首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this study was to determine whether the effects of hypoxia on aortic contractility reflect a decrease in smooth muscle activation [phosphorylation of the 20-kDa myosin regulatory light chain (LC(20))], the capacity for myofibrillar ATP hydrolysis (mATPase activity), or both. Our results indicate that, in endothelium-denuded aortic rings from rats exposed to hypoxia for 48 h (inspired O(2) concentration = 10%), contractions to phenylephrine and potassium chloride (KCl) are impaired compared with rings from normoxic rats. The proportion of phosphorylated to total LC(20) during aortic contraction induced by 10(-5) M phenylephrine was reduced after hypoxia (51.4 +/- 5.4% in normoxic control rats vs. 32.5 +/- 4.7% in hypoxic rats, P < 0.01). Aortic mATPase activity was also decreased (maximum ATPase rate = 29.6 +/- 3.4 and 20.7 +/- 3.7 nmol. min(-1). mg protein(-1) in control and hypoxic rats, respectively, P < 0.05). Neither proliferation nor dedifferentiation of aortic smooth muscle was evident in this model; immunostaining for smooth muscle expression of the proliferating cell nuclear antigen was negative and smooth muscle-specific isoforms of myosin heavy chains, h-caldesmon, and calponin were increased, not decreased, after hypoxic exposure. Decreased aortic reactivity after hypoxia is associated with both impairment of smooth muscle activation and diminished capacity of the actomyosin complex, once activated, to hydrolyze ATP. These changes cannot be attributed to smooth muscle dedifferentiation or to reduced contractile protein expression.  相似文献   

2.
The aim of this study was to determine whether increased expression of heme oxygenase (HO) contributes to impairment of aortic contractile responses after hypoxia through effects on reactivity to endothelin-1 (ET-1). Thoracic aortas from normoxic rats and rats exposed to hypoxia (10% O2) for 16 or 48 h were mounted in organ bath myographs for contractile studies, fixed in paraformaldehyde, or frozen in liquid nitrogen for protein extraction. In rings from normoxic rats, the HO inhibitor tin protoporphyrin IX (SnPP IX, 10 microM) did not alter the response to phenylephrine or ET-1. In rings from rats exposed to 16-h hypoxia, maximum tension generated in response to these agonists was higher in endothelium-intact but not -denuded rings in the presence of SnPP IX. In rings from rats exposed to 48-h hypoxia SnPP IX increased contraction in endothelium-intact but not -denuded rings. In endothelium-intact aortic rings from rats exposed to 16-h hypoxia incubated with endothelin A receptor-specific antagonist BQ-123 (10(-7) M), SnPP IX did not alter phenylephrine-induced contraction. Aortic ET-1 protein levels, measured by radioimmunoassay, were increased in rats exposed to hypoxia for 16 and 48 h. Western blotting showed that HO-1 and HO-2 protein were increased after 16 h of hypoxia and returned to near-control levels after 48 h. Increase in HO-1 protein was detected in endothelium-intact and -denuded rings. Removal of endothelium abolished the increase in HO-2 immunoreactivity. Immunohistochemistry localized expression of HO-1 protein to vascular smooth muscle, whereas HO-2 was only detected in endothelium. HO-2 is expressed by aortic endothelial cells early during hypoxic exposure and impairs ET-1-mediated potentiation of contraction to alpha-adrenoceptor stimulation.  相似文献   

3.
This study aimed to determine the changes in soleus myofibrillar ATPase (m-ATPase) activity and myosin heavy chain (MHC) isoform expression after endurance training and/or chronic hypoxic exposure. Dark Agouti rats were randomly divided into four groups: control, normoxic sedentary (N; n = 14), normoxic endurance trained (NT; n = 14), hypoxic sedentary (H; n = 10), and hypoxic endurance trained (HT; n = 14). Rats lived and trained in normoxia at 760 mmHg (N and NT) or hypobaric hypoxia at 550 mmHg (approximately 2,800 m) (H and HT). m-ATPase activity was measured by rapid flow quench technique; myosin subunits were analyzed with mono- and two-dimensional gel electrophoresis. Endurance training significantly increased m-ATPase (P < 0.01), although an increase in MHC-I content occurred (P < 0.01). In spite of slow-to-fast transitions in MHC isoform distribution in chronic hypoxia (P < 0.05) no increase in m-ATPase was observed. The rate constants of m-ATPase were 0.0350 +/- 0.0023 s(-1) and 0.047 +/- 0.0050 s(-1) for N and NT and 0.033 +/- 0.0021 s(-1) and 0.038 +/- 0.0032 s(-1) for H and HT. Thus, dissociation between variations in m-ATPase and changes in MHC isoform expression was observed. Changes in fraction of active myosin heads, in myosin light chain isoform (MLC) distribution or in MLC phosphorylation, could not explain the variations in m-ATPase. Myosin posttranslational modifications or changes in other myofibrillar proteins may therefore be responsible for the observed variations in m-ATPase activity.  相似文献   

4.
This study was carried out to determine the role of increased vascular matrix metalloproteinase-2 (MMP-2) expression in the changes in systemic arterial contraction after prolonged hypoxia. Rats and mice were exposed to hypoxia (10% and 8% O(2), respectively) or normoxia (21% O(2)) for 16 h, 48 h, or 7 days. Aortae and mesenteric arteries were either mounted in organ bath myographs or frozen in liquid nitrogen. MMP-2 inhibition with cyclic CTTHWGFTLC (CTT) reduced contraction to phenylephrine (PE) in aortae and mesenteric arteries from rats exposed to hypoxia for 7 days but not in vessels from normoxic rats. Similarly, CTT reduced contraction to Big endothelin-1 (Big ET-1) in aortae from rats exposed to hypoxia for 7 days. Responses to PE were reduced in hypoxic MMP-2(-/-) mice compared with MMP-2(+/+) mice. Increased contraction to Big ET-1 after hypoxia was observed in MMP-2(+/+) mice but not in MMP-2(-/-) mice. Rat aortic MMP-2 and membrane type 1 (MT1)-MMP protein levels and MMP activity were increased after 7 days of hypoxia. Rat aortic MMP-2 and MT1-MMP mRNA levels were increased in the deep medial vascular smooth muscle. We conclude that hypoxic induction of MMP-2 expression potentiates contraction in systemic conduit and resistance arteries. This may preserve the capacity to regulate the systemic circulation in the transition between the alterations in vascular tone and structural remodeling that occurs during prolonged hypoxic epochs.  相似文献   

5.
Our previous study demonstrated that heat shock augmented vascular contraction. In the present study, we hypothesized that heat shock augments myosin phosphatase target-subunit (MYPT1) phosphorylation resulting in augmented vascular contraction. Endothelium-denuded rat aortic rings were mounted in organ baths, exposed to heat shock (42 degrees C for 45 min), and subjected to contraction 4 h after the heat shock followed by Western blot analysis for MLC(20) (the 20 kDa light chains of myosin II) or MYPT1. The contractile responses in both control and heat shock-treated aorta were inhibited by Y27632, an inhibitor of Rho-kinase. The level of the MLC(20) and MYPT1(Thr855) phosphorylation in response to KCl was higher in heat shock-treated aorta than that in timed-control. The increased MYPT1(Thr855) phosphorylation was inhibited by Y27632 (1.0 microM) in parallel with inhibition of MLC(20) phosphorylation and vascular contraction. These results indicate that heat shock augments MYPT1 phosphorylation resulting in augmented vascular contraction.  相似文献   

6.
We previously showed that GLUT4 expression is decreased in arterial smooth muscle of deoxycorticosterone acetate (DOCA)-salt hypertensive rats and that GLUT4-knockout mice have enhanced arterial reactivity. Therefore, we hypothesized that increased GLUT4 expression in vascular smooth muscle in vivo would prevent enhanced arterial reactivity and possibly reduce blood pressure in DOCA-salt hypertensive mice. Adult wild-type (WT) and GLUT4 transgenic (TG) mice were subjected to DOCA-salt hypertension with uninephrectomy or underwent uninephrectomy and remained normotensive. GLUT4 expression was increased more than twofold in the aortas of GLUT4 TG mice compared with WT aortas. Eight weeks after implantation of the DOCA pellets, GLUT4 expression decreased by 75% in aortas of WT hypertensive mice, but not in GLUT4 TG hypertensive aortas. Systolic blood pressure was significantly and similarly increased in WT and GLUT4 TG DOCA-salt mice compared with their respective sham-treated controls (159 vs. 111 mmHg). Responsiveness to the contractile agonist 5-HT was significantly increased in aortic rings from WT DOCA-salt mice but remained normal in GLUT4 TG DOCA mice. Phosphorylation of the myosin phosphatase targeting subunit MYPT1 was significantly enhanced in aortas of WT DOCA-salt mice, and this increase was prevented in GLUT4 TG mice. MYPT1 phosphorylation was also increased in nonhypertensive GLUT4-knockout mice. Myosin phosphatase, a major negative regulator of calcium sensitivity, is itself negatively regulated by phosphorylation of MYPT1. Therefore, our results show that preservation of GLUT4 expression prevents enhanced arterial reactivity in hypertension, possibly via effects on myosin phosphatase activity.  相似文献   

7.
Exposure of rat pups to 100% oxygen is a model for studying neonatal lung injury. Airway reactivity is increased in this model, in part due to impaired airway smooth muscle (ASM) relaxation. We compared biochemical determinants of ASM contractility in rat pups exposed to 100% oxygen for 7 days vs. littermates raised in room air. The baseline quantities of ASM contractile proteins, extent of phosphorylation of the 20-kDa myosin regulatory light chain (LC(20)), and amount of the myosin-binding subunit of smooth muscle myosin phosphatase (MYPT) were all comparable between the two groups. Bethanechol-induced contraction increased the extent of phosphorylation of both LC(20) and MYPT in the hyperoxic group (45% and 70% over control, respectively). Relaxation after electrical field stimulation demonstrated greater phosphorylation of both LC(20) and MYPT in the hyperoxic group compared with controls (67% and 84%, respectively). To determine if hyperoxia induced changes in the isoforms of MYPT, isoform expression was also compared but differences were not found. To determine potential mechanisms whereby MYPT phosphorylation was increased by hyperoxia, separate tracheas were treated with the Rho kinase inhibitor Y-27632. This treatment completely eliminated differences in MYPT phosphorylation between the groups. Because phosphorylation of MYPT impairs the phosphatase activity of myosin phosphatase, these data suggest that hyperoxic conditioning during early postnatal life impairs relaxation through prolonging LC(20) phosphorylation. This mechanism might contribute to increased ASM reactivity seen in bronchopulmonary dysplasia.  相似文献   

8.
20-Hydroxyeicosatetraenoic acid (20-HETE) is a cytochrome P-450 4A (CYP4A) metabolite of arachidonic acid (AA) in human and rabbit lung microsomes and is a dilator of isolated human pulmonary arteries (PA). However, little is known regarding the contribution of P-450 metabolites to pulmonary vascular tone. We examined 1) the effect of two mechanistically distinct omega- and omega1-hydroxylase inhibitors on perfusion pressures in isolated rabbit lungs ventilated with normoxic or hypoxic gases, 2) changes in rabbit PA ring tone elicited by 20-HETE or omega- and omega1-hydroxylase inhibitors, and 3) expression of CYP4A protein in lung tissue. A modest increase in perfusion pressure (55 +/- 11% above normoxic conditions) was observed in isolated perfused lungs during ventilation with hypoxic gas (FI(O(2)) = 0.05). Inhibitors of 20-HETE synthesis, 17-oxydecanoic acid (17-ODYA) or N-methylsulfonyl-12,12-dibromododec-11-enamide (DDMS), increased baseline perfusion pressure above that of vehicle and amplified hypoxia-induced increases in perfusion pressures by 92 +/- 11% and 105 +/- 11% over baseline pressures, respectively. 20-HETE relaxed phenylephrine (PE)-constricted PA rings. Treatment with 17-ODYA enhanced PE-induced contraction of PA rings, consistent with inhibition of a product that promotes arterial relaxation, whereas 6-(20-propargyloxyphenyl)hexanoic acid (PPOH), an epoxygenase inhibitor, blunted contraction to PE. Conversion of AA into 20-HETE was blocked by 17-ODYA, DDMS, and hypoxia. CYP4A immunospecific protein confirms expression of CYP4A in male rabbit lung tissue. Our data suggest that endogenously produced 20-HETE could modify rabbit pulmonary vascular tone, particularly under hypoxic conditions.  相似文献   

9.
The immature brain is more resistant to hypoxia/ischemia than the mature brain. Although chronic hypoxia can induce adaptive-changes on the developing brain, the mechanisms underlying such adaptive changes are poorly understood. To further elucidate some of the adaptive changes during postnatal hypoxia, we determined the activities of four enzymes of glucose oxidative metabolism in eight brain regions of hypoxic and normoxic rats. Litters of Sprague-Dawley rats were put into the hypoxic chamber (oxygen level maintained at 9.5%) with their dams starting on day 3 postnatal (P3). Age-matched normoxic rats were use as control animals. In P10 hypoxic rats, lactate dehydrogenase (LDH) activity in cerebral cortex, striatum, olfactory bulb, hippocampus, hypothalamus, pons and medulla, and cerebellum was significantly increased (by 100%–370%) compared to those in P10 normoxic rats. In P10 hypoxic rats, hexokinase (HK) activity in hypothalamus, hippocampus, olfactory bulb, midbrain, and cerebral cortex was significantly decreased (by 15%–30%). Neither -ketoglutarate dehydrogenase complex (KGDHC, which is believed to have an important role in the regulation of the tricarboxylic acid [TCA] cycle flux) nor citrate synthase (CS) activity was significantly decreased in the eight regions of P10 hypoxic rats compared to those in P10 normoxic rats. In P30 hypoxic rats, LDH activity was only increased in striatum (by 19%), whereas HK activity was only significantly decreased (by 30%) in this region. However, KGDHC activity was significantly decreased in olfactory bulb, hippocampus, hypothalamus, cerebral cortex, and cerebellum (by 20%–40%) in P30 hypoxic rats compared to those in P30 normoxic rats. Similarly, CS activity was decreased, but only in olfactory bulb, hypothalamus, and midbrain (by 9%–21%) in P30 hypoxic rats. Our results suggest that at least some of the mechanisms underlying the hypoxia-induced changes in activities of glycolytic enzymes implicate the upregulation of HIF-1. Moreover, our observation that chronic postnatal hypoxia induces differential effects on brain glycolytic and TCA cycle enzymes may have pathophysiological implications (e.g., decreased in energy metabolism) in childhood diseases (e.g., sudden infant death syndrome) in which hypoxia plays a role.  相似文献   

10.
Apelin对大鼠离体肺动脉环的舒张作用及与一氧化氮的关系   总被引:1,自引:0,他引:1  
目的:探讨新的小分子活性肽Apelin对大鼠离体肺动脉环的舒张作用及与一氧化氮(NO)途径的关系,并比较低氧大鼠的肺动脉环对Apelin的舒张反应与正常大鼠的差异。方法:36只大鼠随机分为正常组与低氧组;采用离体血管环灌流法,检测Apelin对去甲肾上腺素(NE)预收缩的大鼠离体肺主动脉环的舒张效应,观察去内皮或用一氧化氮合酶抑制剂(L-NAME)、可溶性鸟苷酸环化酶(sGC)抑制剂(ODQ)孵育后该舒张率的变化。结果:①在正常组大鼠肺动脉环,Apelin(0.01~100 nmol/L)具有浓度依赖性的舒张效应。去除内皮后,Apelin对NE预先收缩的肺血管舒张效应明显减弱(P〈0.01)。L-NAME或ODQ预孵育后,Apelin的舒张效应均明显减弱(P均〈0.01)。②低氧组大鼠的肺动脉环对Apelin的舒张反应明显低于正常组大鼠,在最大浓度100 nmol/L时,Apelin的效应低60.45%(P〈0.01),而两组EC50相比差异无显著性(P〉0.05)。结论:Apelin具有内皮依赖性的舒张肺动脉环的作用,该效应与NO-sGC-cGMP信号途径有关;低氧大鼠的离体肺动脉环对Apelin的舒张反应减弱。  相似文献   

11.
The activities of Na-K-ATPase and Na-K-2Cl cotransporter (NKCC1) were studied in the aorta, heart, and skeletal muscle of streptozotocin (STZ)-induced diabetic rats and control rats. In the aortic rings of STZ rats, the Na-K-ATPase-dependent (86)Rb/K uptake was reduced to 60.0 +/- 5.5% of the control value (P < 0.01). However, Na-K-ATPase activity in soleus skeletal muscle fibers of STZ rats and paired control rats was similar, showing that the reduction of Na-K-ATPase activity in aortas of STZ rats is tissue specific. To functionally distinguish the contributions of ouabain-resistant (alpha(1)) and ouabain-sensitive (alpha(2) and alpha(3)) isoforms to the Na-K-ATPase activity in aortic rings, we used either a high (10(-3) M) or a low (10(-5) M) ouabain concentration during (86)Rb/K uptake. We found that the reduction in total Na-K-ATPase activity resulted from a dramatic decrement in ouabain-sensitive mediated (86)Rb/K uptake (26.0 +/- 3.9% of control, P < 0.01). Western blot analysis of membrane fractions from aortas of STZ rats demonstrated a significant reduction in protein levels of alpha(1)- and alpha(2)-catalytic isoforms (alpha(1) = 71.3 +/- 9.8% of control values, P < 0.05; alpha(2) = 44.5 +/- 11.3% of control, P < 0.01). In contrast, aortic rings from the STZ rats demonstrated an increase in NKCC1 activity (172.5 +/- 9.5%, P < 0.01); however, in heart tissue no difference in NKCC1 activity was seen between control and diabetic animals. Transport studies of endothelium-denuded or intact aortic rings demonstrated that the endothelium stimulates both Na-K-ATPase and Na-K-2Cl dependent (86)Rb/K uptake. The endothelium-dependent stimulation of Na-K-ATPase and Na-K-2Cl was not hampered by diabetes. We conclude that abnormal vascular vessel tone and function, reported in STZ-induced diabetic rats, may be related to ion transport abnormalities caused by changes in Na-K-ATPase and Na-K-2Cl activities.  相似文献   

12.
Phospho-telokin is a target of elevated cyclic nucleotide concentrations that lead to relaxation of gastrointestinal and some vascular smooth muscles (SM). Here, we demonstrate that in telokin-null SM, both Ca(2+)-activated contraction and Ca(2+) sensitization of force induced by a GST-MYPT1(654-880) fragment inhibiting myosin light chain phosphatase were antagonized by the addition of recombinant S13D telokin, without changing the inhibitory phosphorylation status of endogenous MYPT1 (the regulatory subunit of myosin light chain phosphatase) at Thr-696/Thr-853 or activity of Rho kinase. Cyclic nucleotide-induced relaxation of force in telokin-null ileum muscle was reduced but not correlated with a change in MYPT1 phosphorylation. The 40% inhibited activity of phosphorylated MYPT1 in telokin-null ileum homogenates was restored to nonphosphorylated MYPT1 levels by addition of S13D telokin. Using the GST-MYPT1 fragment as a ligand and SM homogenates from WT and telokin KO mice as a source of endogenous proteins, we found that only in the presence of endogenous telokin, thiophospho-GST-MYPT1 co-precipitated with phospho-20-kDa myosin regulatory light chain 20 and PP1. Surface plasmon resonance studies showed that S13D telokin bound to full-length phospho-MYPT1. Results of a protein ligation assay also supported interaction of endogenous phosphorylated MYPT1 with telokin in SM cells. We conclude that the mechanism of action of phospho-telokin is not through modulation of the MYPT1 phosphorylation status but rather it contributes to cyclic nucleotide-induced relaxation of SM by interacting with and activating the inhibited full-length phospho-MYPT1/PP1 through facilitating its binding to phosphomyosin and thus accelerating 20-kDa myosin regulatory light chain dephosphorylation.  相似文献   

13.
Sex differences exist in a variety of cardiovascular disorders. Sex hormones have been shown to mediate pulmonary artery (PA) vasodilation. However, the effects of fluctuations in physiological sex hormone levels due to sex and menstrual cycle on PA vasoreactivity have not been clearly established yet. We hypothesized that sex and menstrual cycle affect PA vasoconstriction under both normoxic and hypoxic conditions. Isometric force displacement was measured in isolated PA rings from proestrus females (PF), estrus and diestrus females (E/DF), and male (M) Sprague-Dawley rats. The vasoconstrictor response under normoxic conditions (organ bath bubbled with 95% O(2)-5% CO(2)) was measured after stimulation with 80 mmol/l KCl and 1 mumol/l phenylephrine. Hypoxia was generated by changing the gas to 95% N(2)-5% CO(2). PA rings from PF demonstrated an attenuated vasoconstrictor response to KCl compared with rings from E/DF (75.58 +/- 3.2% vs. 92.43 +/- 4.24%, P < 0.01). Rings from M also exhibited attenuated KCl-induced vasoconstriction compared with E/DF (79.34 +/- 3.2% vs. 92.43 +/- 4.24%, P < 0.05). PA rings from PF exhibited an attenuated vasoconstrictor response to phenylephrine compared with E/DF (59.61 +/- 2.98% vs. 70.03 +/- 4.61%, P < 0.05). While the maximum PA vasodilation during hypoxia did not differ between PF, E/DF, and M, phase II of hypoxic pulmonary vasoconstriction was markedly diminished in the PA from PF (64.10 +/- 7.10% vs. 83.91 +/- 5.97% in M, P < 0.05). We conclude that sex and menstrual cycle affect PA vasoconstriction in isolated PA rings. Even physiological increases in circulating estrogen levels attenuate PA vasoconstriction under both normoxic and hypoxic conditions.  相似文献   

14.
Reduced colonic motility has been observed in aged rats with a parallel reduction in acetylcholine (ACh)-induced myosin light chain (MLC(20)) phosphorylation. MLC(20) phosphorylation during smooth muscle contraction is maintained by a coordinated signal transduction cascade requiring both PKC-alpha and RhoA. Caveolae are membrane microdomains that permit rapid and efficient coordination of different signal transduction cascades leading to sustained smooth muscle contraction of the colon. Here, we show that normal physiological contraction can be reinstated in aged colonic smooth muscle cells (CSMCs) upon transfection with wild-type caveolin-1 through the activation of both the RhoA/Rho kinase and PKC pathways. Our data demonstrate that impaired contraction in aging is an outcome of altered membrane translocation of PKC-alpha and RhoA with a concomitant reduction in the association of these molecules with the caveolae-specific protein caveolin-1, resulting in a parallel decrease in the myosin phosphatase-targeting subunit (MYPT) and CPI-17 phosphorylation. Decreased MYPT and CPI-17 phosphorylation activates MLC phosphatase activity, resulting in MLC(20) dephosphorylation, which may be responsible for decreased colonic motility in aged rats. Importantly, transfection of CSMCs from aged rats with wild-type yellow fluorescent protein-caveolin-1 cDNA restored translocation of RhoA and PKC-alpha and phosphorylation of MYPT, CPI-17, and MLC(20), thereby restoring the contractile response to levels comparable with young adult rats. Thus, we propose that caveolin-1 gene transfer may represent a promising therapeutic treatment to correct the age-related decline in colonic smooth muscle motility.  相似文献   

15.
Mitochondrial nitric oxide (NO) production was assayed in rats submitted to hypobaric hypoxia and in normoxic controls (53.8 and 101.3 kPa air pressure, respectively). Heart mitochondria from young normoxic animals produced 0.62 and 0.37 nmol NO.min(-1).mg protein(-1) in metabolic states 4 and 3, respectively. This production accounts for a release to the cytosol of 29 nmol NO.min(-1).g heart(-1) and for 55% of the NO generation. The mitochondrial NO synthase (mtNOS) activity measured in submitochondrial membranes at pH 7.4 was 0.69 nmol NO.min(-1).mg protein(-1). Rats exposed to hypobaric hypoxia for 2-18 mo showed 20-60% increased left ventricle mtNOS activity compared with their normoxic siblings. Left ventricle NADH-cytochrome-c reductase and cytochrome oxidase activities decreased by 36 and 12%, respectively, from 2 to 18 mo of age, but they were not affected by hypoxia. mtNOS upregulation in hypoxia was associated with a retardation of the decline in the mechanical activity of papillary muscle upon aging and an improved recovery after anoxia-reoxygenation. The correlation of left ventricle mtNOS activity with papillary muscle contractility (determined as developed tension, maximal rates of contraction and relaxation) showed an optimal mtNOS activity (0.69 nmol.min(-1).mg protein(-1)). Heart mtNOS activity is regulated by O(2) in the inspired air and seems to play a role in NO-mediated signaling and myocardial contractility.  相似文献   

16.
Acute hypoxia dilates most systemic arteries leading to increased tissue perfusion. We have previously shown that at high-stimulus conditions, porcine coronary artery was relaxed by hypoxia without a change in intracellular [Ca(2+)] (27). This Ca(2+)-desensitizing hypoxic relaxation (CDHR) was validated in permeabilized porcine coronary artery smooth muscle (PCASM) in which hypoxia decreased force and myosin regulatory light chain phosphorylation (p-MRLC) despite fixed [Ca(2+)] (10). Rho kinase-dependent phosphorylation of myosin phosphatase-targeting subunit 1 (p-MYPT1) is associated with decreased MRLC phosphatase activity and increased Ca(2+) sensitivity of both p-MRLC and force. We recently reported that p-MYPT1 dephosphorylation was a key effector in CDHR (33). In the current study, we tested the hypothesis that Rho kinase and not p-MYPT1 phosphatase is the regulated enzyme involved in CDHR. We used alpha-toxin to permeabilize deendothelialized PCASM. CDHR was attenuated in contractions attributable to myosin light chain kinase (MLCK, in the presence of the Rho kinase inhibitor Y-27632). In contrast, hypoxia relaxed contractions attributable to Rho kinase phosphorylation of MYPT1 and MRLC or MRLC alone (in the presence of the MLCK inhibitor ML7). Using an in situ assay, we showed that Rho kinase activity, measured as thiophosphorylation of MYPT1 and MRLC, was nearly abolished by hypoxia. The in vitro activity of the catalytically active fragment of Rho kinase was not affected by hypoxia. Our evidence strongly implicates that hypoxia directly inhibits Rho kinase-dependent phosphorylation of MYPT1. This underlies the decreases in both p-MYPT1 and p-MRLC and thereby leads to the Ca(2+)-desensitizing hypoxic relaxation.  相似文献   

17.
In anesthetized rats, increases in phrenic nerve amplitude and frequency during brief periods of hypoxia are followed by a reduction in phrenic nerve burst frequency [posthypoxia frequency decline (PHFD)]. We investigated the effects of chronic exposure to hypoxia on PHFD and on peripheral and central O2-sensing mechanisms. In Inactin-anesthetized (100 mg/kg) Sprague-Dawley rats, phrenic nerve discharge and arterial pressure responses to 10 s N2 inhalation were recorded after exposure to hypoxia (10 +/- 0.5% O2) for 6-14 days. Compared with rats maintained at normoxia, PHFD was abolished in chronic hypoxic rats. Because of inhibition of PHFD, the increased phrenic burst frequency and amplitude after N2 inhalation persisted for 1.8-2.8 times longer in chronic hypoxic (70 s) compared with normoxic (25-40 s) rats (P < 0.05). After acute bilateral carotid body denervation, N2 inhalation produced a short depression of phrenic nerve discharge in both chronic hypoxic and normoxic rats. However, the degree and duration of depression of phrenic nerve discharge was smaller in chronic hypoxic compared with normoxic rats (P < 0.05). We conclude that after exposure to chronic hypoxia, a reduction in PHFD contributes to an increased duration of the acute hypoxic ventilatory response in anesthetized rats. Furthermore, after exposure to chronic hypoxia, the central network responsible for respiration is more resistant to the depressant effects of acute hypoxia in anesthetized rats.  相似文献   

18.
低氧适应对缺氧性心功能损伤的保护作用及其机制探讨   总被引:4,自引:0,他引:4  
缺氧对心脏功能的影响与缺氧的严重程度、发生速度及时程有关。本实检比较了急性缺氧与阶梯适应性缺氧对Wistar大鼠心脏功能及心肌收缩蛋白Ca2+,Mg2+-ATP酶的不同影响,结果表明,低氧适应组与急性缺氧组比较,左右心室的±dp/dtmax、收缩指数等心功能指标均有显著的改善,心肌收缩蛋白Ca2+,Mg2+-ATP酶活性也显著高于急性缺氧组。从而说明,动物经低氧适应后,心脏的代偿功能得到充分发挥,从面减轻缺氧对心脏的损伤。心肌收缩蛋白Ca2+,Mg2+-ATP酶的改善可能是心脏代偿机制的生物化学基础之一。  相似文献   

19.
Phosphorylation of myosin II plays an important role in many cell functions, including smooth muscle contraction. The level of myosin II phosphorylation is determined by activities of myosin light chain kinase and myosin phosphatase (MP). MP is composed of 3 subunits: a catalytic subunit of type 1 phosphatase, PPlc; a targeting subunit, termed myosin phosphatase target subunit, MYPT; and a smaller subunit, M20, of unknown function. Most of the properties of MP are due to MYPT and include binding of PP1c and substrate. Other interactions are discussed. A recent discovery is the existence of an MYPT family and members include, MYPT1, MYPT2, MBS85, MYPT3 and TIMAP. Characteristics of each are outlined. An important discovery was that the activity of MP could be regulated and both activation and inhibition were reported. Activation occurs in response to elevated cyclic nucleotide levels and various mechanisms are presented. Inhibition of MP is a major component of Ca2+-sensitization in smooth muscle and various molecular mechanisms are discussed. Two mechanisms are cited frequently: (1) Phosphorylation of an inhibitory site on MYPT1, Thr696 (human isoform) and resulting inhibition of PP1c activity. Several kinases can phosphorylate Thr696, including Rho-kinase that serves an important role in smooth muscle function; and (2) Inhibition of MP by the protein kinase C-potentiated inhibitor protein of 17 kDa (CPI-17). Examples where these mechanisms are implicated in smooth muscle function are presented. The critical role of RhoA/Rho-kinase signaling in various systems is discussed, in particular those vascular smooth muscle disorders involving hypercontractility.  相似文献   

20.
Dexamethasone (Dex) treatment during a critical period of lung development causes lung hypoplasia in infant rats. However, the effects of Dex on the pulmonary circulation are unknown. To determine whether Dex increases the risk for development of pulmonary hypertension, we treated newborn Sprague-Dawley rats with Dex (0.25 microg/day, days 3-13). Litters were divided equally between Dex-treated and vehicle control (ethanol) rats. Rats were raised in either room air until 10 wk of age (normoxic groups) or room air until 7 wk of age and then in a hypoxia chamber (inspired O(2) fraction = 0.10; hypoxic groups) for 3 wk to induce pulmonary hypertension. Compared with vehicle control rats, Dex treatment of neonatal rats reduced alveolarization (by 42%; P < 0.05) and barium-filled pulmonary artery counts (by 37%; P < 0.05) in 10-wk-old adults. Pulmonary arterial pressure and the ratio of right ventricle to left ventricle plus septum weights (RV/LV+S) were higher in 10-wk-old Dex-treated normoxic rats compared with those in normoxic control rats (by 16 and 16% respectively; P < 0.05). Small pulmonary arteries of adult normoxic Dex-treated rats showed increased vessel wall thickness compared with that in control rats (by 15%; P < 0.05). After 3 wk of hypoxia, RV/LV+S values were 36% higher in rats treated with Dex in the neonatal period compared with those in hypoxic control rats (P < 0.05). RV/LV+S was 42% higher in hypoxic control rats compared with those in normoxic control rats (P < 0.05). We conclude that Dex treatment of neonatal rats caused sustained lung hypoplasia and increased pulmonary arterial pressures and augmented the severity of hypoxia-induced pulmonary hypertension in adult rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号