首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The olfactory ensheathing cell (OEC) is a class of glial cell that has been reported to support regeneration in the central nervous system after various types of lesions, including rhizotomy of spinal dorsal roots at thoracic, lumbar and sacral levels. We have therefore carried out a detailed anatomical analysis to assess the efficacy of dorsal horn OEC transplants at promoting regeneration of primary afferents across the dorsal root entry zone (DREZ) at the cervical level in the adult rat. OECs were cultured from adult rat olfactory bulb and immunopurified (90% purity). Regeneration by large diameter afferents and by both peptidergic and non-peptidergic small diameter afferents was assessed using respectively cholera toxin B (CTB) labelling and immunocytochemistry for calcitonin gene-related peptide (CGRP) and the purinoceptor P2X3. Following an extensive (C3-T3) rhizotomy, CGRP and P2X3 immunoreactive axons regenerated across the rhizotomy site as far as the DREZ but there was no evidence of regeneration across the DREZ, except through sites where the OEC transplant was directly grafted into the DREZ. No evidence of regeneration into the dorsal horn by CTB-labelled axons was obtained. In addition, there was little sign of sprouting by intact axons in the vicinity of OEC transplant sites. In contrast to these results in vivo, cocultures of OECs and adult dorsal root ganglion cells showed that OECs stimulate extensive neurite outgrowth. The failure of the OECs to promote regeneration in vivo following cervical rhizotomy is therefore most likely due to factors in the environment of the graft site and/or the method of transplantation.  相似文献   

2.
The distribution of VIP-immunoreactivity was studied in the spinal cord and dorsal root ganglia of 6 mammalian species. Immunoreactive fibres and cell bodies were most apparent in the dorsal horn, dorsolateral funiculus, intermediolateral cell columns and the area around the central canal. The distribution of VIP immunoreactivity was similar in all species studied, mouse, rat, guinea pig, cat, horse and the marmoset monkey. There were fewer VIP fibres in the dorsal horn of cervical and thoracic segments than in lumbosacral segments. Using radioimmunoassay this gradient increase was quantitatively most marked in the sacral spinal cord of the cat. In dorsal root ganglia few nerve cell bodies but numerous fibres were present. A dual origin for VIP in the spinal cord is suggested: (A) Extrinsic, from dorsal root afferent fibres since immunoreactivity was decreased in dorsally rhizotomized animals (cats and rats) and in capsaicin pretreated rats (microinjection of dorsal root ganglia). (B) From local cell bodies intrinsic to the spinal cord which became visible after colchicine pretreatment of rats.  相似文献   

3.
The distributions of neuronal nitric oxide synthase immunoreactivity (NOS-IR) and NADPH-diaphorase (NADPH-d) activity were compared in the cat spinal cord. NOS-IR in neurons around the central canal, in superficial laminae (I and II) of the dorsal horn, in the dorsal commissure, and in fibers in the superficial dorsal horn was observed at all levels of the spinal cord. In these regions, NOS-IR paralleled NADPH-d activity. The sympathetic autonomic nucleus in the rostral lumbar and thoracic segments exhibited prominent NOS-IR and NADPH-d activity, whereas the parasympathetic nucleus in the sacral segments did not exhibit NOS-IR or NADPH-d activity. Within the region of the sympathetic autonomic nucleus, fewer NOS-IR cells were identified compared with NADPH-d cells. The most prominent NADPH-d activity in the sacral segments occurred in fibers within and extending from Lissauer's tract in laminae I and V along the lateral edge of the dorsal horn to the region of the sacral parasympathetic nucleus. These afferent projections did not exhibit NOS-IR; however, NOS-IR and NADPH-d activity were demonstrated in dorsal root ganglion cells (L7-S2). The results of this study demonstrate that NADPH-d activity is not always a specific histochemical marker for NO-containing neural structures.  相似文献   

4.
The dorsal horn projection patterns of finger nerves were investigated in four Macaca mulatta monkeys. Proper digital branches of the median nerves, serving the radial aspect of a digit on each hand, were loaded with wheatgerm agglutinin-horseradish peroxidase complex (WGA:HRP). The distribution of the lectin-enzyme complex was mapped in the right and left dorsal horns. The dorsal horn projections of the digital nerves were localized in segments C6-C8 in laminae I-VI, primarily in laminae I-IV. The wedge-shaped termination zones were somatotopically organized, in agreement with the projections of the digits in cats. The fingers are represented medially, as they are in the cat. This similarity suggests that there is a mediolateral gradient of dorsal horn organization similar to that of the cat, with distal skin represented medially and proximal skin represented laterally. The rostrocaudal trajectory of finger representation, with digit 1 most rostral and digit 5 most caudal, is also in agreement with the organization of hindlimb toe projections in the cat. There was a high degree of bilateral symmetry for homologous nerves, and little overlap of projections from nerves innervating adjacent fingers. The sample size was too small to permit us to assess interanimal variation. These results suggest a similar somatotopy of projections, and presumably of dorsal horn cell somatotopy, in monkey and cat.  相似文献   

5.
The dorsal horn region of the spinal cord, particularly the dorsal root entry zone (DREZ), represents the first central integration center for nociceptive afferent impulses. Here, the excitatory neurotransmitters/modulators, products of the primary sensory neurons, are released, the segmental interneuronal influences pertain, and the descending bulbospinal tracts terminate. A vast variety of compounds are thus involved in the processing of nociceptive information in these areas, among which are the 'classical' neurotransmitters and the more recently described neuropeptides. A continued vast interest exists concerning the chemistry of the dorsal horn/DREZ region. The current developments and understanding regarding the pharmacology of this region are presented. Particular emphasis is given to the interactions among the various compounds, the coexistence of some of these within single neuronal populations, the importance of the opiate receptor subtypes, and the actions and localizations of some of the newly discovered neuropeptides.  相似文献   

6.
The dorsal horn projection patterns of finger nerves were investigated in four Macaca mulatto monkeys. Proper digital branches of the median nerves, serving the radial aspect of a digit on each hand, were loaded with wheatgerm agglutinin—horseradish peroxidase complex (WGA:HRP). The distribution of the lectin—enzyme complex was mapped in the right and left dorsal horns.

The dorsal horn projections of the digital nerves were localized in segments C6-C8 in laminae I-VI, primarily in laminae I-IV. The wedge-shaped termination zones were somatotopically organized, in agreement with the projections of the digits in cats. The fingers are represented medially, as they are in the cat. This similarity suggests that there is a mediolateral gradient of dorsal horn organization similar to that of the cat, with distal skin represented medially and proximal skin represented laterally. The rostrocaudal trajectory of finger representation, with digit 1 most rostral and digit 5 most caudal, is also in agreement with the organization of hindlimb toe projections in the cat. There was a high degree of bilateral symmetry for homologous nerves, and little overlap of projections from nerves innervating adjacent fingers. The sample size was too small to permit us to assess interanimal variation. These results suggest a similar somatotopy of projections, and presumably of dorsal horn cell somatotopy, in monkey and cat.  相似文献   

7.
Stimulating regeneration in the damaged spinal cord.   总被引:6,自引:0,他引:6  
Great progress has been made in recent years in experimental strategies for spinal cord repair. In this review we describe two of these strategies, namely the use of neurotrophic factors to promote functional regeneration across the dorsal root entry zone (DREZ), and the use of synthetic fibronectin conduits to support directed axonal growth. The junction between the peripheral nervous system (PNS) and central nervous system (CNS) is marked by a specialized region, the DREZ, where sensory axons enter the spinal cord from the dorsal roots. After injury to dorsal roots, axons will regenerate as far as the DREZ but no further. However, recent studies have shown that this barrier can be overcome and function restored. In animals treated with neurotrophic factors, regenerating axons cross the DREZ and establish functional connections with dorsal horn cells. For example, intrathecal delivery of neurotrophin 3 (NT3) supports ingrowth of A fibres into the dorsal horn. This ingrowth is revealed using a transganglionic anatomical tracer (cholera toxin subunit B) and analysis at light and electron microscopic level. In addition to promoting axonal growth, spinal cord repair is likely to require strategies for supporting long-distance regeneration. Synthetic fibronectin conduits may be useful for this purpose. Experimental studies indicate that fibronectin mats implanted into the spinal cord will integrate with the host tissue and support extensive and directional axonal growth. Growth of both PNS and CNS axons is supported by the fibronectin, and axons become myelinated by Schwann cells. Ongoing studies are aimed at developing composite conduits and promoting axonal growth from the fibronectin back into the spinal cord.  相似文献   

8.
The lateral vestibulospinal tract (LVST) is one of the major descending pathways controlling the extensor musculature of the body. To determine whether individual LVST neurons terminating in the lumbosacral spinal segments issue collaterals more rostrally to exert an influence of the cervical ventral horn intracellular recording and biocytin labeling techniques were used in the squirrel monkey. Only neurons monosynaptically related to the 8th nerve and antidromically identified to project below T12 were selected for study. The axon course through the brainstem and cervical spinal cord was examined in 37 LVST neurons. The average distance of recovered axon was 17.3 mm (4.5-31.7 mm). None could be antidromically activated from shocks applied to the rostral medial longitudinal fasciculus near the 3rd nuclei; and no collaterals were observed in the brainstem. Of the 37 neurons, only 1 axon issued a collateral to innervate the ventral horn, primarily in the region of the spinal accessory motoneurons; this single collateral provided a relatively minor input compared to that of LVST neurons terminating in the cervical cord. Thus, secondary, caudal-projecting LVST neurons represent a private, and mostly rapid, communication pathway between dorsal Deiters' nucleus and the motor circuits controlling the lower limbs and tail.  相似文献   

9.
Lesions of the dorsal horn (DREZ operation) have been reported to be useful in reducing pain secondary to avulsion of the brachial plexus. Ten patients had the DREZ operation for this condition at The Johns Hopkins Hospital by one of us (JNC) between 1981 and 1985. Radiofrequency heat lesions were made. The patients were interviewed 7-52 months after the operation by one of two individuals not involved in the procedure to assess pain relief and postoperative complications. The mean pain relief was 85%, and there were no significant complications. It is concluded that the DREZ operation is the treatment of choice for treatment of severe pain that results from avulsion of the brachial plexus.  相似文献   

10.
The distribution of neurotensin-like immunoreactivity was investigated in the central nervous system of the Formosan monkey employing immunohistochemical techniques. Neurotensin-containing cells were found to be widely distributed in the forebrain. The principal densities of neurotensin-like neuronal perikarya were located in the limbic system, the basal ganglion and the cerebral cortex; particularly in the amygdala, the septum, the neostriatum, the claustrum and the insula. The stria terminalis and the preoptic area were also rich in immunostained neurotensin-like neurons. A large number of immunoreactive fibers were observed from the cerebral cortex to the spinal cord in locations such as the median eminence, the arcuate nucleus, the hippocampus, the central gray and the dorsal horn of the spinal cord. We analyzed in detail the distribution of neurotensin-like immunoreactivity in the brain of the Formosan monkey, and compared these results with those obtained in the brain of the rat, Japanese monkey and human. Some possible implications regarding differences in location of this peptide are also briefly discussed.  相似文献   

11.
The distribution in the thalamus of terminal projections from lamina I neurons of the trigeminal, cervical, and lumbosacral dorsal horn was investigated with the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L) in the cat. Iontophoretic injections were guided by single- and multi-unit physiological recordings. The injections in particular cases were essentially restricted to lamina I, whereas in others they spread across laminae I-III or laminae I-V. The trigemino- and spinothalamic (TSTT) terminations were identified immunohistochemically. In all cases, regardless of the level of the injections, terminal fibers were consistently distributed in three main locations: the submedial nucleus; the ventral aspect of the basal ventral medial nucleus and ventral posterior nuclei; and, the dorsomedial aspect of the ventral posterior medial nucleus. The terminal fields in the submedial nucleus and the ventral aspect of the ventral posterior group were topographically organized. Terminations along the ventral aspect of the ventral posterior group extended posterolaterally into the caudal part of the posterior nucleus and anteromedially into the ventromedial part of the ventral lateral nucleus. In several cases with trigeminal lamina I injections, a terminal labeling patch was observed within the core of the ventral posterior medial nucleus. In cases with spinal lamina I injections, terminations were also consistently found in the lateral habenula, the parafascicular nucleus, and the nucleus reuniens. Isolated terminal fibers were occasionally seen in the zona incerta, the dorsomedial hypothalamus, and other locations. These anatomical observations extend prior studies of TSTT projections and identify lamina I projection targets that are important for nociceptive, thermoreceptive, and homeostatic processing in the cat. The findings are consistent with evidence from physiological (single-unit and antidromic mapping) and behavioral studies. The novel identification of spinal lamina I input to the lateral habenula could be significant for homeostatic behaviors.  相似文献   

12.
The distribution in the thalamus of terminal projections from lamina I neurons of the trigeminal, cervical, and lumbosacral dorsal horn was investigated with the anterograde tracer Phaseolus vulgaris leucoagglutinin (PHA-L) in the cat. Iontophoretic injections were guided by single- and multi-unit physiological recordings. The injections in particular cases were essentially restricted to lamina I, whereas in others they spread across laminae I–III or laminae I–V. The trigemino- and spinothalamic (TSTT) terminations were identified immunohistochemically. In all cases, regardless of the level of the injections, terminal fibers were consistently distributed in three main locations: the submedial nucleus; the ventral aspect of the basal ventral medial nucleus and ventral posterior nuclei; and, the dorsomedial aspect of the ventral posterior medial nucleus. The terminal fields in the submedial nucleus and the ventral aspect of the ventral posterior group were topographically organized. Terminations along the ventral aspect of the ventral posterior group extended posterolaterally into the caudal part of the posterior nucleus and anteromedially into the ventromedial part of the ventral lateral nucleus. In several cases with trigeminal lamina I injections, a terminal labeling patch was observed within the core of the ventral posterior medial nucleus. In cases with spinal lamina I injections, terminations were also consistently found in the lateral habenula, the parafascicular nucleus, and the nucleus reuniens. Isolated terminal fibers were occasionally seen in the zona incerta, the dorsomedial hypothalamus, and other locations. These anatomical observations extend prior studies of TSTT projections and identify lamina I projection targets that are important for nociceptive, thermoreceptive, and homeostatic processing in the cat. The findings are consistent with evidence from physiological (single-unit and antidromic mapping) and behavioral studies. The novel identification of spinal lamina I input to the lateral habenula could be significant for homeostatic behaviors.  相似文献   

13.
Summary The distribution of serotonin-containing nerve fibers in the lateral geniculate nucleus (LGN) of the rat, cat, and monkey (Macaca fuscata) was studied by use of the peroxidase-antiperoxidase method and an antiserum against serotonin. In all three species, the pattern of fibers was denser in the ventral portion of the LGN (LGNv) than in the dorsal nuclear portion (LGNd). In the LGNd of rat, serotonin-immunoreactive fibers were evenly distributed in the form of a dense network, but in cat and monkey there were marked regional differences. Serotonin-immunoreactive elements were most numerous in the C complex and medial interlaminal nucleus of cat, and in the S layer and interlaminar zones of Macaca fuscata.Supported by a grant from the Ministry of Education, Science, and Culture of Japan (No. 57214028)  相似文献   

14.
S T Chen  M S Tsai  C L Shen 《Peptides》1989,10(4):825-834
The distribution of FMRFamide-like immunoreactivity in the central nervous system of the Formosan monkey (Macaca cyclopsis) was investigated employing immunohistochemical techniques. FMRFamide-containing cells were found to be widely distributed throughout the forebrain. Principal densities of FMRFamide neuronal perikarya were observed in the following areas: the amygdaloid complex, the olfactory tubercle, the cerebral cortex, the basal ganglia, the septum, the caudate-putamen and the arcuate nucleus. A large number of immunoreactive fibers were observed in areas ranging from the cerebral cortex to the spinal cord, and were noted in the following locations: the preoptic area, the tuberal and posterior hypothalamic areas, the bed nucleus of the stria terminalis, the nuclei of the spinal trigeminal nerve, the hypoglossal nucleus, the nucleus of the solitary tract, and the dorsal horn of the spinal cord. The results generally parallel those described in the rat and guinea pig.  相似文献   

15.
A statistical comparison was made of geometric characteristics (area of cross section of the soma and proximal dendrites and dcon, the diameter of the circle of equivalent area to it) of propriospinal neurons of the cat spinal cord labeled with horseradish peroxidase. The linear dimensions of these cells differed by a factor of about seven. The mean dcon of propriospinal neurons in the cervical, thoracic, and lumbar divisions, whose axons reach level L6-7, was 39.9, 30.8, and 36.9 µm, respectively; direct correlation between the size of the neurons and the length of their axons was thus not observed. Characteristics of distribution of sizes of units in the cervical and thoracic divisions indicate the presence of two cell populations forming long propriospinal tracts; one consisting of a few, large neurons, concentrated in the cervical segments, the other consisting of small neurons, distributed among the cervical and thoracic segments. The mean dcon of neurons in the cervical division whose axons reach more caudal segments of the same cervical division was 44.2 µm (on account of a considerable number of large units in the ventral horn), evidence of the large relative size of the short-axon propriospinal neurons in this division of the spinal cord. Neurons located in the dorsal parts of the dorsal horn were the smallest in size, those located in the ventral horn were the largest. No significant differences were found in the dimensions of propriospinal neurons with uncrossed and crossed axons.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 16, No. 2, pp. 238–247, March–April, 1984.  相似文献   

16.
Our small experiences with electrical stimulation in the VPL and VPM for dysesthetic pain show that it provoked only paresthesia and induced some relief of pain. It does not increase the beta-endorphin level in CSF. To clarify the anatomical substrata in VPL stimulation, neuroanatomical studies were done about the inputs to VPL in man, monkey and cat by the Fink-Heimer method. The spinothalamic tract terminates in VPL in a patchy fashion in the monkey. The corticothalamic fibers from SI and SII cortex project to VPL and VPM in somatotopical organization in the cat. SI and SII cortices have reciprocal connections, in addition to projections to area 5 or SIII cortex. The corticofugal fibers to the magnocellular and gigantocellular tegmental fields are suggested in addition to the dorsal column nuclei, spinal trigeminal nuclei and spinal posterior horn in cat. The medial lemniscus input to VPL and the above neural circuits are thought to be associated with VPL stimulation.  相似文献   

17.
The distribution and ultrastructure of primary afferent terminals in the gray matter of the cervical and lumbar regions of the cat spinal cord were studied by the experimental degeneration method of Fink and Heimer. Most preterminals of primary afferents were shown to be concentrated in the region of the intermediate nucleus of Cajal (central part of Rexed's laminae VI–VII), in the substantial gelatinosa (laminae II–III), and in the nucleus proprius of the dorsal horn (central and medial parts of lamina IV). Fewer are found in the region of the motor nuclei. The number of degenerating axon terminals in the lateral parts of laminae IV and V differed: 31.5 and 0.4% respectively of all axon terminals. Many terminals of primary afferents in lamina IV contribute to the formation of glomerular structures in which they exist as terminals of S-type forming axo-axonal connections with other terminals. These results are in agreement with electrophysiological data to show that interneurons in different parts of the base of the dorsal horn differ significantly in the relative numbers of synaptic inputs formed by peripheral afferents and descending systems.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 5, No. 4, pp. 406–414, July–August, 1973.  相似文献   

18.
Ong  W.Y.  Mackie  K. 《Brain Cell Biology》1999,28(1):39-45
The distribution of cannabinoid receptors was studied in the monkey spinal cord by immunocytochemistry and electron microscopy, using an antibody to the CB1 brain cannabinoid receptor. Large numbers of labelled neurons were observed in all portions of the grey matter of the spinal cord. These included small diameter 9–16µm neurons in the dorsal horn, larger (40–60µm) neurons in the intermediate grey, and very large (60–100µm), motor neurons in the ventral horn. Reaction product was observed in dendrites postsynaptic to unlabelled axon terminals. Since cannabinoid receptor activation decreases neuronal excitability by several mechanisms, including inhibition of voltage dependent calcium channels, the dense staining of CB1 in dorsal horn neurons suggests that CB1 could reduce calcium influx through such channels in these neurons. This, in turn, could decrease calcium-dependent changes in synaptic transmission and decrease sensitisation to nociceptive stimuli in these neurons. Similarly, the dense staining of CB1 in ventral horn cells suggests that cannabinoid receptors could limit calcium influx through voltage dependent calcium channels in these neurons, and could be significant in terms of neuroprotection to these neurons.  相似文献   

19.
Developmental features of thoracic intervertrebral discs and their association in the adult with other vertebral structures were investigated in four species. The human anulus fibrosus, nucleus pulposus, and intra-articular ligaments were compared to those of the fetal rhesus monkey, mouse, and kitten. Photomicrographs of transverse sections of intervertebral discs document the presence of intra-articular ligaments in fetuses of these four species. Both transverse and sagittal sections of kittens were used to identify the intercapital ligament as it differentiated from the dorsal part of the intra-articular ligament. Relatively frequent dorsal herniation of the thoracic nucleus pulposus in humans may be due to the vestigial nature of the human intra-articular ligament. Quadrupeds have well-developed intra-articular ligaments, which explains anatomically the paucity of dorsal protrusions of the nucleus pulposus into the vertebral canal in the thoracic region of the cat and mouse when compared to the human. The intra-articular ligament was closely associated with the developing prenatal mammalian intervertebral disc in the four species studied, and this relationship and its surgical importance are described.  相似文献   

20.
Summary Interferon-γ can facilitate the spinal nociceptive flexor reflex and elicit neuropathic pain-related behavior in rats and mice. Immunoreactivity for the interferon-γ receptor (IFN-γR) occurs in the superficial layers of the dorsal horn and the lateral spinal nucleus in the rat and mouse spinal cord, as well as in subsets of neurons in the dorsal root ganglia. The aim of the present study was to examine the cellular localization and origin of the IFN-γR in the spinal cord. As viewed by confocal microscopy, the immunopositivity for the IFN-γR was co-localized with that of the presynaptic marker synaptophysin and with neuronal nitric oxide synthase in the lateral spinal nucleus, whereas only a minor overlap with these molecules was observed in laminae I and II of the dorsal horn. There was no co-localization of the IFN-γR with markers for astrocytes and microglial cells. Ultrastructurally, the IFN-γR was found predominantly in axon terminals in the lateral spinal nucleus but also at postsynaptic sites in dendrites in laminae I and II. The IFN-γR expressed in neurons in dorsal root ganglia was transported in axons both centrally and peripherally. Hemisection of the spinal cord caused no reduction in immunolabelling of the IFN-γR in the dorsal horn or the lateral spinal nucleus. Since rhizotomy does not effect the immunolabelling in the lateral spinal nucleus, our observation indicates that the presynaptic receptors in this nucleus are derived from intrinsic neurons. The localization of the IFN-γR in the spinal cord differed from that of the AMPA glutamate receptor subunits 2 and 3 and the substance P receptor (NK1). Our results, showing localization of IFN-γR to pre- and postsynaptic sites in the dorsal horn and lateral spinal nucleus indicate that IFN-γ can modulate nociception at the spinal cord level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号