首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Samples of the cotton aphid, Aphis gossypii Glover, populations collected from the vicinity of Multan in central Pakistan from 1997 to 2000 were evaluated for pyrethroid resistance in comparison with a susceptible laboratory colony using a leaf-dip bioassay. Resistance to seven pyrethroid insecticides viz. cypermethrin, alphacypermethrin, zetacypermethrin, cyfluthrin, fenpropathrin, bifenthrin, and lambdacyhalothrin was generally very high. However, A. gossypii consistently showed lower resistance to deltamethrin than to other pyrethroids. The lower deltamethrin resistance implies that deltamethrin might be less affected by the resistance mechanism(s) present, a feature that could potentially be exploited in strategies for managing A. gossypii. The influence of insecticide use on cotton on the extent and dynamics of resistance in A. gossypii is discussed.  相似文献   

2.
Aphis gossypii Glover (cotton aphid) is a major secondary pest of Australian cotton that readily develops resistance to the carbamate insecticide pirimicarb (Pirimor®) and to organophosphates generally. To test the pirimicarb resistance status of Australian strains of A . gossypii , a polymerase chain reaction (PCR) assay followed by restriction enzyme assay (REA) was designed to identify the Ace I polymorphism S431F known to be responsible for resistance. The method was tested against reference and 33 field strains collected over two consecutive seasons. Both methods confirmed pirimicarb resistance in two field strains, one from each cotton season, giving credence to the molecular technique described. The PCR assay proved specific for the Ace I gene. This PCR REA assay has the potential to replace bioassay for the routine pirimicarb resistance monitoring in A . gossypii. With the molecular assay providing results in 48 h, compared with 4–8 weeks for bioassay, such an assay could be used before insecticide control.  相似文献   

3.
Susceptibility to oxydemeton-methyl and imidacloprid, and the inhibitory effects of oxydemeton-methyl and some organophosphate compounds on acetylcholinesterase (AChE) and carboxylesterase activity were studied in two populations (Karaj and Rasht) of green peach aphids, Myzus persicae (Sulzer). Results show that the Karaj population was resistant to oxydemeton-methyl but susceptible to imidacloprid. The esterase activity of the resistant and susceptible populations suggests that one of the resistance mechanisms to oxydemeton-methyl was esterase-based. The inhibition assay shows that the AChE of the Karaj population is less sensitive to oxydemeton-methyl and paraoxon derivatives. Regarding the paraoxon derivatives, the smaller paraoxon side chain is more potent against the modified AChE than against the AChE from the susceptible strain. Fertility life table parameters of green peach aphid populations resistant and susceptible to oxydemeton-methyl also were studied under laboratory conditions. The standard errors of the population growth parameters were calculated using the Jackknife method. Results showed that susceptible strain exhibits a significantly higher r(m) than the resistant strain, probably because the resistant strain had a higher generation time than the susceptible strain. These results suggested that the resistant Karaj strain may be less fit than the susceptible strain.  相似文献   

4.
Since the discovery of the soybean aphid, Aphis glycines Matsumura (Hemiptera: Aphididae), in North America in 2000, chemical control has been the most effective method to manage aphid outbreaks. Increased insecticide use in soybean raises the possibility of developing insecticide resistance in soybean aphid, and monitoring insecticide susceptibility is essential to maintain pesticide tools. We developed a simple and reliable aphid-dip bioassay by using a tea strainer that resulted in -90% survival in controls. Using this technique, we tested susceptibility of a greenhouse strain of soybean aphid that has never been exposed to insecticides, and field-collected aphid strains from two counties in Michigan. Aphid susceptibility was tested for five insecticides by dipping groups of five aphids in each insecticide dose for 10 s. After 48 h, aphids were classified as dead or alive, and counted. Aphids from all strains were highly susceptible to chlorpyrifos, lambda-cyhalothrin, esfenvalerate, and dimethoate, with LC50 and LC90 values well below the recommended application rates. However, aphids showed less susceptibility after 48 h to neonicotinoid imidacloprid, with higher LC90s and wider fiducial limits. This illustrated the potential limitation of using a 48-h assay to evaluate insecticides with longer-term, sublethal impacts. Nevertheless, this study made use of a simple aphid-dip method to test and compare insecticide susceptibility of soybean aphid. In the event of a field failure, the aphid populations involved can be tested in comparison to a susceptible greenhouse strain to determine the extent of resistance development.  相似文献   

5.
Homalodisca coagulata Say, adults from three locations in California were subjected to insecticide bioassays to establish baseline toxicity. Initially, two bioassay techniques, petri dish and leaf dip, were compared to determine the most useful method to establish baseline susceptibility data under laboratory and greenhouse conditions. Comparative dose-response data were determined by both techniques to endosulfan, dimethoate, cyfluthrin, and acetamiprid. Toxic values were similar to some insecticides with both techniques but not for all insecticides, revealing susceptibility differences among the three populations of H. coagulata. In subsequent tests, the petri dish technique was selected to establish baseline susceptibility data to various contact insecticides. A systemic uptake bioassay was adapted to estimate dose-mortality responses to a systemic insecticide, imidacloprid. A 2-yr comparison of toxicological responses showed all three populations of H. coagulata to be highly susceptible to 10 insecticides, including chlorpyrifos, dimethoate, endosulfan, bifenthrin, cyfluthrin, esfenvalerate, fenpropathrin, acetamiprid, imidacloprid, and thiamethoxam. In general, two pyrethroids, bifenthrin and esfenvalerate, were the most toxic compounds, followed by two neonicotinoids, acetamiprid and imidacloprid. The LC50 values for all insecticides tested were lower than concentrations used as recommended field rates. Baseline data varied for the three geographically distinct H. coagulata populations with the petri dish technique. Adult H. coagulata collected from San Bernardino County were significantly more susceptible to select pyrethroids compared with adults from Riverside or Kern counties. Adults from San Bernardino County also were more sensitive to two neonicotinoids, acetamiprid and imidacloprid. The highest LC50 values were to endosulfan, which nonetheless proved highly toxic to H. coagulata from all three regions. In the majority of the tests, mortality increased over time resulting in increased susceptibility at 48 h compared with 24 h. These results indicate a wide selection of highly effective insecticides that could aid in managing H. coagulata populations in California.  相似文献   

6.
吴刚 《昆虫学报》2005,48(4):531-536
采用药膜法研究了福州建新和闽侯上街菜蚜茧蜂Diaeretiella rapae对杀虫剂抗药性的季节性变化。田间菜蚜茧蜂种群在网室内脱离选择压力后对杀虫剂敏感性显著升高。与敏感的F21子代的LC50相比,2002年6月8日至2004年11月18日期间,建新菜区菜蚜茧蜂对甲胺磷、氟虫腈、阿维菌素、氰戊菊酯和吡虫啉的抗性倍数分别为11.8~31.2,9.3~14.7,9.3~35.7,7.0~16.6,和13.3~30.1倍;2003年6月5日至2004年12月17日期间,上街菜区菜蚜茧蜂对甲胺磷、氟虫腈、阿维菌素、氰戊菊酯和吡虫啉的抗性倍数分别为7.5~34.9,4.0~14.3,9.2~38.6,7.8~18.9和12.1~24.2倍。田间菜蚜茧蜂种群在5月份和6月初抗性水平最高,12月份较低,6月末最低,尤其在6月份期间20天内抗性水平急剧下降。研究结果表明,田间菜蚜茧蜂对6种杀虫剂的抗性水平在脱离选择压力后不稳定,且呈显著的季节性变化。表2参25  相似文献   

7.
Strains of the aphid Aphis gossypii, taken from cucumber in UK glasshouses were tested for resistance to pirimicarb, diazinon and heptenophos. Compared to a susceptible strain, resistance factors to diazinon of up to 659 were found in populations collected between 1987 and 1989. Compared to the same susceptible strain, diazinon-resistant populations also showed a reduced response to heptenophos. All field populations tested against pirimicarb were resistant. Host plant preference tests showed that all strains (including stock cultures) tested could readily breed on cotton. However strains originally collected from chrysanthemum did not transfer to cucumber and likewise strains from cucumber would not colonise chrysanthemum. Polyacrylamide gel electrophoresis of four of the aphid strains showed differences in migration rates and intensity of staining of esterase bands. Intensity of staining was correlated with the degree of diazinon resistance.  相似文献   

8.
为明确抗吡虫啉棉蚜Aphis gossypii对其他新烟碱药剂交互抗性及相关酶活性的变化, 本研究以室内筛选的棉蚜吡虫啉抗性种群、山东夏津县田间多抗种群和敏感种群为材料,采用生测法测定了这3种不同抗性种群棉蚜对呋虫胺和烯啶虫胺的交互抗性,以及3种解毒酶抑制剂对吡虫啉等药剂的增效作用,采用生化分析法测定了这3个种群棉蚜解毒酶及乙酰胆碱酯酶的活性和药剂的抑制作用。结果表明:吡虫啉抗性种群、夏津田间多抗种群的棉蚜对呋虫胺均无交互抗性,但对烯啶虫胺的交互抗性分别达5.28和4.89倍。呋虫胺对抗吡虫啉棉蚜的羧酸酯酶、乙酰胆碱酯酶及谷胱甘肽-S-转移酶都有显著的抑制作用;烯啶虫胺对抗吡虫啉棉蚜的羧酸酯酶、乙酰胆碱酯酶及谷胱甘肽-S-转移酶的抑制作用较小。羧酸酯酶抑制剂TPP和多功能氧化酶抑制剂PBO对吡虫啉和烯啶虫胺都有明显的增效作用,但对呋虫胺的增效作用不明显; 谷胱甘肽-S-转移酶抑制剂DEM对3种药剂均没有明显的增效作用。呋虫胺和烯啶虫胺都可以抑制抗吡虫啉棉蚜的解毒酶及乙酰胆碱酯酶,其中以呋虫胺的抑制效果较为显著。结果显示呋虫胺在抗吡虫啉棉蚜治理中的应用价值较大,其结构可为今后新烟碱类药剂的开发提供参考。  相似文献   

9.
Resistance of two strains of cotton aphid, Aphis gossypii Glover, to fenvalerate and imidacloprid were determined on cotton (Gossypium hirsutum L.) and cucumber (Cucumis sativa L.) after resistance selection of one strain to fenvalerate for 16 consecutive generations, and of a second strain to imidacloprid for 12 consecutive generations on cotton in greenhouses. Dose-response and activities of detoxication enzymes of the fenvalerate-resistant strain (R-fenvalerate), the imidacloprid-resistant strain (R-imidacloprid), and a susceptible strain (S) were determined. After 16 consecutive generations of selection, resistance of A. gossypii to fenvalerate increased >29,000-fold and to imidacloprid 8.1-fold. On cucumber. resistance of the R-fenvalerate strain to fenvalerate increased 700-fold and to imidacloprid 3.6-fold. However, the most significant finding in this study was that the R-imidacloprid strain exhibited cross-resistance to fenvalerate, with a resistance ratio of 108.9-fold on cotton and 3:3.5-fold on cucumber, whereas the R-fenvalerate strain did not show significant cross-resistance to imidacloprid on either plant species. Both resistant strains of A. gossypii were more resistant to fenvalerate on cotton than on cucumber, whereas their susceptibility to imidacloprid on otton and cucumber were not significantly different. The response of the S strain to fenvalerate and imidacloprid were similar on cotton and Cucumber. Activities of acetylcholinesterase (AChE) and alpha-naphthylacetate (alpha-NA) esterases of A. gossypii were significantly different among the three strains, with the R-fenvalerate strains having the highest, followed by the R-imidacloprid strain, and the S strain the lowest. The activities of the AChE and alpha-NA esterases for all three strains were also significantly higher on cotton than on cucumber. The resistance mechanism and resistance management strategies for the R-fenvalerate and R-imidacloprid strains of A. gossypii to fenvalerate and imidacloprid on cotton and cucumber are discussed.  相似文献   

10.
棉蚜啶虫脒抗性种群交互抗性和增效剂增效作用的研究   总被引:1,自引:0,他引:1  
【目的】明确棉蚜Aphis gossypii Glover啶虫脒抗性品系与其它杀虫剂的交互抗性现状以及增效剂的增效作用,为延缓和治理棉蚜对啶虫脒的抗性提供依据。【方法】采用单头反选育和群体汰选的方式,获得了棉蚜啶虫脒敏感和抗性品系;采用叶片药膜法测定了13种杀虫剂对啶虫脒的交互抗性以及增效剂对啶虫脒的增效作用。【结果】经过室内棉蚜敏感和抗性品系的筛选,获得了相对抗性倍数为82.33倍的棉蚜啶虫脒抗性品系。棉蚜啶虫脒抗性品系的交互抗性谱的研究表明,交互抗性倍数小于5的药剂为:吡蚜酮,甲基阿维菌素;交互抗性倍数在5~10倍的药剂为:噻虫嗪,联苯菊酯,毒死蜱,马拉硫磷,丙溴磷,辛硫磷;交互抗性倍数在10~15倍的药剂为:硫丹,阿维菌素,高效氯氰菊酯,三唑磷,氧化乐果;交互抗性倍数大于1 5倍的药剂为:吡虫啉。增效剂实验表明,TPP和PBO在啶虫脒敏感品系中增效作用不明显,但在抗性品系中增效作用显著。在啶虫脒抗性品系中的增效比为1.77、1.61,在啶虫脒敏感品系中的增效比为1.02、1.03。DEM在啶虫脒抗性、敏感品系中的增效作用均不明显,增效比为1.04、1.02。TPP和PBO对啶虫脒有很好的增效作用。以室内棉蚜敏感品系(LC_(50)为0.180 mg/L)为基础,对新疆各主要棉区的棉蚜种群进行了啶虫脒药剂的抗性调查,结果表明新疆各主要棉区棉蚜对啶虫脒的相对抗性倍数为6.1~22.0倍。【结论】由此说明新疆主要棉区棉蚜对啶虫脒具有一定的抗性风险,生产中可以利用无交互抗性的吡蚜酮和甲基阿维菌素来治理抗性棉蚜种群。  相似文献   

11.
Between 2006 and 2008, 20 populations of Planococcus ficus (Signoret), from Coachella and San Joaquin Valleys of California were measured in the laboratory for susceptibility to buprofezin, chlorpyrifos, dimethoate, methomyl, and imidacloprid. Toxicity was assessed using a petri dish bioassay technique for contact insecticides and by a systemic uptake technique for imidacloprid. Mixed life stages were tested for susceptibility to all insecticides except for buprofezin, which was measured against early and late instars (first, second, and third). Dose-response regression lines from the mortality data established LC50 and LC99 values by both techniques. Responses of populations from the two geographical locations to all five insecticides varied, in some cases significantly. Variations in susceptibility to each insecticide among sample sites showed a sevenfold difference for buprofezin, 11-fold to chlorpyrifos, ninefold to dimethoate, 24-fold to methomyl, and 8.5-fold to imidacloprid. In spite of susceptibility differences between populations, baseline toxicity data revealed that all five insecticides were quite effective based on low LC50s. Chlorpyrifos was the most toxic compound to Planococcus ficus populations as shown by lowest LC50s. Buprofezin was toxic to all immature stages but was more potent to first instars. The highest LC99 estimated by probit analysis of the bioassay data of all 20 populations for each compound was selected as a candidate discriminating dose for use in future resistance monitoring efforts. Establishment of baseline data and development of resistance monitoring tools such as bioassay methods and discriminating doses are essential elements of a sustainable management program for Planococcus ficus.  相似文献   

12.
The broad-spectrum insecticides greatly influence the control of cotton aphids; however, due to frequent chemical control, Aphis gossypii (Hemiptera: Aphididae) has developed resistance against several classes of synthetic insecticides. In this study, we explored the sub-lethal effects of imidacloprid and pirimicarb, two commonly used insecticides for aphid control, on a parasitoid wasp, Lysiphlebus fabarum (Marshall) (Braconidae: Aphidiinae), when simultaneously used to control melon aphid on cucumber plants, as part of a comprehensive study for integrated pest management. Bioassays of imidacloprid and pirimicarb were performed to calculate LC50 with third instars of A. gossypii. The LC50 of these insecticides (110.55 and 250.89 μg/lit, respectively) were used to expose the wasp larvae, pupae, and adult parasitoids on a cucumber leaf. The percent mortality, percent adult emergence, and sex ratio were calculated during each exposure test. Moreover, the body size, egg load, and mature egg size of wasps surviving the insecticide treatments, as well as the sex ratio of the second generation was evaluated. Regardless of the host aphid mortality, none of the insecticides caused mortality of larval stage of the parasitoid. The insecticide application on pupal stage revealed that the percentage of mortality, sex ratio, body size, and egg load of surviving wasps, as well as the sex ratio of their offspring was adversely affected by imidacloprid, but not by pirimicarb. The present study suggests pirimicarb as a preferred insecticide, with less harmful effects on the fitness components of L. fabarum, for integrated pest management of cotton aphids.  相似文献   

13.
几种药剂对桃蚜和两种瓢虫的毒力选择性研究   总被引:1,自引:0,他引:1  
在室内分别测定了吡虫啉,吡虫啉+增效剂,氰戊菊酯,硫丹、乐果和灭多威6种杀虫剂对桃蚜Myzus persicae Sulzer,七星瓢虫Coccinella septempunctata Linnaeus和龟纹瓢虫Propylea japonica(Thunbery)的毒力,比较了药剂在桃蚜和两种瓢虫之间的选择毒力比值(STR),以及药剂之间选择性差异,研究了桃蚜对不同药剂相对适合度,结果表明:吡虫啉+增效剂(SVI)和吡虫啉对桃蚜的毒力均很高,LC50分别是4628mg/L和0.9535mg/L,吡虫啉在七星瓢虫和桃蚜之间,龟纹瓢虫和桃蚜之间的STR值分别是37.6和13.0,吡虫啉+增效剂的STR分别是9.84和7.75,硫丹的SR分别是54.0和7.28,都表现出显的毒力选择性,而氰戊菊酯,乐果和灭多威的STR值均很小(0.02-0.21),不仅对桃蚜毒力低,而且对两种瓢虫也不安全,用吡虫啉和吡虫啉+SV1的LC50浓度处理桃蚜,其存活个体的产仔率和单雌产仔量明显减少,与其它药剂处理相比,显降低了桃蚜的相对适合度,六种杀虫剂处理的桃蚜种群,其相对适合度大小排列为:乐果EC(0.92)>氰戊菊酯EC(0.67)>灭多威EC(0.66)>硫丹EC(0.51)>吡虫啉WP(0.40)>吡虫啉+增效剂(SV1)EC(0.18),由此证明,吡虫啉不仅对桃蚜毒力高,对天敌瓢虫杀伤力小,而且对桃蚜种群有持续控制作用。  相似文献   

14.
陈小坤  夏晓明  王红艳  乔康  王开运 《昆虫学报》2013,56(10):1143-1151
【目的】通过对乙酰胆碱受体β1亚基突变后的抗吡虫啉棉蚜Aphis gossypii (Glover)种群的继续筛选, 明确该种群的抗性发展规律以及对其他新烟碱类杀虫剂啶虫脒和噻虫胺的交互抗性及相关酶学机理。【方法】采用浸渍法连续对抗吡虫啉棉蚜进行室内筛选、 测定噻虫胺和啶虫脒对抗吡虫啉棉蚜种群的毒力; 选择LC20剂量吡虫啉、 啶虫脒和噻虫胺处理抗性棉蚜, 采用生化分析法测定其体内羧酸酯酶、 谷胱甘肽-S-转移酶和乙酰胆碱酯酶的活性变化, 并观察其生物学特性的变化。【结果】本研究对抗性棉蚜突变种群用吡虫啉继续筛选至75代, 抗性倍数达到72.6倍, RF75停止用药筛选12代(RF75+12), 抗性仍达72.0倍。且RF75+12对噻虫胺和啶虫脒的交互抗性可分别达11.9倍和20.1倍。噻虫胺对抗吡虫啉棉蚜的蜜露分泌和体重的抑制作用均大于吡虫啉和啶虫脒。噻虫胺对RF75+12的羧酸酯酶、 谷胱甘肽-S-转移酶和乙酰胆碱酯酶均具有明显的抑制作用, 而啶虫脒的抑制作用较小。【结论】结果表明乙酰胆碱受体基因突变棉蚜种群对吡虫啉的抗性水平不仅升高, 且停止用药后其抗性可稳定遗传; 第二代新烟碱类的噻虫胺在抗吡虫啉棉蚜靶标突变种群的治理中具有较大的应用价值。  相似文献   

15.
A strain of cucumber mosaic virus isolated from a spinach plant in 1946 was readily transmitted by Myzus persicae until 1955 when it lost this property, although it was still being propagated in conditions in which other strains remained transmissible. M. circumflexus also transmitted other strains but not this one. It was transmitted as readily as other strains by Aphis gossypii and Myzus ascalonicus. M. ascalonicus transmitted less frequently than Aphis gossypii. Transmission of the spinach strain by other aphids did not make it transmissible by Myzus persicae ; nor did propagation in different plant species or several passages through spinach. In 1955 the spinach strain was occasionally transmitted by M. persicae , but the cultures isolated in this way were no more readily transmissible by the aphid than was the bulk culture maintained by manual inoculation of sap, and after a few weeks all cultures ceased to be transmitted by M. persicae.  相似文献   

16.
黄荆提取物对蚜虫的毒力及其与吡虫啉的联合毒力   总被引:2,自引:0,他引:2  
采用浸渍法测定了黄荆二氯甲烷种子提取物、吡虫啉和氧乐果对苹果黄蚜、棉蚜和桃蚜的毒力,利用毛细管点滴法测定了黄荆二氯甲烷种子提取物与吡虫啉混配对棉蚜的联合毒力,采用皿内选择法测定了黄荆二氯甲烷种子提取物和吡虫啉等药剂对桃蚜的驱避效应.结果表明:黄荆二氯甲烷种子提取物对苹果黄蚜、棉蚜和桃蚜的LC50分别为334.59、362.79和2685.80 mg·L-1,对苹果黄蚜和棉蚜的杀虫毒力较高.黄荆二氯甲烷种子提取物与吡虫啉按1000 ∶1混用,其共毒系数可达177.45,增效作用显著.黄荆二氯甲烷种子提取物和吡虫啉对桃蚜均有明显的驱避活性,处理后24和48 h 对桃蚜的驱避率分别达55.75%、39.44 %和69.89%、65.43%.噻虫嗪和啶虫脒也有一定驱避活性,处理后24和48 h对桃蚜的驱避率达16.52%~33.68%.  相似文献   

17.
棉蚜对吡虫啉的抗性选育和现实遗传力分析   总被引:1,自引:0,他引:1  
【目的】为了评估棉蚜Aphis gossypii Glover对吡虫啉的抗性风险,在室内进行了棉蚜对吡虫啉(imidacloprid)的抗性选育和抗性现实遗传力分析。【方法】采用单头反选育法和群体汰选法,分别得到了棉蚜对吡虫啉敏感品系(LC50为0.176 mg/L)和抗性品系(LC50为14.657 mg/L)。采用阈性状分析方法,获得棉蚜对吡虫啉的抗性现实遗传力(h2)。【结果】相对于田间原始种群(LC50为0.346 mg/L),吡虫啉敏感棉蚜品系对吡虫啉的LC50减少了2倍;获得的吡虫啉抗性棉蚜品系,经过40代的选育,得到抗性倍数为室内敏感品系的83.27倍的抗性品系。棉蚜对吡虫啉的抗性现实遗传力(h2)为0.1478。进一步预测其抗性发展速度,基于80%~90%的选择压力,预计抗性增长100倍时,吡虫啉可使用30.2~38.1代。【结论】这些研究说明棉蚜对吡虫啉存在抗性风险。  相似文献   

18.
The resistance to and the effects of synergists on the toxicity of six insecticides in Diaeretiella rapae (M'Intosh) (Hymenoptera: Aphidiidae), a parasitoid of vegetable aphid collected in Jianxin at Fuzhou-City, Fujian, China, were studied. In comparison with susceptible F21 progeny, the resistance ratios in resistant F0 parents were 27.6 for methamidophos, 20.8 for fipronil, 47.5 for avermectin, 3.3 for fenvalerate, 4.5 for cypermethrin, and 74.7 for imidacloprid. Piperonyl butoxide (PB), triphenyl phosphate (TPP), and diethyl maleate (DEM) were chosen to be applied in susceptible F21 progeny, as well as in resistant F11 progeny and F0 parents. Significant synergistic effects on the toxicity of the six insecticides were found by using PB, TPP, and DEM in F0 parents; on methamidophos, avermectin, and imidacloprid by PB, TPP, and DEM in F11 progeny; on fipronil by PB and DEM in F11 progeny; and on fenvalerate and cypermethrin by PB in F11 progeny. PB also showed significant synergism on the six insecticides in susceptible F21 progeny, although the synergism was far less in F21 progeny than those in resistant F0 parents. TPP and DEM showed little or no synergistic effects on the toxicity of the six insecticides in F21 progeny. Compared with TPP and DEM, the highest synergistic ratios of PB for methamidophos, fipronil, avermectin, fenvalerate, cypermethrin, and imidacloprid were observed in F0 parents, and F11 and F21 progeny. The resistance levels to methamidophos, fipronil, avermectin, fenvalerate, and cypermethrin could be inhibited strongly by applying PB in F0 parents. From the results, oxidative degradation is believed to play a critical role in resistance to methamidophos, fipronil, avermectin, fenvalerate, and cypermethrin in D. rapae. To a lesser extent, hydrolytic reactions also were partially involved in the resistance to these five insecticides by using the synergists PB, TPP, and DEM. However, although high synergism of PB, TPP, and DEM on imidacloprid was found, the resistance levels to imidacloprid remained high in the presence of PB, TPP, and DEM. The mediated detoxification of oxidative degradation and hydrolytic reactions was thought to be involved in the resistance to imidacloprid in F0 parents.  相似文献   

19.
The soybean aphid, Aphis glycines Matsumura (Homoptera: Aphididae), is a recent introduction (2000) from Asia and has become a serious soybean [Glycine max (L.) Merr. (Fabaceae)] pest in North America. Seed treatments using the neonicotinoid insecticides, imidacloprid and thiamethoxam, have been suggested as a method of control, and the use of these insecticides is becoming widespread. As a consequence, there is increased potential to select for resistance to these compounds. In the case of soybean aphids, baseline susceptibility to neonicotinoid insecticides and standardized methods for bioassay are lacking. A bioassay technique that uses excised soybean leaves immersed in an insecticide solution was developed to determine systemic insecticidal activity at lethal and sublethal concentrations. Mortality and population growth inhibition were evaluated after 7 days. Life table parameters were calculated by exposing 1‐day‐old aphids to three concentrations of thiamethoxam. Aphid mortality and nymph production were recorded daily until the entire cohort collapsed. Soybean aphid age‐specific survivorship, fecundity, net reproductive rate, longevity, intrinsic rate of increase, discrete daily growth rate, and life expectancy were all significantly reduced at higher thiamethoxam concentrations. Soybean aphid response to both insecticides was similar, and both compounds were very toxic with LC50s of 31.3 and 16.9 ng ml?1 and EC50s of 6.3 and 5.4 ng ml?1 for imidacloprid and thiamethoxam, respectively. These results indicate that the methods developed in this study had negligible impact on the life table estimates measured and can be used to develop a baseline of susceptibility as a benchmark for subsequent resistance monitoring. Given the rapid and widespread adoption of this new insecticide class, vigilant monitoring for changes in susceptibility will be essential to its long‐term sustainability.  相似文献   

20.
The susceptibility of a clone of green apple aphid, Aphis pomi (De Geer), to the neonicotinyl insecticide imidacloprid was determined by direct and indirect bioassay techniques. Aphid numbers were assessed on potted apple seedlings treated with various concentrations of imidacloprid, adults were dipped in test solutions as per the Food and Agriculture Organization protocol, or nymphs and adults were reared on treated apple leaf disks. Effective concentrations required to kill half of the test population (EC50) varied depending on the bioassay technique, ranging from as low as 0.064 ppm for first instars reared for 3 d on treated leaf disks to 1.79 ppm for adult apterae dipped in solutions of imidacloprid and held for 24 h on clean leaf disks. When imidacloprid was directly applied to aphids, mortality continued to increase over 3 d, but the difference was not statistically significant between day 2 (1.36 ppm) and day 3 (1.19 ppm). Toxicity of neonicotinyls to aphids is expressed rather slowly and primarily after oral ingestion. The effect of imidacloprid on reproduction of green apple aphid was also assessed for adult apterae reared on treated leaf disks. Contrary to previous reports, our results demonstrated that imidacloprid does not have a direct negative effect on the reproductive physiology of this species. Negative effects can mostly be attributed to the antifeedant activity of this compound and the protracted time to death. The results of this study contribute to a better understanding of the most suitable techniques for assessing aphid mortality after exposure to these new insecticides and provides a baseline susceptibility to imidacloprid for green apple aphid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号