首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Disaccharide anthracyclines analogues have been shown to exhibit different antitumour activity as compared with parents compounds doxorubicin and daunomycin. Here we report the crystal structure of the disaccharide analog MAR70 complexed with the DNA hexamer d(CGATCG). The structure has been solved at 1.54A resolution and is similar to previous crystallized anthracycline-DNA complexes with both sugar rings of the disaccharide chain lying in the DNA minor groove. Comparison with the structure of MEN10755 another disaccharide anthracycline co-crystallized with the same DNA hexamer suggests a correlation between the position of the amino sugar on the disaccharide chain and the conformation of this moiety when binding to DNA. This is discussed with respect to the influence on drug activity and on the possible interaction with other cellular targets.  相似文献   

2.
The behavior under physiological conditions of MEN 10755, a novel disaccharide analogue of doxorubicin, was investigated in detail by a variety of spectroscopic techniques including spectrophotometry, fluorescence, and (1)H NMR. The pH dependent properties of MEN 10755 were also analysed by spectrophotometry and potentiometry within the pH range 5--11. It is found that MEN 10755 behaves very similarly to doxorubicin and reproduces closely its pH dependent pattern. Like doxorubicin, MEN 10755 undergoes dimerization with a significantly smaller association constant. The interaction of MEN 10755 with calf thymus DNA was studied in detail. Spectrophotometric and fluorescence titrations of MEN 10755 with calf thymus DNA show spectral patterns almost identical to those obtained with doxorubicin implying that the binding mechanism and the stability of the resulting adducts are very similar. An apparent affinity constant of 1.2 x 10(6) was determined for the interaction of MEN 10755 with calf thymus DNA to be compared with the value of 3.3 x 10(6) measured for doxorubicin, under the same conditions. The effects of both anthracyclines on the thermal denaturation profiles of calf thymus DNA were also analyzed; both compounds turned out to stabilize to a similar extent the DNA double helix and to give rise to a characteristic two-step melting profile. The implications of the present results for the pharmacological activity and the mechanism of action of this novel and promising antitumor compound are discussed.  相似文献   

3.
The interaction of the novel disaccharide anthracycline MEN 10755 with human serum albumin (HSA) was investigated by visible absorption and fluorescence spectroscopies and by ultrafiltration. Notably, MEN 10755 binds serum albumin far stronger than doxorubicin. Albumin binding results into a drastic quenching of the intrinsic fluorescence of MEN 10755; a binding constant of 1.1 x 10(5) was determined from fluorescence data. To localize the HSA binding site of MEN 10755 competition experiments were carried out with ligands that are selective for the different drug binding sites of the protein. No relevant competition effects were seen in the case of warfarin, diazepam and hemin, known ligands of sites I, II and III, respectively. Modest effects were observed following addition of palmitic acid that targets the several fatty acid binding sites of the protein. In contrast, extensive displacement of the bound anthracycline was achieved upon addition of ethacrinic acid. On the basis of these results, it is proposed that MEN 10755 binds serum albumin tightly to a non-canonical surface binding site for which it competes specifically with ethacrinic acid.  相似文献   

4.
The initiation of new DNA strands at origins of replication in animal cells requires de novo synthesis of RNA primers by primase and subsequent elongation from RNA primers by DNA polymerase alpha. To study the specificity of primer site selection by the DNA polymerase alpha-primase complex (pol alpha-primase), a natural DNA template containing a site for replication initiation was constructed. Two single-stranded DNA (ssDNA) molecules were hybridized to each other generating a duplex DNA molecule with an open helix replication 'bubble' to serve as an initiation zone. Pol alpha-primase recognizes the open helix region and initiates RNA-primed DNA synthesis at four specific sites that are rich in pyrimidine nucleotides. The priming site positioned nearest the ssDNA-dsDNA junction in the replication 'bubble' template is the preferred site for initiation. Using a 40 base oligonucleotide template containing the sequence of the preferred priming site, primase synthesizes RNA primers of 9 and 10 nt in length with the sequence 5'-(G)GAAGAAAGC-3'. These studies demonstrate that pol alpha-primase selects specific nucleotide sequences for RNA primer formation and suggest that the open helix structure of the replication 'bubble' directs pol alpha-primase to initiate RNA primer synthesis near the ssDNA-dsDNA junction.  相似文献   

5.
In order to gain insights into the mechaism of ssDNA binding and recognition by Escherichia coli DNA topoisomerase I, the structure of the 67 kDa N-terminal fragment of topoisomerase I was solved in complex with ssDNA. The structure reveals a new conformational stage in the multistep catalytic cycle of type IA topoisomerases. In the structure, the ssDNA binding groove leading to the active site is occupied, but the active site is not fully formed. Large conformational changes are not seen; instead, a single helix parallel to the ssDNA binding groove shifts to clamp the ssDNA. The structure helps clarify the temporal sequence of conformational events, starting from an initial empty enzyme and proceeding to a ssDNA-occupied and catalytically competent active site.  相似文献   

6.
A H Wang  G Ughetto  G J Quigley  A Rich 《Biochemistry》1987,26(4):1152-1163
The crystal structure of a daunomycin-d(CGTACG) complex has been solved by X-ray diffraction analysis and refined to a final R factor of 0.175 at 1.2-A resolution. The crystals are in a tetragonal crystal system with space group P4(1)2(1)2 and cell dimensions of a = b = 27.86 A and c = 52.72 A. The self-complementary DNA forms a six base pair right-handed double helix with two daunomycin molecules intercalated in the d(CpG) sequences at either end of the helix. Daunomycin in the complex has a conformation different from that of daunomycin alone. The daunomycin aglycon chromophore is oriented at right angles to the long dimension of the DNA base pairs, and the cyclohexene ring A rests in the minor groove of the double helix. Substituents on this ring have hydrogen-bonding interactions to the base pairs above and below the intercalation site. O9 hydroxyl group of the daunomycin forms two hydrogen bonds with N3 and N2 of an adjacent guanine base. Two bridging water molecules between the drug and DNA stabilize the complex in the minor groove. In the major groove, a hydrated sodium ion is coordinated to N7 of the terminal guanine and the O4 and O5 of daunomycin with a distorted octahedral geometry. The amino sugar lies in the minor groove without bonding to the DNA. The DNA double helix is distorted with an asymmetrical rearrangement of the backbone conformation surrounding the intercalator drug. The sugar puckers are C1,C2'-endo, G2,C1'-endo, C11,C1'-endo, and G12,C3'-exo. Only the C1 residue has a normal anti-glycosyl torsion angle (chi = -154 degrees), while the other three residues are all in the high anti range (average chi = -86 degrees). This structure allows us to identify three principal functional components of anthracycline antibiotics: the intercalator (rings B-D), the anchoring functions associated with ring A, and the amino sugar. The structure-function relationships of daunomycin binding to DNA as well as other related anticancer drugs are discussed.  相似文献   

7.
The crystal structures of the 2:1 complex of the self-complementary DNA octamer d(GAAGCTTC) with actinomycin D has been determined at 3.0 A resolution. This is the first example of a crystal structure of a DNA-drug complex in which the drug intercalates into the middle of a relatively long DNA segment. The results finally confirmed the DNA-actinomycin intercalation model proposed by Sobell & co-workers in 1971. The DNA molecule adopts a severely distorted and slightly kinked B-DNA-like structure with an actinomycin D molecule intercalated in the middle sequence, GC. The two cyclic depsipeptides, which differ from each other in overall conformation, lie in the minor groove. The complex is further stabilized by forming base-peptide and chromophore-backbone hydrogen bonds. The DNA helix appears to be unwound by rotating one of the base-pairs at the intercalation site. This single base-pair unwinding motion generates a unique asymmetrically wound helix at the binding site of the drug, i.e. the helix is loosened at one end of the intercalation site and tightened at the other end. The large unwinding of the DNA by the drug intercalation is absorbed mostly in a few residues adjacent to the intercalation site. The asymmetrical twist of the DNA helix, the overall conformation of the two cyclic depsipeptides and their interaction mode with DNA are correlated to each other and rationally explained.  相似文献   

8.
9.
Relaxases are DNA strand transferases that catalyze the initial and final stages of DNA processing during conjugative cell-to-cell DNA transfer. Upon binding to the origin of transfer (oriT) DNA, relaxase TrwC melts the double helix. The three-dimensional structure of the relaxase domain of TrwC in complex with its cognate DNA at oriT shows a fold built on a two-layer alpha/beta sandwich, with a deep narrow cleft that houses the active site. The DNA includes one arm of an extruded cruciform, an essential feature for specific recognition. This arm is firmly embraced by the protein through a beta-ribbon positioned in the DNA major groove and a loop occupying the minor groove. It is followed by a single-stranded DNA segment that enters the active site, after a sharp U-turn forming a hydrophobic cage that traps the N-terminal methionine. Structural analysis combined with site-directed mutagenesis defines the architecture of the active site.  相似文献   

10.
The TREX enzymes process DNA as the major 3′→5′ exonuclease activity in mammalian cells. TREX2 and TREX1 are members of the DnaQ family of exonucleases and utilize a two metal ion catalytic mechanism of hydrolysis. The structure of the dimeric TREX2 enzyme in complex with single-stranded DNA has revealed binding properties that are distinct from the TREX1 protein. The TREX2 protein undergoes a conformational change in the active site upon DNA binding including ordering of active site residues and a shift of an active site helix. Surprisingly, even when a single monomer binds DNA, both monomers in the dimer undergo the structural rearrangement. From this we have proposed a model for DNA binding and 3′ hydrolysis for the TREX2 dimer. The structure also shows how TREX proteins potentially interact with double-stranded DNA and suggest features that might be involved in strand denaturation to provide a single-stranded substrate for the active site.  相似文献   

11.
DNA polymerase alpha from Drosophila melanogaster embryos is a multisubunit enzyme complex which can exhibit DNA polymerase, 3'----5' exonuclease, and DNA primase activities. Pyridoxal 5'-phosphate (PLP) inhibition of DNA polymerase activity in this complex is time dependent and exhibits saturation kinetics. Inhibition can be reversed by incubation with an excess of a primary amine unless the PLP-enzyme conjugate is first reduced with NaBH4. These results indicate that PLP inhibition occurs via imine formation at a specific site(s) on the enzyme. Results from substrate protection experiments are most consistent with inhibition of DNA polymerase activity by PLP binding to either one of two sites. One site (PLP site 1) can be protected from PLP inhibition by any nucleoside triphosphate in the absence or presence of template-primer, suggesting that PLP site 1 defines a nucleotide-binding site which is important for DNA polymerase activity but which is distinct from the DNA polymerase active site. PLP also inhibits DNA primase activity of the DNA polymerase alpha complex, and primase activity can be protected from PLP inhibition by nucleotide alone, arguing that PLP site 1 lies within the DNA primase active site. The second inhibitory PLP-binding site (PLP site 2) is only protected from PLP inhibition when the enzyme is bound to both template-primer and correct dNTP in a stable ternary complex. Since binding of PLP at site 2 is mutually exclusive with template-directed dNTP binding at the DNA polymerase active site, PLP site 2 appears to define the dNTP binding domain of the active site. Results from initial velocity analysis of PLP inhibition argue that there is a rate-limiting step in the polymerization cycle during product release and/or translocation.  相似文献   

12.
13.
Intercalating complexes of rhodium(III) are strong photo-oxidants that promote DNA strand cleavage or electron transfer through the double helix. The 1.2 A resolution crystal structure of a sequence-specific rhodium intercalator bound to a DNA helix provides a rationale for the sequence specificity of rhodium intercalators. It also explains how intercalation in the center of an oligonucleotide modifies DNA conformation. The rhodium complex intercalates via the major groove where specific contacts are formed with the edges of the bases at the target site. The phi ligand is deeply inserted into the DNA base pair stack. The primary conformational change of the DNA is a doubling of the rise per residue, with no change in sugar pucker from B-form DNA. Based upon the five crystallographically independent views of an intercalated DNA helix observed in this structure, the intercalator may be considered as an additional base pair with specific functional groups positioned in the major groove.  相似文献   

14.
The Klenow fragment of DNA polymerase I from Escherichia coli has two enzymatic activities: DNA polymerase and 3'-5' exonuclease. The crystal structure showed that the fragment is folded into two distinct domains. The smaller domain has a binding site for deoxynucleoside monophosphate and a divalent metal ion that is thought to identify the 3'-5' exonuclease active site. The larger C-terminal domain contains a deep cleft that is believed to bind duplex DNA. Several lines of evidence suggested that the large domain also contains the polymerase active site. To test this hypothesis, we have cloned the DNA coding for the large domain into an expression system and purified the protein product. We find that the C-terminal domain has polymerase activity (albeit at a lower specific activity than the native Klenow fragment) but no measurable 3'-5' exonuclease activity. These data are consistent with the hypothesis that each of the three enzymatic activities of DNA polymerase I from E. coli resides on a separate protein structural domain.  相似文献   

15.
16.
17.
The polymerase and 3'-5'-exonuclease activities of the Klenow fragment of DNA polymerase I are located on separate structural domains of the protein, separated by about 30 A. To determine whether a DNA primer terminus can move from one active site to the other without dissociation of the enzyme-DNA complex, we carried out reactions on a labeled DNA substrate in the presence of a large excess of unlabeled DNA, to limit observations to a single enzyme-DNA encounter. The results indicated that while Klenow fragment is capable of intramolecular shuttling of a DNA substrate between the two catalytic sites, the intermolecular pathway involving enzyme-DNA dissociation can also be used. Thus, there is nothing in the protein structure or the reaction mechanism that dictates a particular means of moving the DNA substrate. Instead, the use of the intermolecular or the intramolecular pathway is determined by the competition between the polymerase or exonuclease reaction and DNA dissociation. When the substrate has a mispaired primer terminus, DNA dissociation seems generally more rapid than exonucleolytic digestion. Thus, Klenow fragment edits its own polymerase errors by a predominantly intermolecular process, involving dissociation of the enzyme-DNA complex and reassociation of the DNA with the exonuclease site of a second molecule of Klenow fragment.  相似文献   

18.
Selective strand scission by intercalating drugs at DNA bulges   总被引:4,自引:0,他引:4  
A bulge is an extra, unpaired nucleotide on one strand of a DNA double helix. This paper describes bulge-specific strand scission by the DNA intercalating/cleaving drugs neocarzinostatin chromophore (NCS-C), bleomycin (BLM), and methidiumpropyl-EDTA (MPE). For this study we have constructed a series of 5'-32P end labeled oligonucleotide duplexes that are identical except for the location of a bulge. In each successive duplex of the series, a bulge has been shifted stepwise up (from 5' to 3') one strand of the duplex. Similarly, in each successive duplex of the series, sites of bulge-specific scission and protection were observed to shift in a stepwise manner. The results show that throughout the series of bulged duplexes NCS-C causes specific scission at a site near a bulge, BLM causes specific scission at a site near a bulge, and MPE-Fe(II) causes specific scission centered around the bulge. In some sequences, NCS-C and BLM each cause bulge-specific scission at second sites. Further, bulged DNA shows sites of protection from NCS-C and BLM scission. The results are consistent with a model of bulged DNA with (1) a high-stability intercalation site at the bulge, (2) in some sequences, a second high-stability intercalation site adjacent to the first site, and (3) two sites of relatively unstable intercalation that flank the two stable intercalation sites. On the basis of our results, we propose a new model of the BLM/DNA complex with the site of intercalation on the 3' side (not in the center) of the dinucleotide that determines BLM binding specificity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Rotation of a DNA or RNA nucleotide out of the double helix and into a protein pocket (‘base flipping’) is a mechanistic feature common to some DNA/RNA-binding proteins. Here, we report the structure of HhaI methyltransferase in complex with DNA containing a south-constrained abasic carbocyclic sugar at the target site in the presence of the methyl donor byproduct AdoHcy. Unexpectedly, the locked south pseudosugar appears to be trapped in the middle of the flipping pathway via the DNA major groove, held in place primarily through Van der Waals contacts with a set of invariant amino acids. Molecular dynamics simulations indicate that the structural stabilization observed with the south-constrained pseudosugar will not occur with a north-constrained pseudosugar, which explains its lowered binding affinity. Moreover, comparison of structural transitions of the sugar and phosphodiester backbone observed during computational studies of base flipping in the M.HhaI–DNA–AdoHcy ternary complex indicate that the south-constrained pseudosugar induces a conformation on the phosphodiester backbone that corresponds to that of a discrete intermediate of the base-flipping pathway. As previous crystal structures of M.HhaI ternary complex with DNA displayed the flipped sugar moiety in the antipodal north conformation, we suggest that conversion of the sugar pucker from south to north beyond the middle of the pathway is an essential part of the mechanism through which flipping must proceed to reach its final destination. We also discuss the possibility of the south-constrained pseudosugar mimicking a transition state in the phosphodiester and sugar moieties that occurs during DNA base flipping in the presence of M.HhaI.  相似文献   

20.
A large number of biochemical and genetic studies have demonstrated the involvement of DNA polymerase beta (Pol beta) in mammalian base excision repair (BER). Pol beta participates in BER sub-pathways by contributing gap filling DNA synthesis and lyase removal of the 5'-deoxyribose phosphate (dRP) group from the cleaved abasic site. To better understand the mechanism of the dRP lyase reaction at an atomic level, we determined a crystal structure of Pol beta complexed with 5'-phosphorylated abasic sugar analogs in nicked DNA. This DNA ligand represents a potential BER intermediate. The crystal structure reveals that the dRP group is bound in a non-catalytic binding site. The catalytic nucleophile in the dRP lyase reaction, Lys72, and all other potential secondary nucleophiles, are too far away to participate in nucleophilic attack on the C1' of the sugar. An approximate model of the dRP group in the expected catalytic binding site suggests that a rotation of 120 degrees about the dRP 3'-phosphate is required to position the epsilon-amino Lys72 close to the dRP C1'. This model also suggests that several other side chains are in position to facilitate the beta-elimination reaction. From results of mutational analysis of key residues in the dRP lyase active site, it appears that the substrate dRP can be stabilized in the observed non-catalytic binding conformation, hindering dRP lyase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号