首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Through pattern matching of the cytochrome c heme-binding site (CXXCH) against the genome sequence of Shewanella oneidensis MR-1, we identified 42 possible cytochrome c genes (27 of which should be soluble) out of a total of 4758. However, we found only six soluble cytochromes c in extracts of S. oneidensis grown under several different conditions: (1) a small tetraheme cytochrome c, (2) a tetraheme flavocytochrome c-fumarate reductase, (3) a diheme cytochrome c4, (4) a monoheme cytochrome c5, (5) a monoheme cytochrome c', and (6) a diheme bacterial cytochrome c peroxidase. These cytochromes were identified either through N-terminal or complete amino acid sequence determination combined with mass spectroscopy. All six cytochromes were about 10-fold more abundant when cells were grown at low than at high aeration, whereas the flavocytochrome c-fumarate reductase was specifically induced by anaerobic growth on fumarate. When adjusted for the different heme content, the monoheme cytochrome c5 is as abundant as are the small tetraheme cytochrome and the tetraheme fumarate reductase. Published results on regulation of cytochromes from DNA microarrays and 2D-PAGE differ somewhat from our results, emphasizing the importance of multifaceted analyses in proteomics.  相似文献   

2.
The bacteria belonging to the genus Shewanella are facultative anaerobes that utilize a variety of terminal electron acceptors which includes soluble and insoluble metal oxides. The tetraheme c-type cytochrome isolated during anaerobic growth of Shewanella frigidimarina NCIMB400 ( Sfc) contains 86 residues and is involved in the Fe(III) reduction pathways. Although the functional properties of Sfc redox centers are quite well described, no structures are available for this protein. In this work, we report the solution structure of the reduced form of Sfc. The overall fold is completely different from those of the tetraheme cytochromes c 3 and instead has similarities with the tetraheme cytochrome recently isolated from Shewanella oneidensis ( Soc). Comparison of the tetraheme cytochromes from Shewanella shows a considerable diversity in their primary structure and heme reduction potentials, yet they have highly conserved heme geometry, as is the case for the family of tetraheme cytochromes isolated from Desulfovibrio spp.  相似文献   

3.
The tetrahaem cytochrome isolated during anaerobic growth of Shewanella frigidimarina NCIMB400 is a small protein (86 residues) involved in electron transfer to Fe(III), which can be used as a terminal respiratory oxidant by this bacterium. A 3D solution structure model of the reduced form of the cytochrome has been determined using NMR data in order to determine the relative orientation of the haems. The haem core architecture of S. frigidimarina tetrahaem cytochrome differs from that found in all small tetrahaem cytochromes c(3) so far isolated from strict anaerobes, but has some similarity to the N-terminal cytochrome domain of flavocytochrome c(3) isolated from the same bacterium. NMR signals obtained for the four haems of S. frigidimarina tetrahaem cytochrome at all stages of oxidation were cross-assigned to the solution structure using the complete network of chemical exchange connectivities. Thus, the order in which each haem in the structure becomes oxidised was determined.  相似文献   

4.
Flavocytochrome c from the Gram-negative, food-spoiling bacterium Shewanella putrefaciens is a soluble, periplasmic fumarate reductase. We have isolated the gene encoding flavocytochrome c and determined the complete DNA sequence. The predicted amino acid sequence indicates that flavocytochrome c is synthesized with an N-terminal secretory signal sequence of 25 amino acid residues. The mature protein contains 571 amino acid residues and consists of an N-terminal cytochrome domain, of about 117 residues, with four heme attachment sites typical of c-type cytochromes and a C-terminal flavoprotein domain of about 454 residues that is clearly related to the flavoprotein subunits of fumarate reductases and succinate dehydrogenases from bacterial and other sources. A second reading frame that may be cotranscribed with the flavocytochrome c gene exhibits some similarity with the 13-kDa membrane anchor subunit of Escherichia coli fumarate reductase. The sequence of the flavoprotein domain demonstrates an even closer relationship with the product of the yeast OSM1 gene, mutations in which result in sensitivity to high osmolarity. These findings are discussed in relation to the function of flavocytochrome c.  相似文献   

5.
The genus Shewanella produces a unique small tetraheme cytochrome c that is implicated in the iron oxide respiration pathway. It is similar in heme content and redox potential to the well known cytochromes c(3) but related in structure to the cytochrome c domain of soluble fumarate reductases from Shewanella sp. We report the crystal structure of the small tetraheme cytochrome c from Shewanella oneidensis MR-1 in two crystal forms and two redox states. The overall fold and heme core are surprisingly different from the soluble fumarate reductase structures. The high resolution obtained for an oxidized orthorhombic crystal (0.97 A) revealed several flexible regions. Comparison of the six monomers in the oxidized monoclinic space group (1.55 A) indicates flexibility in the C-terminal region containing heme IV. The reduced orthorhombic crystal structure (1.02 A) revealed subtle differences in the position of several residues, resulting in decreased solvent accessibility of hemes and the withdrawal of a positive charge from the molecular surface. The packing between monomers indicates that intermolecular electron transfer between any heme pair is possible. This suggests there is no unique site of electron transfer on the surface of the protein and that electron transfer partners may interact with any of the hemes, a process termed "electron-harvesting." This optimizes the efficiency of intermolecular electron transfer by maximizing chances of productive collision with redox partners.  相似文献   

6.
The fumarate reductase (flavocytochrome c(3)) from Shewanella frigidimarina (formerly S. putrefaciens) NCIMB400 has been crystallized in the space group P2(1), with cell dimensions of a = 45.447 A, b = 92.107 A, c = 78.311 A, and beta = 91.038 degrees and one molecule per asymmetric unit. A native data set has been collected to 1.8 A. The gene encoding Fcc(3) from the S. frigidimarina type strain ACAM591 has been cloned and sequenced and the protein crystallized in space group P2(1) with cell dimensions of a = 45.359 A, b = 88.051 A, c = 77.473 A, and beta = 104.499 degrees. Anomalous data have also been collected from the NCIMB400 crystal allowing the heme iron positions to be identified.  相似文献   

7.
Fumarate respiration is one of the most widespread types of anaerobic respiration. The soluble fumarate reductase of Shewanella putrefaciens MR-1 is a periplasmic tetraheme flavocytochrome c. The crystal structures of the enzyme were solved to 2.9 A for the uncomplexed form and to 2.8 A and 2.5 A for the fumarate and the succinate-bound protein, respectively. The structures reveal a flexible capping domain linked to the FAD-binding domain. A catalytic mechanism for fumarate reduction based on the structure of the complexed protein is proposed. The mechanism for the reverse reaction is a model for the homologous succinate dehydrogenase (complex II) of the respiratory chain. In flavocytochrome c fumarate reductase, all redox centers are in van der Waals contact with one another, thus providing an efficient conduit of electrons from the hemes via the FAD to fumarate.  相似文献   

8.
Many sulphate reducing bacteria can also reduce nitrite, but relatively few isolates are known to reduce nitrate. Although nitrate reductase genes are absent from Desulfovibrio vulgaris strain Hildenborough, for which the complete genome sequence has been reported, a single subunit periplasmic nitrate reductase, NapA, was purified from Desulfovibrio desulfuricans strain 27774, and the structural gene was cloned and sequenced. Chromosome walking methods have now been used to determine the complete sequence of the nap gene cluster from this organism. The data confirm the absence of a napB homologue, but reveal a novel six-gene organisation, napC-napM-napA-napD-napG-napH. The NapC polypeptide is more similar to the NrfH subgroup of tetraheme cytochromes than to NapC from other bacteria. NapM is predicted to be a tetra-heme c-type cytochrome with similarity to the small tetraheme cytochromes from Shewanella oneidensis. The operon is located close to a gene encoding a lysyl-tRNA synthetase that is also found in D. vulgaris. We suggest that electrons might be transferred to NapA either from menaquinol via NapC, or from other electron donors such as formate or hydrogen via the small tetraheme cytochrome, NapM. We also suggest that, despite the absence of a twin-arginine targeting sequence, NapG might be located in the periplasm where it would provide an alternative direct electron donor to NapA.  相似文献   

9.
10.
The complete amino acid sequence of the 86-residue heme subunit of flavocytochrome c (sulfide dehydrogenase) from the green phototrophic bacterium Chlorobium thiosulfatophilum strain Tassajara has been determined as follows: APEQSKSIPRGEILSLSCAGCHGTDGKSESIIPTIYGRSAEYIESALLDFKSGA- RPSTVMGRHAKGYSDEEIHQIAEYFGSLSTMNN. The subunit has a single heme-binding site near the N terminus, consisting of a pair of cysteine residues at positions 18 and 21. The out-of-plane ligands are apparently contributed by histidine 22 and methionine 60. The molecular weight including heme is 10,014. The heme subunit is apparently homologous to small cytochromes c by virtue of the location of the heme-binding site and its extraplanar ligands. However, the amino acid sequence is closer to Paracoccus sp. cytochrome c554(548) (37%) than it is to the heme subunit from Pseudomonas putida p-cresol methylhydroxylase flavocytochrome c (20%). The flavocytochrome c heme subunit is only 14% similar to the small cytochrome c555 also found in Chlorobium. Secondary structure predictions suggest N- and C-terminal helices as expected, but the midsection of the protein probably folds somewhat differently from the small cytochromes of known three-dimensional structure such as Pseudomonas cytochrome c551. Analyses of the residues near the exposed heme edges of the cytochrome subunits of P. putida and C. thiosulfatophilum flavocytochromes c (assuming homology to proteins of known structure) indicate that charged residues are not conserved, suggesting that electrostatic interactions are not involved in the association of the heme and flavin subunits. The N-terminal sequence of the flavoprotein subunit of flavocytochrome has also been determined. It shows no similarity to the comparable region of the p-cresol methylhydroxylase flavoprotein subunit from P. putida. The flavin-binding hexapeptide, isolated and sequenced earlier (Kenney, W. C., McIntire, W., and Yamanaka, T. (1977) Biochim. Biophys. Acta 483, 467-474), is situated at positions 40-46.  相似文献   

11.
The macroscopic and microscopic redox potentials of the four hemes of the small tetraheme cytochrome c from Shewanella oneidensis were determined. The microscopic redox potentials show that the order of reduction is from hemes in the C-terminal domain (hemes 3 and 4) to the N-terminal domain (heme 1), demonstrating the polarization of the tetraheme chain during reduction. This makes heme 4 the most efficient electron delivery site. Furthermore, multi-step reduction of other redox centers through either heme 4 or heme 3 is shown to be possible. This has provided new insights into the two-electron reduction of the flavin in the homologous flavocytochrome c-fumarate reductase.  相似文献   

12.
13.
Shewanella spp. demonstrate great variability in the use of terminal electron acceptors in anaerobic respiration; these include nitrate, fumarate, DMSO, trimethylamine oxide, sulphur compounds and metal oxides. These pathways open up possible applications in bioremediation. The wide variety of respiratory substrates for Shewanella is correlated with the evolution of several multi-haem membrane-bound, periplasmic and outer-membrane c-type cytochromes. The 21 kDa c-type cytochrome CymA of the freshwater strain Shewanella oneidensis MR-1 has an N-terminal membrane anchor and a globular tetrahaem periplasmic domain. According to sequence alignments, CymA is a member of the NapC/NirT family. This family of redox proteins is responsible for electron transfer from the quinone pool to periplasmic and outer-membrane-bound reductases. Prior investigations have shown that the absence of CymA results in loss of the ability to respire with Fe(III), fumarate and nitrate, indicating that CymA is involved in electron transfer to several terminal reductases. Here we describe the expression, purification and characterization of a soluble, truncated CymA ('CymA). Potentiometric studies suggest that there are two pairs of haems with potentials of -175 and -261 mV and that 'CymA is an efficient electron donor for the soluble fumarate reductase, flavocytochrome c(3).  相似文献   

14.
15.
The thermodynamic and catalytic properties of flavocytochrome c3 from Shewanella frigidimarina have been studied using a combination of protein film voltammetry and solution methods. As measured by solution kinetics, maximum catalytic efficiencies for fumarate reduction (kcat/Km = 2.1 x 10(7) M-1 s-1 at pH 7.2) and succinate oxidation (kcat/Km = 933 M-1 s-1 at pH 8.5) confirm that flavocytochrome c3 is a unidirectional fumarate reductase. Very similar catalytic properties are observed for the enzyme adsorbed to monolayer coverage at a pyrolytic graphite "edge" electrode, thus confirming the validity of the electrochemical method for providing complementary information. In the absence of fumarate, the adsorbed enzyme displays a complex envelope of reversible redox signals which can be deconvoluted to yield the contributions from each active site. Importantly, the envelope is dominated by the two-electron signal due to FAD [E degrees ' = -152 mV vs the standard hydrogen electrode (SHE) at pH 7.0 and 24 degrees C] which enables quantitative examination of this center, the visible spectrum of which is otherwise masked by the intense absorption bands due to the hemes. The FAD behaves as a cooperative two-electron center with a pH-dependent reduction potential that is modulated (pKox at 6.5) by ionization of a nearby residue. In conjunction with the kinetic pKa values determined for the forward and reverse reactions (7.4 and 8.6, respectively), a mechanism for fumarate reduction, incorporating His365 and an anionic form of reduced FAD, is proposed. The reduction potentials of the four heme groups, estimated by analysis of the underlying envelope, are -102, -146, -196, and -238 mV versus the SHE at pH 7.0 and 24 degrees C and are comparable to those determined by redox potentiometry.  相似文献   

16.
The kinetics of reduction of Chromatium vinosum flavocytochrome c heme subunit by exogenous flavin neutral semiquinones generated by laser flash photolysis have been investigated. Unlike the holoprotein, the isolated heme subunit was appreciably reactive with lumiflavin neutral semiquinone. The measured rate constant for the reaction (2.7 X 10(7) M-1 S-1) was comparable to those of c-type cytochromes having similar redox potentials. The ionic strength dependence of the reaction with FMN neutral radical indicated that the heme subunit had a small negative charge at the site of reduction. Taken together, these results suggest that the active site of the heme subunit is buried on complexation with the flavin subunit in the holoprotein. Horse cytochrome c formed a strong complex with Chromatium, but not Chlorobium, flavocytochrome c. Possible physiological electron acceptors such as HiPIP, cytochrome c', and cytochrome c-555 apparently did not bind to the flavocytochromes c. The rate constant for reduction by lumiflavin radical of horse cytochrome c complexed to flavocytochrome c was about twofold smaller than for reduction of horse cytochrome c alone. Flavocytochrome c was itself unreactive with exogenous flavin semiquinones. The ionic strength dependence of the reduction of the complex by FMN radical was also smaller than for horse cytochrome c in the absence of flavocytochrome c. Sulfite, which forms an adduct with the protein-bound FAD (FAD is bound in an 8-alpha-S-cysteinyl linkage), did not affect the reduction of horse cytochrome c in its complex with flavocytochrome c. We conclude that horse cytochrome c is reduced directly by exogenous flavins in its complex with flavocytochrome c, although the kinetics are slightly modified. These results are not unlike observations made with complexes of mitochondrial cytochrome c with cytochrome oxidase or cytochrome b5.  相似文献   

17.
18.
The genes of tetraheme cytochrome c3 and hexadecaheme high-molecular-weight cytochrome c from Desulfovibrio vulgaris could be overexpressed as holoproteins in Shewanella oneidensis TSP-C using pUC-type vectors of E. coli. Surprisingly, S. oneidensis was transformed directly by pUC-type vectors through electroporation. The yields of the recombinant proteins in this expression system were much higher than the previously reported ones.  相似文献   

19.
The 1.8 A resolution crystal structure of the tetraheme flavocytochrome c3, Fcc3, provides the first mechanistic insight into respiratory fumarate reductases or succinate dehydrogenases. The multi-redox center, three-domain protein shows a 40 A long 'molecular wire' allowing rapid conduction of electrons through a new type of cytochrome domain onto the active site flavin, driving the reduction of fumarate to succinate. In this structure a malate-like molecule is trapped in the enzyme active site. The interactions between this molecule and the enzyme suggest a clear mechanism for fumarate reduction in which the substrate is polarized and twisted, facilitating hydride transfer from the reduced flavin and subsequent proton transfer. The enzyme active site in the oxidized form is completely buried at the interface between the flavin-binding and the clamp domains. Movement of the cytochrome and clamp domains is postulated to allow release of the product.  相似文献   

20.
1H nuclear magnetic resonance (NMR) spectroscopy has been used to examine cytochrome c551.5 (c7) from the sulfur reducer, Desulfuromonas acetoxidans. This protein contains three hemes. Two stable oxidation states (the fully oxidized and the fully reduced) as well as intermediate oxidation states were studied. The axial ligands of the iron were found to be neutral histidines. The redox properties of cytochrome c7 were examined and good quantitative agreement found between the NMR results and previously reported redox potential measurements. The properties of cytochrome c7 are discussed together with those of the homologous tetraheme cytochromes c3 isolate from sulfate-reducing bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号