首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Pregnancy produces marked systemic vasodilation, but the mechanism is unknown. Experiments were performed in conscious rabbits to test the hypotheses that increased nitric oxide (NO) production contributes to the increased vascular conductance, but that the contribution varies among vascular beds. Rabbits were instrumented with aortic and vena caval catheters and ultrasonic flow probes implanted around the ascending aorta, superior mesenteric artery, terminal aorta, and/or a femoral artery. Hemodynamic responses to intravenous injection of N(omega)-nitro-L-arginine (L-NA; 20 mg/kg or increasing doses of 2, 5, 10, 15, and 20 mg/kg) were determined in rabbits first before pregnancy (NP) and then at the end of gestation (P). L-NA produced similar increases in arterial pressure between groups, but the following responses were larger (P < 0.05) when the rabbits were pregnant: 1) decreases in total peripheral conductance [-3.7 +/- 0.3 (NP), -5.0 +/- 0.5 (P) ml x min(-1) x mmHg(-1)], 2) decreases in mesenteric conductance [-0.47 +/- 0.05 (NP), -0.63 +/- 0.07 (P) ml x min(-1) x mmHg(-1)], 3) decreases in terminal aortic conductance [-0.43 +/- 0.05 (NP), -0.95 +/- 0.19 ml x min(-1) x mmHg(-1) (P)], and 4) decreases in heart rate [-41 +/- 4 (NP), -62 +/- 5 beats/min (P)]. Nevertheless, total peripheral and terminal aortic conductances remained elevated in the pregnant rabbits (P < 0.05) after L-NA. Furthermore, decreases in cardiac output and femoral conductance were not different between the reproductive states. We conclude that the contribution of NO to vascular tone increases during pregnancy, but only in some vascular beds. Moreover, the data support a role for NO in the pregnancy-induced increase in basal heart rate. Finally, unknown factors in addition to NO must also underlie the basal vasodilation observed during pregnancy.  相似文献   

2.
Hemodynamic studies were performed to determine if blunting of vascular pressor responsiveness to vasoconstrictors during pregnancy may be due to impaired L-type voltage-dependent calcium channels (L-VDCC). Bay K 8644 (BAY), an L-VDCC agonist, was infused in pregnant and nonpregnant anesthetized rabbits (10, 20, 40, and 60 microg/kg) and pregnant and nonpregnant conscious, chronically instrumented (conscious) rabbits (10, 25, and 50 microg/kg). BAY infusions resulted in greater elevation of mean arterial pressure in both anesthetized pregnant (n = 6) vs. nonpregnant (n = 6) (P < 0.05) and conscious pregnant (n = 10) vs. nonpregnant (n = 10) rabbits (P < 0.05). Fractional increase over baseline of total peripheral resistance index was greater in pregnant (36 +/- 5 to 78 +/- 14%) vs. nonpregnant rabbits (14 +/- 4 to 52 +/- 6%) (P < 0.02). Cardiac output index did not differ. There was a single high-affinity L-VDCC antagonist aortic binding site with similar number and affinity in pregnant (n = 7) and nonpregnant (n = 7) rabbits. In conclusion, stimulation of L-VDCC induces greater pressor responses in pregnant rabbits with heightened peripheral vasoconstriction. This does not appear to be due to a change in L-VDCC receptor parameters.  相似文献   

3.
Preeclampsia (PE) is associated with increased total peripheral resistance (TPR), reduced cardiac output (CO), and diminished uterine and placental blood flow. We have developed an animal model that employs chronic reductions in uterine perfusion pressure (RUPP) in pregnant rats to generate a "preeclamptic-like" state during late gestation that is characterized by hypertension, proteinuria, and endothelial dysfunction. Although this animal model has many characteristics of human PE, the systemic hemodynamic and regional changes in blood flow that occur in response to chronic RUPP remains unknown. Therefore, we hypothesized that RUPP would decrease uteroplacental blood flow and CO, and increase TPR. Mean arterial pressure (MAP), CO, cardiac index (CI), TPR, and regional blood flow to various tissues were measured using radiolabeled microspheres in the following two groups of conscious rats: normal pregnant rats (NP; n = 8) and RUPP rats (n = 8). MAP was increased (132 +/- 4 vs. 99 +/- 3 mmHg) in the RUPP rats compared with the NP dams. The hypertension in RUPP rats was associated with increased TPR (2.15 +/- 0.02 vs. 0.98 +/- 0.08 mmHg x ml(-1) x min(-1)) and decreased CI (246 +/- 20 vs. 348 +/- 19 ml x min(-1) x kg(-1), P < 0.002) when contrasted with NP dams. Furthermore, uterine (0.16 +/- 0.03 vs. 0.38 +/- 0.09 ml x min(-1) x g tissue(-1)) and placental blood flow (0.30 +/- 0.08 vs. 0.70 +/- 0.10 ml x min(-1) x g tissue(-1)) were decreased in RUPP compared with the NP dams. These data demonstrate that the RUPP model of pregnancy-induced hypertension has systemic hemodynamic and regional blood flow alterations that are strikingly similar to those observed in women with PE.  相似文献   

4.
After an initial compensatory phase, hemorrhage reduces blood pressure due to a widespread reduction of sympathetic nerve activity (decompensatory phase). Here, we investigate the influence of intracerebroventricular naloxone (opioid-receptor antagonist) and morphine (opioid-receptor agonist) on the two phases of hemorrhage, central and peripheral hemodynamics, and release of vasopressin and renin in chronically instrumented conscious sheep. Adult ewes were bled (0.7 ml x kg(-1) x min(-1)) from a jugular vein until mean arterial blood pressure (MAP) reached 50 mmHg. Starting 30 min before and continuing until 60 min after hemorrhage, either artificial cerebrospinal fluid (aCSF), naloxone, or morphine was infused intracerebroventricularly. Naloxone (200 microg/min but not 20 or 2.0 microg/min) significantly increased the hemorrhage volume compared with aCSF (19.5 +/- 3.2 vs. 13.9 +/- 1.1 ml/kg). Naloxone also increased heart rate and cardiac index. Morphine (2.0 microg/min) increased femoral blood flow and decreased hemorrhage volume needed to reduce MAP to 50 mmHg (8.9 +/- 1.5 vs. 13.9 +/- 1.1 ml/kg). The effects of morphine were abolished by naloxone at 20 microg/min. It is concluded that the commencement of the decompensatory phase of hemorrhage in conscious sheep involves endogenous activation of central opioid receptors. The effective dose of morphine most likely activated mu-opioid receptors, but they appear not to have been responsible for initiating decompensation as 1) naloxone only inhibited an endogenous mechanism at a dose much higher than the effective dose of morphine, and 2) the effects of morphine were blocked by a dose of naloxone, which, by itself, did not delay the decompensatory phase.  相似文献   

5.
In the conscious rabbit, exposure to an air jet stressor increases arterial pressure, heart rate, and cardiac output. During hemorrhage, air jet exposure extends the blood loss necessary to produce hypotension. It is possible that this enhanced defense of arterial pressure is a general characteristic of stressors. However, some stressors such as oscillation (OSC), although they increase arterial pressure, do not change heart rate or cardiac output. The cardiovascular changes during OSC resemble those seen during freezing behavior. In the present study, our hypothesis was that, unlike air jet, OSC would not affect defense of arterial blood pressure during blood loss. Male New Zealand White rabbits were chronically prepared with arterial and venous catheters and Doppler flow probes. We removed venous blood until mean arterial pressure decreased to 40 mmHg. We repeated the experiment in each rabbit on separate days in the presence and absence (SHAM) of OSC. Compared with SHAM, OSC increased arterial pressure 14 +/- 1 mmHg, central venous pressure 3.3 +/- 0.4 mmHg, and hindquarter blood flow 34 +/- 4% while decreasing mesenteric conductance 32 +/- 3% and not changing heart rate or cardiac output. During normotensive hemorrhage, OSC enhanced hindquarter and renal vasoconstriction. Contrary to our hypothesis, OSC (23.5 +/- 0.6 ml/kg) increased the blood loss necessary to produce hypotension compared with SHAM (16.8 +/- 0.6 ml/kg). In nine rabbits, OSC prevented hypotension even after a blood loss of 27 ml/kg. Thus a stressful stimulus that resulted in cardiovascular changes similar to those seen during freezing behavior enhanced defense of arterial pressure during hemorrhage.  相似文献   

6.
To assess the degree of circulatory fullness and to evaluate the influence of peripheral and cardiac factors in the regulation of cardiac output during pregnancy, the following studies were conducted using pentobarbital-anesthetized, open-chest nonpregnant and late term pregnant guinea pigs. Mean circulatory filling pressure was taken as the equilibrium pressure when the pulmonary artery was constricted. Total vascular compliance was assessed by +/- 5-mL changes in blood volume performed while this constriction was maintained. A separate group of guinea pigs was prepared with a pulmonary artery electromagnetic flow probe and right atrial catheter. Rapid infusion of saline was used to increase right atrial pressure while the cardiac output was determined. Pregnancy was characterized by the following changes relative to nonpregnant controls: 51Cr-labelled RBC blood volume increased from 55 +/- 3 to 67 +/- 3 mL/kg; mean circulatory filling pressure increased from 7.1 +/- 0.2 to 8.0 +/- 0.5 mmHg (1 mmHg = 133.322 Pa); right atrial pressure decreased from 3.4 +/- 0.2 to 2.1 +/- 0.3 mmHg; and cardiac output increased from 71.8 +/- 3.9 to 96.8 +/- 3.3 mL.min-1.kg-1. Total vascular compliance was not changed (2.1 +/- 0.1 mL.kg-1.mmHg-1) and most of the expanded blood volume was accommodated as unstressed volume. The cardiac function curve was shifted upwards in pregnant animals. The resistance to venous return, as determined from the slope of the venous return curves, was not changed. These data suggest that the circulation of the pregnant guinea pig is slightly overfilled.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
To determine the hemodynamic effects of a hypotensive dose of atrial natriuretic factor (ANF), a synthetic peptide containing 26 amino acids of endogenous rat ANF (Arg-Arg-Ser-Ser-Cys-Phe-Gly-Gly-Arg-Ile-Asp-Arg-Ile-Gly-Ala-Gln-Ser-Gly -Leu-Gly-Cys-Asn-Ser-Phe-Arg-Tyr-COOH) was studied in two groups of barbiturate anesthetized rats. In the first experiment, a 20-minute infusion of a hypotensive dose, 95 pmole/min i.v., of the synthetic ANF decreased mean arterial pressure (MAP) by 40 +/- 3 mm Hg from a baseline of 128 +/- 5 mm Hg, and cardiac output (CO) (microsphere method) by 7.8 +/- 1.8 ml/min/100 gm from a baseline of 23.5 +/- 1.3 ml/min/100 gm. Synthetic ANF did not significantly affect the total peripheral resistance (TPR) measured at the end of the 20-minute infusion. Sodium nitroprusside (SNP), infused at an equihypotensive dose of 20 micrograms/kg/min i.v., produced the same hemodynamic profile in seven other animals; in contrast, 0.3 mg/kg i.v. of hydralazine (n = 7) lowered MAP by 56 +/- 6 mm Hg and reduced TPR index by 3.0 +/- 0.6 mm Hg/ml/min/100 gm, but did not change CO. Other than an increase in coronary blood during SNF infusion, there were no significant changes in the distribution of cardiac output. Infusion of the saline vehicle had no significant effects on any of these parameters. The results of the second experiment in anesthetized rats confirmed that hypotensive doses of 40 and 100 pmole/kg/min i.v. lowered CO (dye dilution method) from a baseline of 33 +/- 6 to a minimum of 24 +/- 2 ml/min/100 gm (p less than 0.05) without affecting TPR. In addition, synthetic ANF did not significantly affect heart rate (HR) but it slightly reduced cardiac contractility (dp/dt50). These results suggest that the hypotensive dose of synthetic ANF reduced cardiac output, partially by diminishing stroke volume, and perhaps contractility.  相似文献   

8.
Pain is a component of traumatic blood loss, yet little is known about how pain alters the response to blood loss in conscious animals. We evaluated the effects of colorectal distension on the cardiorespiratory response to blood loss in six male and six female conscious, chronically instrumented New Zealand White rabbits. The goal of these experiments was to test the hypotheses that 1) colorectal distension would increase tolerance to hemorrhage (i.e., increase the blood loss required to decrease mean arterial pressure 相似文献   

9.
We investigated the effect of muscle metaboreflex activation on left circumflex coronary blood flow (CBF) and vascular conductance (CVC) in conscious, chronically instrumented dogs during treadmill exercise ranging from mild to severe workloads. Metaboreflex responses were also observed during mild exercise with constant heart rate (HR) of 225 beats/min and beta(1)-adrenergic receptor blockade to attenuate the substantial reflex increases in cardiac work. The muscle metaboreflex was activated via graded partial occlusion of hindlimb blood flow. During mild exercise, with muscle metaboreflex activation, hindlimb ischemia elicited significant reflex increases in mean arterial pressure (MAP), HR, and cardiac output (CO) (+39.0 +/- 5.2 mmHg, +29.9 +/- 7.7 beats/min, and +2.0 +/- 0.4 l/min, respectively; all changes, P < 0.05). CBF increased from 51.9 +/- 4.3 to 88.5 +/- 6.6 ml/min, (P < 0.05), whereas no significant change in CVC occurred (0.56 +/- 0.06 vs. 0.59 +/- 0.05 ml. min(-1). mmHg(-1); P > 0.05). Similar responses were observed during moderate exercise. In contrast, with metaboreflex activation during severe exercise, no further increases in CO or HR occurred, the increases in MAP and CBF were attenuated, and a significant reduction in CVC was observed (1.00 +/- 0.12 vs. 0.90 +/- 0.13 ml. min(-1). mmHg(-1); P < 0.05). Similarly, when the metaboreflex was activated during mild exercise with the rise in cardiac work lessened (via constant HR and beta(1)-blockade), no increase in CO occurred, the MAP and CBF responses were attenuated (+15.6 +/- 4.5 mmHg, +8.3 +/- 2 ml/min), and CVC significantly decreased from 0.63 +/- 0.11 to 0.53 +/- 0.10 ml. min(-1). mmHg(-1). We conclude that the muscle metaboreflex induced increases in sympathetic nerve activity to the heart functionally vasoconstricts the coronary vasculature.  相似文献   

10.
It has been speculated that if baroafferent signals are only related to the negative feedback control of arterial pressure (AP), then physical activity would increase the range of AP fluctuation in baroafferent-denervated animals. Mean AP (MAP), heart rate (HR), and cardiac output (CO) were measured for 24 h in free-moving conscious rabbits. On the basis of hydrostatic pressure and electromyogram, MAP data taken during periods of physical activity and rest were selected from the overall 24-h MAP data and then converted into histograms. During physical activity, the mode of MAP histogram increased in intact rabbits and was unchanged in sinoaortic-denervated (SAD) rabbits. Movement increased the mode of total peripheral resistance (TPR) but did not significantly change CO in intact rabbits. Conversely in SAD rabbits, movement slightly decreased TPR and slightly increased CO. These findings indicate that arterial baroafferent signals are required to shift MAP to a higher pressure level by an increase in TPR but not in CO during a moving phase. These results suggest that baroafferent signals may not only minimize the fluctuating range of MAP through negative feedback control but also be involved in actively resetting MAP toward a higher pressure level during daily physical activity.  相似文献   

11.
The uterine artery blood flow (UtBF) and renal sympathetic nerve activity (SNA) responses to treadmill exercise were evaluated in 12 nonpregnant (NP) and 17 term pregnant (P) rabbits. UtBF was monitored continuously with a Transonic flowprobe. Rabbits underwent three exercise trials (5-min duration) that varied in absolute workload. The rise in renal SNA with exercise was intensity related. Pregnancy did not affect the average steady-state renal SNA response expressed relative to maximum activity (P 24 +/- 1% vs. NP 23 +/- 2% of maximum smoke-elicited activity) and increased the average renal SNA response expressed relative to resting activity (P +155 +/- 19% vs. NP +84 +/- 23% from rest, P = 0.03) At rest, UtBF (P 13 +/- 3 vs. NP 1.9 +/- 0.3 ml/min) and uterine artery conductance (UtC; P 22 +/- 5 vs. NP 2.8 +/- 0.5 ml. min-1.mmHg-1 x 10-2) were elevated in the P rabbits. The average exercise-related decreases in UtBF (P -16 +/- 4% vs. NP -48 +/- 4%) and UtC (P -27 +/- 4% vs. NP -54 +/- 4%) were attenuated in the P rabbits. Pregnancy does not impair the ability to raise renal SNA but attenuates the uterine artery constrictor response to moderate to heavy dynamic exercise in rabbits. Under normal conditions, the pregnant uterine circulatory bed may be relatively protected from exercise-related redistribution of blood flow.  相似文献   

12.
During moderate actual or simulated hemorrhage, as cardiac output decreases, reductions in systemic vascular conductance (SVC) maintain mean arterial pressure (MAP). Heat stress, however, compromises the control of MAP during simulated hemorrhage, and it remains unknown whether this response is due to a persistently high SVC and/or a low cardiac output. This study tested the hypothesis that an inadequate decrease in SVC is the primary contributing mechanism by which heat stress compromises blood pressure control during simulated hemorrhage. Simulated hemorrhage was imposed via lower body negative pressure (LBNP) to presyncope in 11 passively heat-stressed subjects (increase core temperature: 1.2 ± 0.2°C; means ± SD). Cardiac output was measured via thermodilution, and SVC was calculated while subjects were normothermic, heat stressed, and throughout subsequent LBNP. MAP was not changed by heat stress but was reduced to 45 ± 12 mmHg at the termination of LBNP. Heat stress increased cardiac output from 7.1 ± 1.1 to 11.7 ± 2.2 l/min (P < 0.001) and increased SVC from 0.094 ± 0.018 to 0.163 ± 0.032 l·min(-1)·mmHg(-1) (P < 0.001). Although cardiac output at the onset of syncopal symptoms was 37 ± 16% lower relative to pre-LBNP, presyncope cardiac output (7.3 ± 2.0 l/min) was not different than normothermic values (P = 0.46). SVC did not change throughout LBNP (P > 0.05) and at presyncope was 0.168 ± 0.044 l·min(-1)·mmHg(-1). These data indicate that in humans a cardiac output adequate to maintain MAP while normothermic is no longer adequate during a heat-stressed-simulated hemorrhage. The absence of a decrease in SVC at a time of profound reductions in MAP suggests that inadequate control of vascular conductance is a primary mechanism compromising blood pressure control during these conditions.  相似文献   

13.
The role of thermoregulatory background in the baroreceptor reflex control of the tail circulation was investigated 1) in anesthetized rats with a constant flow technique and 2) in conscious rats by measuring tail blood flow (venous occlusion plethysmography). In series I, during normothermia, systemic intravenous phenylephrine infusion increased mean arterial pressure (MAP) by 61.0 +/- 3.6 mmHg and induced a reflex decrease in tail perfusion pressure (TPP) from 105.0 +/- 6.3 to 84.2 +/- 4.4 mmHg (P less than 0.005). Hyperthermia decreased TPP to 66.5 +/- 5.1 mmHg (P less than 0.001) and abolished the TPP response to increased MAP (P greater than 0.05). Increases in MAP via systemic infusion of whole blood caused reductions in TPP during normothermia but failed to reduce TPP further during hyperthermia. Graded decreases in MAP during both normothermia and hyperthermia caused tail vasoconstriction. The increase in TPP was greater (P less than 0.025) during hyperthermia. In series II, conscious animals showed similar responses to hemorrhage. Graded decreases in MAP produced graded decreases in tail vascular conductance (TVC, ml.100 ml-1.min-1.100 mmHg-1). The slope of the TVC-MAP relationship averaged 0.011 +/- 0.003 TVC U/mmHg during normothermia and was markedly steeper (P less than 0.01) during hyperthermia (1.99 +/- 0.39 TVC U/mmHg). Thus the participation of the cutaneous vasculature of the rat in baroreceptor reflexes depends on thermal status, probably through the level of background sympathetic vasoconstrictor nerve activity.  相似文献   

14.
We have previously shown that both plasma protein restitution and plasma volume restitution are significantly enhanced in female rats hemorrhaged during the proestrus phase of the estrous cycle. Estradiol and progesterone levels are markedly elevated during proestrus and also increase during pregnancy. The present studies were therefore designed to determine whether the ability to restore plasma protein and blood volume after hemorrhage is augmented during pregnancy and by chronically elevated estradiol levels. The response to moderate hemorrhage (22-23% blood loss) was evaluated in conscious pregnant rats during early and midgestation and compared with that of virgin female rats studied during metestrus. At 22 h posthemorrhage, plasma volume had increased to greater than basal levels, and blood volume was restored to 93 +/- 1% (metestrus), 91 +/- 2% (early pregnancy), and 98 +/- 2% (midgestation) of control (P > 0.05). Animals hemorrhaged during metestrus or early pregnancy restored the same amount of protein to the plasma as had been removed, whereas those hemorrhaged during midgestation restored nearly 50% more plasma protein than had been removed (P < 0.01). In ovariectomized animals with chronic steroid replacement that maintained plasma progesterone at metestrus levels (15 +/- 2 ng/ml) but raised plasma estradiol to twofold that of midgestation (22 +/- 3 pg/ml), the blood volume and plasma protein restitution responses to hemorrhage did not differ from those of ovariectomized animals with no steroid replacement. In summary, posthemorrhage restoration of plasma protein content is significantly augmented during midgestation, but not during early pregnancy. This augmented response cannot be attributed to chronic elevation of plasma estradiol levels alone.  相似文献   

15.
Factors controlling cardiac sympathetic nerve activity (CSNA) in the normal state and those causing the large increase in activity in heart failure (HF) remain unclear. We hypothesized from previous clinical findings that activation of cardiac mechanoreceptors by the increased blood volume in HF may stimulate sympathetic nerve activity (SNA), particularly to the heart via cardiocardiac reflexes. To investigate the effect of volume expansion and depletion on CSNA we have made multiunit recordings of CSNA in conscious normal sheep and sheep paced into HF. In HF sheep (n = 9) compared with normal sheep (n = 9), resting levels of CSNA were significantly higher (34 +/- 5 vs. 93 +/- 2 bursts/100 heart beats, P < 0.05), mean arterial pressure was lower (76 +/- 3 vs. 87 +/- 2 mmHg; P < 0.05), and central venous pressure (CVP) was greater (3.0 +/- 1.0 vs. 0.0 +/- 1.0 mmHg; P < 0.05). In normal sheep (n = 6), hemorrhage (400 ml over 30 min) was associated with a significant increase in CSNA (179 +/- 16%) with a decrease in CVP (2.7 +/- 0.7 mmHg). Volume expansion (400 ml Gelofusine over 30 min) significantly decreased CSNA (35 +/- 12%) and increased CVP (4.7 +/- 1.0 mmHg). In HF sheep (n = 6) the responses of CSNA to both volume expansion and hemorrhage were severely blunted with no significant changes in CSNA or heart rate with either stimulus. In summary, these studies in a large conscious mammal demonstrate that in the normal state directly recorded CSNA increased with volume depletion and decreased with volume loading. In contrast, both of these responses were severely blunted in HF with no significant changes in CSNA during either hemorrhage or volume expansion.  相似文献   

16.
Feedback control of total peripheral resistance (TPR) by the arterial and cardiopulmonary baroreflex systems is an important mechanism for short-term blood pressure regulation. Existing methods for measuring this TPR baroreflex mechanism typically aim to quantify only the gain value of one baroreflex system as it operates in open-loop conditions. As a result, the normal, integrated functioning of the arterial and cardiopulmonary baroreflex control of TPR remains to be fully elucidated. To this end, the laboratory of Mukkamala et al. (Mukkamala R, Toska K, and Cohen RJ. Am J Physiol Heart Circ Physiol 284: H947-H959, 2003) previously proposed a potentially noninvasive technique for estimating the closed-loop (dimensionless) gain values of the arterial TPR baroreflex (GA) and the cardiopulmonary TPR baroreflex (GC) by mathematical analysis of the subtle, beat-to-beat fluctuations in arterial blood pressure, cardiac output, and stroke volume. Here, we review the technique with additional details and describe its experimental evaluation with respect to spontaneous hemodynamic variability measured from seven conscious dogs, before and after chronic arterial baroreceptor denervation. The technique was able to correctly predict the group-average changes in GA and GC that have previously been shown to occur following chronic arterial baroreceptor denervation. That is, reflex control by the arterial TPR baroreflex was virtually abolished (GA = -2.1 +/- 0.6 to 0.3 +/- 0.2; P < 0.05), while reflex control by the cardiopulmonary TPR baroreflex more than doubled (GC = -0.7 +/- 0.4 to -1.8 +/- 0.2; P < 0.05). With further successful experimental testing, the technique may ultimately be employed to advance the basic understanding of TPR baroreflex functioning in both humans and animals in health and disease.  相似文献   

17.
The present study tested the hypothesis that nitric oxide (NO) contributes to impaired baroreflex gain of pregnancy and that this action is enhanced by angiotensin II. To test these hypotheses, we quantified baroreflex control of heart rate in nonpregnant and pregnant conscious rabbits before and after: 1) blockade of NO synthase (NOS) with Nomega-nitro-L-arginine (20 mg/kg iv); 2) blockade of the angiotensin II AT1 receptor with L-158,809 (5 microg x kg(-1) x min(-1) iv); 3) infusion of angiotensin II (1 ng x kg(-1) x min(-1) nonpregnant, 1.6-4 ng x kg(-1) x min(-1) pregnant iv); 4) combined blockade of angiotensin II AT(1) receptors and NOS; and 5) combined infusion of angiotensin II and blockade of NOS. To determine the potential role of brain neuronal NOS (nNOS), mRNA and protein levels were measured in the paraventricular nucleus, nucleus of the solitary tract, caudal ventrolateral medulla, and rostral ventrolateral medulla in pregnant and nonpregnant rabbits. The decrease in baroreflex gain observed in pregnant rabbits (from 23.3 +/- 3.6 to 7.1 +/- 0.9 beats x min(-1) x mmHg(-1), P < 0.05) was not reversed by NOS blockade (to 8.3 +/- 2.5 beats x min(-1) x mmHg(-1)), angiotensin II blockade (to 5.0 +/- 1.1 beats x min(-1) x mmHg(-1)), or combined blockade (to 12.3 +/- 4.8 beats x min(-1) x mmHg(-1)). Angiotensin II infusion with (to 5.7 +/- 1.0 beats x min(-1) x mmHg(-1)) or without (to 8.4 +/- 2.4 beats x min(-1) x mmHg(-1)) NOS blockade also failed to improve baroreflex gain in pregnant or nonpregnant rabbits. In addition, nNOS mRNA and protein levels in cardiovascular brain regions were not different between nonpregnant and pregnant rabbits. Therefore, we conclude that NO, either alone or via an interaction with angiotensin II, is not responsible for decrease in baroreflex gain during pregnancy.  相似文献   

18.
We evaluated the effects of physiologic increases in insulin on hepatic and peripheral glucose metabolism in nonpregnant (NP) and pregnant (P; 3rd trimester) conscious dogs (n = 9 each) using tracer and arteriovenous difference techniques during a hyperinsulinemic euglycemic clamp. Insulin was initially (-150 to 0 min) infused intraportally at a basal rate. During 0-120 min (Low Insulin), the rate was increased by 0.2 mU x kg(-1) x min(-1), and from 120 to 240 min (High Insulin) insulin was infused at 1.5 mU x kg(-1) x min(-1). Insulin concentrations were significantly higher in NP than P during all periods. Matched subsets (n = 5 NP and 6 P) were identified. In the subsets, insulin was 7 +/- 1, 9 +/- 1, and 28 +/- 3 microU/ml (basal, Low Insulin, and High Insulin, respectively) in NP, and 5 +/- 1, 7 +/- 1, and 27 +/- 3 microU/ml in P. Net hepatic glucose output was suppressed similarly in both subsets (> or =50% with Low Insulin, 100% with High Insulin), as was endogenous glucose rate of appearance. During High Insulin, NP dogs required more glucose (10.8 +/- 1.5 vs. 6.2 +/- 1.0 mg x kg(-1) x min(-1), P < 0.05), and hindlimb (primarily skeletal muscle) glucose uptake tended to be greater in NP than P (18.6 +/- 2.5 mg/min vs. 13.6 +/- 2.0 mg/min, P = 0.06). The normal canine liver remains insulin sensitive during late pregnancy. Differing insulin concentrations in pregnant and nonpregnant women and excessive insulin infusion rates may explain previous findings of hepatic insulin resistance in healthy pregnant women.  相似文献   

19.
The aim of the study was to compare the effect of sevoflurane and propofol anesthesia on myocardial contractility during laparotomic cholecystectomy using transesophageal echo-Doppler. In the study, 40 patients were randomized into two groups, depending on whether they received sevoflurane or propofol anesthesia. Heart rate, cardiac index, stroke volume, left ventricular ejection time and acceleration were measured 10 minutes after induction of anesthesia, 1 minute and 25 minutes after incision. The results were analyzed using paired t-test and ANOVA. Significantly lower values were found for all parameters after the initial measurement (p < 0.05). In the sevoflurane group, stroke volume decreased from 66 +/- 6.2 ml/beat to 65 +/- 6.4 ml/beat and to 63 +/- 5.6 ml/beat 1 minute and 25 minutes after incision respectively. In the propofol group changes were from 64 ml/beat to 58 +/- 10.5 ml/beat to 58 +/- 8.6 ml/beat. Stroke volume was significantly higher in the sevoflurane than in the propofol group (p < 0.05). Sevoflurane anesthesia allows a better hemodynamic stability during laparotomic cholecystectomy.  相似文献   

20.
The aim of this study was to analyze the cardiovascular effects of chronic stanozolol administration in male rats. The rats were randomly assigned to one of three groups: (1) control (n=12), (2) chronic treatment with low dose of stanozolol (LD, n=18, 5 mg/kgweek) and; (3) treatment with high dose of stanozolol (HD, n=28, 20 mg/kgweek). Mean arterial pressure (MAP) was higher in both HD (128+/-2.2 mmHg) and LD (126+/-2.5 mmHg) than control (116+/-2 mmHg). The LD group showed an increase in cardiac output (control 121+/-2.5, LD 154+/-5.9 ml/min), whereas in the HD group total peripheral resistance increased (control 1.03+/-0.07, HD 1.26+/-0.07 mmHg/ml/min). Acute sympathetic blockade caused a similar decrease in MAP in all groups. In conscious rats, the baroreflex index for bradycardia (control -3.7+/-0.4, LD -2.0+/-0.1 beat/mmHg) and tachycardia (control -3.6+/-0.3, LD -4.7+/-0.2 beat/mmHg) responses changed only in the LD group. Cardiac hypertrophy was observed in both treated groups (P<0.05). In conclusion, hypertension with differential hemodynamic changes and alterations in the reflex control in heart rate is seen at different stanozolol doses, which may be important variables in the cardiovascular effects of anabolic steroids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号