首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mutations in the IN domain of retroviral DNA may affect multiple steps of the virus life cycle, suggesting that the IN protein may have other functions in addition to its integration function. We previously reported that the human immunodeficiency virus type 1 IN protein is required for efficient viral DNA synthesis and that this function requires specific interaction with other viral components but not enzyme (integration) activity. In this report, we characterized the structure and function of the Moloney murine leukemia virus (MLV) IN protein in viral DNA synthesis. Using an MLV vector containing green fluorescent protein as a sensitive reporter for virus infection, we found that mutations in either the catalytic triad (D184A) or the HHCC motif (H61A) reduced infectivity by approximately 1,000-fold. Mutations that deleted the entire IN (DeltaIN) or 34 C-terminal amino acid residues (Delta34) were more severely defective, with infectivity levels consistently reduced by 10,000-fold. Immunoblot analysis indicated that these mutants were similar to wild-type MLV with respect to virion production and proteolytic processing of the Gag and Pol precursor proteins. Using semiquantitative PCR to analyze viral cDNA synthesis in infected cells, we found the Delta34 and DeltaIN mutants to be markedly impaired while the D184A and H61A mutants synthesized cDNA at levels similar to the wild type. The DNA synthesis defect was rescued by complementing the Delta34 and DeltaIN mutants in trans with either wild-type IN or the D184A mutant IN, provided as a Gag-IN fusion protein. However, the DNA synthesis defect of DeltaIN mutant virions could not be complemented with the Delta34 IN mutant. Taken together, these analyses strongly suggested that the MLV IN protein itself is required for efficient viral DNA synthesis and that this function may be conserved among other retroviruses.  相似文献   

2.
Virus-specific ribonucleic acid (RNA), synthesized in influenza virus-infected cells from 3.5 to 7.5 hr after infection, was studied. After velocity centrifugation in sucrose, three peaks of virus-specific RNA could be identified: 34S, 18S, and 11S. These RNA species are predominantly single-stranded and consist of 90% viral (plus) and 10% complementary (minus) RNA strands. Most (75%) of the complementary RNA is single-stranded, i.e., not part of RNA duplexes or replicative intermediates. The 34S RNA species is an aggregate of 18S and 14S RNA species. Both 18S and 11S RNA species are relatively heterogenous compared to 18S ribosomal RNA, and these species probably contain different RNA molecules having closely related sedimentation coefficients.  相似文献   

3.
During replication, the physical state of a virus is controlled by assembly and disassembly processes, when particles are put together and dismantled by cellular cues, respectively. A fundamental question has been how a cell can assemble an infectious virus, and dismantle a virus entering an uninfected cell and thereby trigger a new round of infection. This apparent paradox might be explained by considering that infected and uninfected cells are functionally different, or that assembly and disassembly take place along different cellular pathways. A third possibility is that the physical properties of newly assembled viruses are different from the infection-ready viruses. Recent biophysical experiments measured the stiffness of single Influenza viruses and combined this with biochemical measurements and cell biological assays. Besides inducing the fusogenic state of hemagglutinin, low pH cues softened the virus and precluded aggregation of viral ribonucleoprotein particles with the matrix protein M1. The recent experiments suggest a two-step model for Influenza virus entry and uncoating involving low pH in early and late endosomes, respectively. I conclude with a short outlook into how combined biophysical and cell biological approaches might lead to the identification of new cellular cues controlling viral uncoating and infection.  相似文献   

4.
Domestic poultry serve as intermediates for transmission of influenza A virus from the wild aquatic bird reservoir to humans, resulting in influenza outbreaks in poultry and potential epidemics/pandemics among human beings. To combat emerging avian influenza virus, an inexpensive, heat-stable, and orally administered influenza vaccine would be useful to vaccinate large commercial poultry flocks and even migratory birds. Our hypothesized vaccine is a recombinant attenuated bacterial strain able to mediate production of attenuated influenza virus in vivo to induce protective immunity against influenza. Here we report the feasibility and technical limitations toward such an ideal vaccine based on our exploratory study. Five 8-unit plasmids carrying a chloramphenicol resistance gene or free of an antibiotic resistance marker were constructed. Influenza virus was successfully generated in avian cells transfected by each of the plasmids. The Salmonella carrier was engineered to allow stable maintenance and conditional release of the 8-unit plasmid into the avian cells for recovery of influenza virus. Influenza A virus up to 107 50% tissue culture infective doses (TCID50)/ml were recovered from 11 out of 26 co-cultures of chicken embryonic fibroblasts (CEF) and Madin-Darby canine kidney (MDCK) cells upon infection by the recombinant Salmonella carrying the 8-unit plasmid. Our data prove that a bacterial carrier can mediate generation of influenza virus by delivering its DNA cargoes into permissive host cells. Although we have made progress in developing this Salmonella influenza virus vaccine delivery system, further improvements are necessary to achieve efficient virus production, especially in vivo.  相似文献   

5.
6.
Temperature-sensitive mutants of simian virus 40 (SV40) have been classified as those that are blocked prior to viral DNA synthesis at the restrictive temperature, "early" mutants, and those harboring a defect later in the replication cycle, "late" mutants. Mutants of the A and D complementation groups are early, those of the B, C, and BC groups are late. Our results confirm earlier reports that A mutants are defective in a function required for the initiation of each round of viral DNA synthesis. D mutants, on the other hand, continue viral DNA replication at the restrictive temperature after preincubation at the permissive temperature. The length of time required for D function to be expressed at the permissive temperature-after which infection proceeds unabated on shifting of the cultures to the restrictive temperature-is 10 to 20 h. The viral DNA synthesized in D mutants under these conditions progresses in normal fashion through replicative intermediate molecules to mature component I and II DNA molecules.  相似文献   

7.
[3H]leucine-labeled proteins synthesized in BHK-21 cells infected with Semliki Forest virus were fractionated by polyacrylamide gel electrophoresis (PAGE). Cellular and virus-specific proteins were identified by difference analysis of the PAGE profiles. The specific activity of intracellular [3H]leucine was determined. Two alterations of protein synthesis, which develop with different time courses, were discerned. (i) In infected cultures an inhibition of overall protein synthesis to about 25% of the protein synthesis in mock-infected cultures develops between about 1 and 4 h postinfection (p.i.). (ii) The relative amount of virus-specific polypeptides versus cellular polypeptides increases after infection. About 80% of the proteins synthesized at 4 h p.i. are cellular proteins. Since significant amounts of nontranslocating ribosomes in polyribosomes were not detected up to 7 h p.i., the inhibition of protein synthesis is not caused by inactivation of about 75% of all polyribosomes but by a decreased protein synthetic activity of the majority of polyribosomes. Indirect evidence indicates that an inhibition of elongation and/or release of protein synthesis develops in infected cells, which is sufficient to account for the observed inhibition of protein synthesis. Inhibition of over-all protein synthesis developed when virus-specific RNA began to accumulate at the maximal rate. This relationship was observed during virus multiplication at 37, 30, and 25 C. A possible mechanism by which synthesis of virus-specific RNA in the cytoplasm could inhibit cellular protein synthesis is discussed. Indirect evidence and analysis of polyribosomal RNA show that the increased synthesis of virus-specific protein is brought about by a substitution of cellular by viral mRNA in the polyribosomes.  相似文献   

8.
In asynchronous RTG-2 cell cultures infected with infectious pancreatic necrosis (IPN) virus, inhibition of cellular DNA synthesis, but not protein synthesis, was detected 5 to 6 h postinfection and was 80 to 90% complete by 7 to 8 h. Inhibition of DNA synthesis was largely abolished by UV irradiation of the virus. Sedimentation analyses of phenol-extracted DNA indicated that native cellular DNA was not degraded during infection. Sedimentation on alkaline sucrose gradients of DNA from cells pulsed with radioactive thymidine for varying periods indicated that elongation of nascent DNA chains proceeded normally in infected cells. These and previous results suggest that IPN virus infection results in a reduction of the number of chromosomal sites active in DNA synthesis but does not affect the rate of polymerization at active sites. Cells synchronized with excess thymidine and hydroxyurea and infected with virus at the time of release from the block demonstrated an inhibition of DNA synthesis 3 h postinfection. Cells infected 4 h prior to release continued to synthesize normal amounts of DNA for 1 to 2 h after release. These results indicated that DNA synthesis in early synthetic phase is relatively insensitive to inhibition by IPN virus.  相似文献   

9.
Membranes from cells infected with Sindbis virus had associated with them viral ribonucleic acid (RNA) polymerase and about 60 to 70% of the viral RNA labeled when short pulses were used. This RNA contained most of the replicative intermediate and replicative form of viral RNA found in the infected cells. The use of "Mg(2+) sarkosyl crystals" permitted the isolation of membrane-bound nucleic acids and allowed the demonstration that Sindbis virus RNA was synthesized on a membrane-viral RNA complex. Viral RNA from the infecting virions first became associated with the membranes during the latent period and, subsequently, slowly detached. The attachment of the viral RNA to the membranes did not require active viral RNA polymerase, since RNA from ts6, an RNA(-) temperature-sensitive mutant of Sindbis virus, associated with cellular membranes at a nonpermissive temperature. However, the subsequent detachment of the RNA from the membranes was restricted in the absence of viral RNA synthesis. The results indicate that association of viral RNA with cellular membranes may represent an early step occurring during the replication of Sindbis virus RNA.  相似文献   

10.
The inhibition of protein synthesis in L cells by vesicular stomatitis virus (VSV) requires the synthesis of new protein subsequent to virus infection. However, two mechanisms may be involved in the inhibition of cell protein synthesis by VSV: an initial, multiplicity-dependent, ultraviolet-insensitive inhibition and a progressive, ultraviolet-sensitive inhibition.  相似文献   

11.
After infection of several permanent monkey cell lines by simian virus 40 (SV40), four additional protein bands can be detected by simple sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell extracts. These bands appear only after the onset of viral deoxyribonucleic acid (DNA) synthesis, and inhibitors of DNA synthesis prevent their appearance. Three of them correspond to three previously identified capsid components, VP1, VP2, and VP3. The fourth protein band, which does not correspond to a previously identified virion component, is induced by SV40 infection of CV-1 and BSC-1 cultures but not by infection of MA-134 cultures.  相似文献   

12.
A comparison of the replication patterns in L cells and in chick embryo (CE) cell cultures was carried out with the Herts strain of Newcastle disease virus (NDV(o)) and with a mutant (NDV(pi)) isolated from persistently infected L cells. A significant amount of virus progeny, 11 plaque-forming units (PFU)/cell, was synthesized in L cells infected with NDV(o), but the infectivity remained cell-associated and disappeared without being detectable in the medium. In contrast, in L cells infected with NDV(pi), progeny virus (30 PFU/cell) was released efficiently upon maturation. It is suggested that the term "covert" rather than "abortive" be used to describe the infection of L cells with NDV(o). In both L and CE cells, the latent period of NDV(pi) was 2 to 4 hr longer than for NDV(o). The delay in synthesis of viral ribonucleic acid (RNA) in the case of NDV(pi) coincided with the delay in the inhibition of host RNA and protein synthesis. Although both NDV(o) and NDV(pi) produced more progeny and more severe cell damage in CE cells than in L cells, the shut-off of host functions was significantly less efficient in CE cells than in L cells. Paradoxically, no detectable interferon was produced in CE cells by either of the viruses, whereas in L cells most of the interferon appeared in the medium after more than 90% of host protein synthesis was inhibited. These results suggest that the absence of induction of interferon synthesis in CE cells infected with NDV is not related to the general shut-off of host cell synthetic mechanisms but rather to the failure of some more specific event to occur. In spite of the fact that NDV(pi) RNA synthesis commenced 2 to 4 hr later than that of NDV(o), interferon was first detected in the medium 8 hr after infection with both viruses. This finding suggests that there is no relation between viral RNA synthesis and the induction of interferon synthesis.  相似文献   

13.
14.
15.
Nuclei purified from chicken embryo fibroblast cells infected with influenza (fowl plague) virus contain an RNA-dependent RNA polymerase. The in vitro activity of this enzyme is insensitive to actinomycin D, and is completely destroyed by preincubation with ribonuclease. Enzyme induction is prevented if cells are treated with actinomycin D or cycloheximide at the time of infection. RNA-dependent RNA polymerase activity increases rapidly in cell nuclei from 1 h postinfection, reaches a maximum at 3 to 4 h, then declines; a similar RNA polymerase activity in the microsomal cell fraction increases from 2 h postinfection and reaches a maximum at 5 to 6 h. The characteristics of the nuclear and microsomal enzymes in vitro are similar with respect to pH and divalent cation requirements. The in vitro products of enzyme activity present in the nuclear and microsomal fractions of cells infected for 3 and 5 h were characterized by sucrose density gradient analysis, and annealing to virion RNA. The microsomal RNA polymerase product contained 67 and 93% RNA complementary to virion RNA at 3 and 5 h, respectively; for the nuclear RNA polymerase product these values were 40% in each case.  相似文献   

16.
The induction of apoptosis in host cells is a prominent cytopathic effect of vesicular stomatitis virus (VSV) infection. The viral matrix (M) protein is responsible for several important cytopathic effects, including the inhibition of host gene expression and the induction of cell rounding in VSV-infected cells. This raises the question of whether M protein is also involved in the induction of apoptosis. HeLa or BHK cells were transfected with M mRNA to determine whether M protein induces apoptosis when expressed in the absence of other viral components. Expression of M protein induced apoptotic morphological changes and activated caspase-3 in both cell types, indicating that M protein induces apoptosis in the absence of other viral components. An M protein containing a point mutation that renders it defective in the inhibition of host gene expression (M51R mutation) activated little, if any, caspase-3, while a deletion mutant lacking amino acids 4 to 21 that is defective in the virus assembly function but fully functional in the inhibition of host gene expression was as effective as wild-type (wt) M protein in activating caspase-3. To determine whether M protein influences the induction of apoptosis in the context of a virus infection, the M51R M protein mutation was incorporated onto a wt background by using a recombinant infectious cDNA clone (rM51R-M virus). The timing of the induction of apoptosis by rM51R-M virus was compared to that by the corresponding recombinant wt (rwt) virus and to that by tsO82 virus, the mutant virus in which the M51R mutation was originally identified. In HeLa cells, rwt virus induced apoptosis faster than did rM51R-M virus, demonstrating a role for M protein in the induction of apoptosis. In contrast to the results obtained with HeLa cells, rwt virus induced apoptosis more slowly than did rM51R-M virus in BHK cells. This indicates that a viral component other than M protein contributes to induction of apoptosis in BHK cells and that wt M protein acts to delay induction of apoptosis by the other viral component. tsO82 virus induced apoptosis more rapidly than did rM51R-M virus in both HeLa and BHK cells. These two viruses contain the same point mutation in their M proteins, suggesting that sequence differences in genes other than that for M protein affect their rates of induction of apoptosis.  相似文献   

17.
用原生质体法制备出高纯度的完整叶绿体经SDS-PAGE电泳,银染后,发现黄瓜花叶病毒(CMV)侵染的烟草病叶叶绿体蛋白质图谱和健叶叶绿体相比,多出一条染色较弱的迁移率与CMV衣壳蛋白质相同的带,经Western转移,用CMV游离衣壳蛋白亚基抗血清进行斑点酶联(Immunoblot)检测,证明这条带就是CMV衣壳蛋白质。健康叶绿体中加入去掉叶绿体的病叶汁液而制备出的叶绿体中无CMV衣壳蛋白质,说明这不是在叶绿体提纯过程中得到的假象,即衣壳蛋白质存在于被CMV侵染的完整叶片叶绿体中。这个结果否认了以往报道的CMV衣壳蛋白质不存在于烟草叶绿体中的结论。另外还发现,叶绿体中的衣壳蛋白质浓度与叶片症状严重程度呈正相关。  相似文献   

18.
19.
Influenza virus has evolved replication strategies that hijack host cell pathways. To uncover interactions between viral macromolecules and host proteins, we applied a phage display strategy. A library of human cDNA expression products displayed on filamentous phages was submitted to affinity selection for influenza viral ribonucleoproteins (vRNPs). High-mobility-group box (HMGB) proteins were found to bind to the nucleoprotein (NP) component of vRNPs. HMGB1 and HMGB2 bind directly to the purified NP in the absence of viral RNA, and the HMG box A domain is sufficient to bind the NP. We show that HMGB1 associates with the viral NP in the nuclei of infected cells, promotes viral growth, and enhances the activity of the viral polymerase. The presence of a functional HMGB1 DNA-binding site is required to enhance influenza virus replication. Glycyrrhizin, which reduces HMGB1 binding to DNA, inhibits influenza virus polymerase activity. Our data show that the HMGB1 protein can play a significant role in intranuclear replication of influenza viruses, thus extending previous findings on the bornavirus and on a number of DNA viruses.  相似文献   

20.
Mouse plasmacytoma ascites tumor cells (MOPC 460) were efficiently infected with encephalomyocarditis virus. Inhibition of host protein synthesis was evident after 2 h and complete by 4 h postinfection. The mechanism by which virus infection results in inhibition of host cell protein synthesis was studied in vitro. Cell-free protein-synthesizing systems, prepared from uninfected and infected cells, were found to be equally active with respect to their abilities to translate cellular and viral mRNAs. The plasmacytoma cell-free system was also shown to be insensitive to the addition of double-stranded viral RNA. Host cellular mRNA was isolated from uninfected and infected cells. No difference in the amount or size distribution of the mRNA was detected. However, the mRNA from infected cells was translated only 46 to 49% as actively as that from uninfected cells. mRNA isolated from cells in which initiation of protein synthesis was inhibited with pactamycin was similarly inactivated. Simultaneous addition of viral RNA and cellular mRNA to the plasmacytoma cell-free system resulted in a complete suppression of the translation of the cellular message, whereas viral RNA was translated normally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号