首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

Background

Loss-of-function mutations in PTEN-induced kinase 1 (PINK1) have been linked to familial Parkinson??s disease, but the underlying pathogenic mechanism remains unclear. We previously reported that loss of PINK1 impairs mitochondrial respiratory activity in mouse brains.

Results

In this study, we investigate how loss of PINK1 impairs mitochondrial respiration using cultured primary fibroblasts and neurons. We found that intact mitochondria in PINK1?/? cells recapitulate the respiratory defect in isolated mitochondria from PINK1?/? mouse brains, suggesting that these PINK1?/? cells are a valid experimental system to study the underlying mechanisms. Enzymatic activities of the electron transport system complexes are normal in PINK1?/? cells, but mitochondrial transmembrane potential is reduced. Interestingly, the opening of the mitochondrial permeability transition pore (mPTP) is increased in PINK1?/? cells, and this genotypic difference between PINK1?/? and control cells is eliminated by agonists or inhibitors of the mPTP. Furthermore, inhibition of mPTP opening rescues the defects in transmembrane potential and respiration in PINK1?/? cells. Consistent with our earlier findings in mouse brains, mitochondrial morphology is similar between PINK1?/? and wild-type cells, indicating that the observed mitochondrial functional defects are not due to morphological changes. Following FCCP treatment, calcium increases in the cytosol are higher in PINK1?/? compared to wild-type cells, suggesting that intra-mitochondrial calcium concentration is higher in the absence of PINK1.

Conclusions

Our findings show that loss of PINK1 causes selective increases in mPTP opening and mitochondrial calcium, and that the excessive mPTP opening may underlie the mitochondrial functional defects observed in PINK1?/? cells.  相似文献   

3.
X11 and X11-like proteins (X11L) are neuronal adaptor proteins whose association to the cytoplasmic domain of amyloid beta-protein precursor (APP) suppresses the generation of amyloid beta-protein (Abeta) implicated in Alzheimer disease pathogenesis. The amyloidogenic, but not amyloidolytic, metabolism of APP was selectively increased in the brain of mutant mice lacking X11L (Sano, Y., Syuzo-Takabatake, A., Nakaya, T., Saito, Y., Tomita, S., Itohara, S., and Suzuki, T. (2006) J. Biol. Chem. 281, 37853-37860). To reveal the actual role of X11 proteins (X11s) in suppressing amyloidogenic cleavage of APP in vivo, we generated X11 and X11L double knock-out mice and analyzed the metabolism of APP. The mutant mice showed enhanced beta-site cleavage of APP along with increased accumulation of Abeta in brain and increased colocalization of APP with beta-site APP-cleaving enzyme (BACE). In the brains of mice deficient in both X11 and X11L, the apparent relative subcellular distributions of both mature APP and its beta-C-terminal fragment were shifted toward the detergent-resistant membrane (DRM) fraction, an organelle in which BACE is active and both X11s are not nearly found. These results indicate that X11s associate primarily with APP molecules that are outside of DRM, that the dissociation of APP-X11/X11L complexes leads to entry of APP into DRM, and that cleavage of uncomplexed APP by BACE within DRM is enhanced by X11s deficiency. Present results lead to an idea that the dysfunction of X11L in the interaction with APP may recruit more APP into DRM and increase the generation of Abeta even if BACE activity did not increase in brain.  相似文献   

4.
FE65 binds to the Alzheimer amyloid precursor protein (APP), but the function of this interaction has not been identified. Here, we report that APP and FE65 are involved in regulation of cell movement. APP and FE65 colocalize with actin and Mena, an Abl-associated signaling protein thought to regulate actin dynamics, in lamellipodia. APP and FE65 specifically concentrate with beta 1-integrin in dynamic adhesion sites known as focal complexes, but not in more static adhesion sites known as focal adhesions. Overexpression of APP accelerates cell migration in an MDCK cell wound--healing assay. Coexpression of APP and FE65 dramatically enhances the effect of APP on cell movement, probably by regulating the amount of APP at the cell surface. These data are consistent with a role for FE65 and APP, possibly in a Mena-containing macromolecular complex, in regulation of actin-based motility.  相似文献   

5.

Background

The pathogenesis of Alzheimer''s disease is attributed to misfolding of Amyloid-β (Aβ) peptides. Aβ is generated during amyloidogenic processing of Aβ-precursor protein (APP). Another characteristic of the AD brain is increased phosphorylation of APP amino acid Tyr682. Tyr682 is part of the Y682ENPTY687 motif, a docking site for interaction with cytosolic proteins that regulate APP metabolism and signaling. For example, normal Aβ generation and secretion are dependent upon Tyr682 in vitro. However, physiological functions of Tyr682 are unknown.

Methodology/Principal Findings

To this end, we have generated an APP Y682G knock-in (KI) mouse to help dissect the role of APP Tyr682 in vivo. We have analyzed proteolytic products from both the amyloidogenic and non-amyloidogenic processing of APP and measure a profound shift towards non-amyloidogenic processing in APP KI mice. In addition, we demonstrate the essential nature of amino acid Tyr682 for the APP/Fe65 interaction in vivo.

Conclusions/Significance

Together, these observations point to an essential role of APP intracellular domain for normal APP processing and function in vivo, and provide rationale for further studies into physiological functions associated with this important phosphorylation site.  相似文献   

6.
7.
8.
FE65, a neural adaptor protein, interacts with amyloid beta-protein precursor (APP) and is known to regulate amyloid beta generation from APP. FE65 also associates with nuclear proteins; however, its physiological function in the nucleus remains unclear. A fixed population of cytoplasmic FE65 is tethered to membranes by binding APP. This membrane-tethered FE65 is liberated from membranes by APP phosphorylation, which is facilitated by a stress-activated protein kinase in sorbitol-treated cells. Here we show that liberated FE65, which is distinct from "virgin" FE65 in the cytoplasm, translocates into the nucleus and accumulates in the nuclear matrix forming a patched structure. Targeting of FE65 into the nuclear matrix was suppressed by the APP intracellular domain fragment, which is generated by consecutive cleavages of APP. Thus, nuclear translocation of FE65 is under the regulation of APP. In the nucleus, FE65 induced gammaH2AX, which plays an important role in DNA repair as a cellular response by stress-damaged cells. These observations suggest that APP-regulated FE65 plays an important role in the early stress response of cells and that FE65 deregulated from APP induces apoptosis.  相似文献   

9.
10.
吕学龙  祁燃  吕全龙  张传茂 《生命科学》2011,(11):1069-1075
核膜在细胞周期中呈现高度的动态性:在细胞分裂的前中期,核膜崩解并分散到细胞质中;在细胞分裂的后期,核膜开始在染色体的表面重新装配,最终形成完整的核膜结构。近期的研究发现,Ran GTP酶、物质转运蛋白importinβ、内层核膜蛋白LBR(lamin B receptor)以及核孔复合体蛋白nucleoporins在核膜重建的过程中起关键性调控作用,并受到细胞周期调控因子p34cdc2激酶的调节。LBR是一个八次跨膜的膜蛋白,主要定位于内层核膜。在细胞分裂的早期,随着核膜崩解,LBR与核膜崩解而生成的小膜泡一起分散到细胞质中;在细胞分裂的后期,通过LBR与importinβ相互结合,含有LBR的膜泡被importinβ携带至染色质的表面参与核膜重建。目前已知p34cdc2激酶对LBR与importinβ介导的核膜重建起重要调控作用。Nucleoporins是核孔复合体主要组分。随核膜崩解,核孔复合体解聚成nucleoporins,分散到细胞质中,或结合到其他亚细胞成分上。细胞分裂后期,核孔复合体伴随核膜装配而组装。  相似文献   

11.
12.
Calmodulin (CaM) binds in a Ca2+-dependent manner to the intracellular C-terminal domains of most group III metabotropic glutamate receptors (mGluRs). Here we combined mutational and biophysical approaches to define the structural basis of CaM binding to mGluR 7A. Ca2+/CaM was found to interact with mGluR 7A primarily via its C-lobe at a 1:1 CaM:C-tail stoichiometry. Pulldown experiments with mutant CaM and mGluR 7A C-tail constructs and high resolution NMR with peptides corresponding to the CaM binding region of mGluR 7A allowed us to define hydrophobic and ionic interactions required for Ca2+/CaM binding and identified a 1-8-14 CaM-binding motif. The Ca2+/CaM.mGluR 7A peptide complex displays a classical wraparound structure that closely resembles that formed by Ca2+/CaM upon binding to smooth muscle myosin light chain kinase. Our data provide insight into how Ca2+/CaM regulates group III mGluR signaling via competition with intracellular proteins for receptor-binding sites.  相似文献   

13.
RhBG, a human member of the Amt/Mep/Rh/superfamily of ammonium transporters, has been shown to facilitate NH(3) transport and to be anchored to the basolateral plasma membrane of kidney epithelial cells, via ankyrin-G. We showed here that triple alanine substitution of the (419)FLD(421) sequence, which links the cytoplasmic C-terminal domain of RhBG to ankyrin-G, not only disrupted the interaction of RhBG with the spectrin-based skeleton but also delayed its cell surface expression, decreased its plasma membrane stability, and abolished its NH(3) transport function in epithelial cell lines. Similarly, we demonstrated that both anchoring to the membrane skeleton and ammonium transport activity are regulated by the phosphorylation status of the C-terminal tail of RhBG. Tyrosine 429, which belongs to the previously reported YED basolateral targeting signal of RhBG, was demonstrated to be phosphorylated in vitro using purified Src and Syk kinases and ex vivo by analyzing the effect of pervanadate treatment on wild-type RhBG or Y429A mutants. Then, we showed that Y429D and Y429E mutations, mimicking constitutive phosphorylation, abolished NH(3) transport and enhanced Triton X-100 solubilization of RhBG from the cell membrane. In contrast, the nonphosphorylated/nonphosphorylatable Y429A and Y429F mutants behaved the same as wild-type RhBG. Conversely, Y/A or Y/F but not Y/E or Y/D mutations of residue 429 abolished the exclusive basolateral localization of RhBG in polarized epithelial cells. All these results led to a model in which targeting and ammonium transport function of RhBG are regulated by both phosphorylation and membrane skeleton binding of the C-terminal cytoplasmic domain.  相似文献   

14.
Bcl-2 family proteins are involved in the cell homeostasis by regulating programmed cell death. Some of these proteins promote apoptosis, while others inhibit the same process. The C-terminal hydrophobic domain of some of these proteins is predicted to be involved in anchoring them to a variety of cell membranes, such as mitochondrial, endoplasmic reticulum and nuclear membranes. We have used five synthetic peptides imitating the C-terminal domain from both anti-apoptotic (Bcl-2) and pro-apoptotic members (Bak, Bax, and two mutants of this last protein) of this family to study their interaction with model membranes. Some differences were detected in the interaction with these peptides. The addition of all the peptides to large unilamellar vesicles destabilized them and released encapsulated carboxyfluorescein to different degrees, so that fluidity and the increase in negative curvature favoured the extent in the release of carboxyfluorescein. Bcl-2-C and Bax-C peptides produced the highest release levels in most cases, while BaxS184K-C was the least efficient in this respect. These results indicate that these C-terminal domains are able to insert themselves in the membranes, each in a different way that is probably related with their different way which can be related to their differing locations within the cell and their different roles in regulating apoptosis.  相似文献   

15.
Bcl-2 family proteins are involved in the cell homeostasis by regulating programmed cell death. Some of these proteins promote apoptosis, while others inhibit the same process. The C-terminal hydrophobic domain of some of these proteins is predicted to be involved in anchoring them to a variety of cell membranes, such as mitochondrial, endoplasmic reticulum and nuclear membranes. We have used five synthetic peptides imitating the C-terminal domain from both anti-apoptotic (Bcl-2) and pro-apoptotic members (Bak, Bax, and two mutants of this last protein) of this family to study their interaction with model membranes. Some differences were detected in the interaction with these peptides. The addition of all the peptides to large unilamellar vesicles destabilized them and released encapsulated carboxyfluorescein to different degrees, so that fluidity and the increase in negative curvature favoured the extent in the release of carboxyfluorescein. Bcl-2-C and Bax-C peptides produced the highest release levels in most cases, while BaxS184K-C was the least efficient in this respect. These results indicate that these C-terminal domains are able to insert themselves in the membranes, each in a different way that is probably related with their different way which can be related to their differing locations within the cell and their different roles in regulating apoptosis.  相似文献   

16.
Members of the family of intracellular lipid binding proteins (iLBPs) have been implicated in cytoplasmic transport of lipophilic ligands, such as long-chain fatty acids and retinoids. iLBPs are low molecular mass proteins (14–16 kDa) sharing a common structural fold. The iLBP family likely arose through duplication and diversification of an ancestral iLBP gene. Phylogenetic analysis undertaken in the present study indicates that the ancestral iLBP gene arose after divergence of animals from fungi and plants. The first gene duplication was dated around 930 millions of years ago, and subsequent duplications in the succeeding 550 millions of years gave rise to the 16 iLBP types currently recognized in vertebrates. Four clusters of proteins, each binding a characteristic range of ligands, are evident from the phylogenetic tree. Evolution of different binding properties probably allowed cytoplasmic trafficking of distinct ligands. It is speculated that recruitment of an iLBP during evolution of animals enabled the mitochondrial oxidation of long-chain fatty acids.  相似文献   

17.
In previous studies on the mechanism underlying megakaryocyte-specific gene expression, several ETS motifs were found in each megakaryocyte-specific gene promoter. Although these studies suggested that several ETS family proteins regulate megakaryocyte-specific gene expression, only a few ETS family proteins have been identified. Platelet factor 4 (PF4) is a megakaryocyte-specific gene and its promoter includes multiple ETS motifs. We had previously shown that ETS-1 binds to an ETS motif in the PF4 promoter. However, the functions of the other ETS motifs are still unclear. The goal of this study was to investigate a novel functional ETS motif in the PF4 promoter and identify proteins binding to the motif. In electrophoretic mobility shift assays and a chromatin immunoprecipitation assay, FLI-1, ELF-1, and GABP bound to the -51 ETS site. Expression of FLI-1, ELF-1, and GABP activated the PF4 promoter in HepG2 cells. Mutation of a -51 ETS site attenuated FLI-1-, ELF-1-, and GABP-mediated transactivation of the promoter. siRNA analysis demonstrated that FLI-1, ELF-1, and GABP regulate PF4 gene expression in HEL cells. Among these three proteins, only FLI-1 synergistically activated the promoter with GATA-1. In addition, only FLI-1 expression was increased during megakaryocytic differentiation. Finally, the importance of the -51 ETS site for the activation of the PF4 promoter during physiological megakaryocytic differentiation was confirmed by a novel reporter gene assay using in vitro ES cell differentiation system. Together, these data suggest that FLI-1, ELF-1, and GABP regulate PF4 gene expression through the -51 ETS site in megakaryocytes and implicate the differentiation stage-specific regulation of PF4 gene expression by multiple ETS factors.  相似文献   

18.
The influenza virus genome replicates in the host cell nucleus, and the progeny viral ribonucleoproteins (vRNPs) are exported to the cytoplasm prior to maturation. The influenza virus NS2 protein has a nuclear export signal (NES) and binds to M1. It is therefore postulated that vRNP is exported from the nucleus by binding to NS2 through M1. However, the significance of the association between NS2 and M1 for the nuclear export of vRNP is still poorly understood. We herein demonstrate that the C-terminal domain of NS2 (residues 81–100) is essential for M1 binding and the nuclear export of progeny vRNPs.

Structured summary

MINT-8057301, MINT-8057317: NS2 (uniprotkb:P03508) binds (MI:0407) to M1 (uniprotkb:P03485) by pull down (MI:0096)  相似文献   

19.
Phosphotyrosine binding domains (PTB) are protein–protein interaction domains that play important roles in various cellular signal transduction pathways. The second phosphotyrosine binding domain (PTB2) of the human scaffolding protein FE65 interacts with the C-terminal part of the Amyloid Precursor Protein (APP) involved in Alzheimer’s disease. The structure of PTB2 in complex with a 32 amino acid fragment of APP has been solved previously by X-ray crystallography. Here, we report the NMR spectral assignments of the free FE65 PTB2. This provides the basis for further investigation of the interactions of PTB2 with peptides and small organic ligands with the aim of disrupting the PTB2-APP interaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号