0.1 to 2.9 +/- 1.2 pmol/l (P = 0.08 compared with group A). These variables did not change significantly in group A, with the exception of a decrease in plasma aldosterone from 189 +/- 19 to 111 +/- 17 pmol/l (P less than 0.01). There were no measurable effects of elevated ANP on natriuresis, cortisol, or blood pressure. The reduced diuresis in AMS may be explained by increased plasma aldosterone and ADH overriding the expected renal action of ANP. The significance of elevated ANP in AMS remains to be established.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Atrial natriuretic peptide (ANP) was measured in the plasma of 192 normal infants and children aged 1 day to 18 years. Plasma ANP was high during postnatal adaptation, particularly in premature infants. In 96 infants and children aged 4 months to 18 years, plasma ANP was similar to values obtained in 7 healthy adult volunteers (23.9 +/- 11.9 vs. 25.7 +/- 4.6 fmol/ml). There was no significant relationship between ANP and age. ANP is elevated about twofold in full-term neonates being 3-4 days of age, and returned to normal thereafter. It is concluded that ANP is raised during the postnatal adaptation. This hormone is possibly involved in the postnatal volume contraction and may antagonize vasoconstrictor hormones that are elevated during the postnatal period.  相似文献   

18.
19.
We have investigated the vasorelaxant effect of atrial natriuretic peptide (ANP) on isolated non-contracted aorta from coarctation hypertensive rats (HR) and the role of endothelium in this vasorelaxant action. After 7-14 days of surgery, mean blood pressure was higher (P < 0.01) in HR compared with sham operated rats (SR), used as the control. ANP (10(-6) mol/l) significantly lowered basal tone in previously unstimulated HR thoracic aortic rings; however, it had no effect in HR abdominal aorta or in SR abdominal and thoracic aorta. Endothelial destruction potentiated the vasorelaxant effect of ANP on basal tone in HR thoracic aorta. A similar potentiation of the ANP-response was observed by pre-treatment with N(G)-nitro-L-arginine methyl ester (L-NAME, 3 x 10(-4) mol/l) or methylene blue (2 x 10(-5) mol/l) in unrubbed HR thoracic aorta. Treatment with calcium-free Krebs + EGTA (2 x 10(-3) mol/l) + sodium nitroprusside (10(-5) mol/l) or calcium-free Krebs significantly decreased basal tone and abolished ANP-response. These effects were observed only in HR thoracic aorta. Similarly, staurosporine (10(-7) mol/l) and calphostin C (10(-6) mol/l), inhibitors of protein kinase C (PKC), diminished basal tone and abolished the ANP-response in HR thoracic aorta. Acetylcholine (10(-6) mol/l) had a small but significant action on the basal tone of unrubbed HR thoracic aorta. These results demonstrate that ANP has a vasorelaxant effect on aortic basal tone when the vessel is exposed to high blood pressure. Inhibition of ANP effects on basal tone by calcium-free Krebs and PKC antagonists suggests that the HR aorta increases Ca2+-active tone, that modifies the response of vascular smooth muscle to the vasodilating hormone ANP.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号