首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mammalian amyloid precursor protein (APP) protein family consists of the APP and the amyloid precursor-like proteins 1 and 2 (APLP1 and APLP2). The neurotoxic amyloid beta-peptide (Abeta) originates from APP, which is the only member of this protein family implicated in Alzheimer disease. However, the three homologous proteins have been proposed to be processed in similar ways and to have essential and overlapping functions. Therefore, it is also important to take into account the effects on the processing and function of the APP-like proteins in the development of therapeutic drugs aimed at decreasing the production of Abeta. Insulin and insulin-like growth factor-1 (IGF-1) have been shown to regulate APP processing and the levels of Abeta in the brain. In the present study, we show that IGF-1 increases alpha-secretase processing of endogenous APP and also increases ectodomain shedding of APLP1 and APLP2 in human SH-SY5Y neuroblastoma cells. We also investigated the role of different IGF-1-induced signaling pathways, using specific inhibitors for phosphatidylinositol 3-kinase and mitogen-activated protein kinase (MAPK). Our results indicate that phosphatidylinositol 3-kinase is involved in ectodomain shedding of APP and APLP1, but not APLP2, and that MAPK is involved only in the ectodomain shedding of APLP1.  相似文献   

2.
3.
Understanding the intracellular transport of the beta-amyloid precursor protein (APP) is a major key to elucidate the regulation of APP processing and thus beta-amyloid peptide generation in Alzheimer disease pathogenesis. APP and its two paralogues, APLP1 and APLP2 (APLPs), are processed in a very similar manner by the same protease activities. A putative candidate involved in APP transport is protein interacting with APP tail 1 (PAT1), which was reported to interact with the APP intracellular domain. We show that PAT1a, which is 99.0% identical to PAT1, binds to APP, APLP1, and APLP2 in vivo and describe their co-localization in trans-Golgi network vesicles or endosomes in primary neurons. We further demonstrate a direct interaction of PAT1a with the basolateral sorting signal of APP/APLPs. Moreover, we provide evidence for a direct role of PAT1a in APP/APLP transport as overexpression or RNA interference-mediated knockdown of PAT1a modulates APP/APLPs levels at the cell surface. Finally, we show that PAT1a promotes APP/APLPs processing, resulting in increased secretion of beta-amyloid peptide. Taken together, our data establish PAT1a as a functional link between APP/APLPs transport and their processing.  相似文献   

4.
The familial Alzheimer's disease gene product beta-amyloid (Abeta) precursor protein (APP) is processed by the beta- and gamma-secretases to produce Abeta as well as AID (APP Intracellular Domain) which is derived from the extreme carboxyl terminus of APP. AID was originally shown to lower the cellular threshold to apoptosis and more recently has been shown to modulate gene expression such that it represses Notch-dependent gene expression while in combination with Fe65 it enhances gene activation. Here we report that the two other members of the APP family, beta-amyloid precursor-like protein-1 and -2 (APLP1 and APLP2), are also processed by the gamma-secretase in a Presenilin 1-dependent manner. Furthermore, the extreme carboxyl-terminal fragments produced by this processing (here termed APP-like Intracellular Domain or ALID1 and ALID2) are able to enhance Fe65-dependent gene activation, similar to what has been reported for AID. Considering that only APP and not the APLPs have been linked to familial Alzheimer's disease (AD), this data should help in understanding the physiologic roles of the APP family members and in differentiating these functions from the pathologic role of APP in Alzheimer's disease.  相似文献   

5.
6.
The amyloid precursor protein (APP) plays a central role in Alzheimer's disease, but its physiological function and that of its mammalian paralogs, the amyloid precursor-like proteins 1 and 2 (APLPs), is still poorly understood. APP has been proposed to form dimers, a process that could promote cell adhesion via trans-dimerization. We investigated the dimerization and cell adhesion properties of APP/APLPs and provide evidence that all three paralogs are capable of forming homo- and heterocomplexes. Moreover, we show that trans-interaction of APP family proteins promotes cell-cell adhesion in a homo- and heterotypic fashion and that endogenous APLP2 is required for cell-cell adhesion in mouse embryonic fibroblasts. We further demonstrate interaction of all the three APP family members in mouse brain, genetic interdependence, and molecular interaction of APP and APLPs in synaptically enriched membrane compartments. Together, our results provide evidence that homo- and heterocomplexes of APP/APLPs promote trans-cellular adhesion in vivo.  相似文献   

7.
Missense mutations in the amyloid precursor protein (APP) gene can cause familial Alzheimer disease. It is thought that APP and APP-like proteins (APLPs) may play a role in adhesion and signal transduction because their ectodomains interact with components of the extracellular matrix. Heparin binding induces dimerization of APP and APLPs. To help explain how these proteins interact with heparin, we have determined the crystal structure of the E2 domain of APLP1 in complex with sucrose octasulfate (SOS). A total of three SOS molecules are bound to the E2 dimer. Two SOSs are bound inside a narrow intersubdomain groove, and the third SOS is bound near the two-fold axis of the protein. Mutational analyses show that most residues interacting with SOS also contribute to heparin binding, although in varying degrees; a deep pocket, defined by His-376, Lys-422, and Arg-429, and an interfacial site between Lys-314 and its symmetry mate are most important in the binding of the negatively charged polysaccharide. Comparison with a lower resolution APP structure shows that all key heparin binding residues are conserved and identically positioned, suggesting that APLP1 and APP may bind heparin similarly. In transfected HEK-293 cells, mutating residues responsible for heparin binding causes little change in the proteolysis of APP by the secretases. However, mutating a pair of conserved basic residues (equivalent to Arg-414 and Arg-415 of APLP1) immediately adjacent to the heparin binding site affects both the maturation and the processing of APP.  相似文献   

8.
The Alzheimer's disease beta-amyloid precursor protein (APP) is a member of a larger gene family that includes the amyloid precursor-like proteins, termed APLP1 and APLP2. We previously documented that APLP2-/-APLP1-/- and APLP2-/-APP-/- mice die postnatally, while APLP1-/-APP-/- mice and single mutants were viable. We now report that mice lacking all three APP/APLP family members survive through embryonic development, and die shortly after birth. In contrast to double-mutant animals with perinatal lethality, 81% of triple mutants showed cranial abnormalities. In 68% of triple mutants, we observed cortical dysplasias characterized by focal ectopic neuroblasts that had migrated through the basal lamina and pial membrane, a phenotype that resembles human type II lissencephaly. Moreover, at E18.5 triple mutants showed a partial loss of cortical Cajal Retzius (CR) cells, suggesting that APP/APLPs play a crucial role in the survival of CR cells and neuronal adhesion. Collectively, our data reveal an essential role for APP family members in normal brain development and early postnatal survival.  相似文献   

9.
The amyloid precursor protein (APP) and the APP-like proteins 1 and 2 (APLP1 and APLP2) are a family of multidomain transmembrane proteins possessing homo- and heterotypic contact sites in their ectodomains. We previously reported that divalent metal ions dictate the conformation of the extracellular APP E2 domain (Dahms, S. O., Könnig, I., Roeser, D., Gührs, K.-H., Mayer, M. C., Kaden, D., Multhaup, G., and Than, M. E. (2012) J. Mol. Biol. 416, 438–452), but unresolved is the nature and functional importance of metal ion binding to APLP1 and APLP2. We found here that zinc ions bound to APP and APLP1 E2 domains and mediated their oligomerization, whereas the APLP2 E2 domain interacted more weakly with zinc possessing a less surface-exposed zinc-binding site, and stayed monomeric. Copper ions bound to E2 domains of all three proteins. Fluorescence resonance energy transfer (FRET) analyses examined the effect of metal ion binding to APP and APLPs in the cellular context in real time. Zinc ions specifically induced APP and APLP1 oligomerization and forced APLP1 into multimeric clusters at the plasma membrane consistent with zinc concentrations in the blood and brain. The observed effects were mediated by a novel zinc-binding site within the APLP1 E2 domain as APLP1 deletion mutants revealed. Based upon its cellular localization and its dominant response to zinc ions, APLP1 is mainly affected by extracellular zinc among the APP family proteins. We conclude that zinc binding and APP/APLP oligomerization are intimately linked, and we propose that this represents a novel mechanism for regulating APP/APLP protein function at the molecular level.  相似文献   

10.
Ectodomain shedding of the amyloid precursor protein (APP) is a key regulatory step in the generation of the Alzheimer disease amyloid beta peptide (Abeta). The molecular mechanisms underlying the control of APP shedding remain little understood but are in part dependent on the low density lipoprotein receptor-related protein (LRP), which is involved in APP endocytosis. Here, we show that the APP homolog APLP1 (amyloid precursor-like protein 1) influences APP shedding. In human embryonic kidney 293 cells expression of APLP1 strongly activated APP shedding by alpha-secretase and slightly reduced beta-secretase cleavage. As revealed by domain deletion analysis, the increase in APP shedding required the NPTY amino acid motif within the cytoplasmic domain of APLP1. This motif is conserved in APP and is essential for the endocytosis of APP and APLP1. Unrelated membrane proteins containing similar endocytic motifs did not affect APP shedding, showing that the increase in APP shedding was specific to APLP1. In LRP-deficient cells APLP1 no longer induced APP shedding, suggesting that in wild-type cells APLP1 interferes with the LRP-dependent endocytosis of APP and there by increases APP alpha-cleavage. In fact, an antibody uptake assay revealed that expression of APLP1 reduced the rate of APP endocytosis. In summary, our study provides a novel mechanism for APP shedding, in which APLP1 affects the endocytosis of APP and makes more APP available for alpha-secretase cleavage.  相似文献   

11.
Beta-amyloid precursor protein (APP) is the precursor of beta-amyloid (Abeta), which is implicated in Alzheimer's disease pathogenesis. APP complements amyloid precursor-like protein 2 (APLP2), and together they play essential physiological roles. Phosphorylation at the Thr(668) residue of APP (with respect to the numbering conversion for the APP 695 isoform) and the Thr(736) residue of APLP2 (with respect to the numbering conversion for the APLP2 763 isoform) in their cytoplasmic domains acts as a molecular switch for their protein-protein interaction and is implicated in neural function(s) and/or Alzheimer's disease pathogenesis. Here we demonstrate that both APP and APLP2 can be phosphorylated by JNK at the Thr(668) and Thr(736) residues, respectively, in response to cellular stress. X11-like (X11L, also referred to as X11beta and Mint2), which is a member of the mammalian LIN-10 protein family and a possible regulator of Abeta production, elevated APP and APLP2 phosphorylation probably by facilitating JNK-mediated phosphorylation, whereas other members of the family, X11 and X11L2, did not. These observations revealed an involvement of X11L in the phosphorylation of APP family proteins in cellular stress and suggest that X11L protein may be important in the physiology of APP family proteins as well as in the regulation of Abeta production.  相似文献   

12.
Abstract: The Alzheimer amyloid precursor (APP) protein is a member of a family of glycoproteins that includes the amyloid precursor-like proteins (APLPs). Previously, we showed that in C6 glioma cell cultures, secreted APP nexin II occurs as the core protein of a chondroitin sulfate proteoglycan (CSPG). Here, we report that among seven untransfected cell lines, expression of secreted APP CSPG was restricted to two cell lines of neural origin, namely, C6 glioma and Neuro-2a neuroblastoma (N2a) cells. Addition of dibutyryl cyclic AMP in N2a cultures, a treatment that induces the neuronal phenotype in these cells, resulted in a significant reduction in the amount of the secreted APP CSPG, although secretion of APP was only marginally affected. Growth in the presence of serum increased the size of the secreted APP CSPG, suggesting that the number and/or length of the chondroitin sulfate (CS) chains attached to the core APP varies with growth conditions. Extensive mapping with epitope-specific anti-bodies suggested that a CS chain is attached within or proximal to the Aβ sequence of APP. In contrast to the restricted expression of the APP CSPG, expression of secreted APLP2 CSPGs was observed in all cell lines examined. After chondroitinase treatment, two core proteins of ∼100 and 110 kDa were obtained that reacted with an APLP2-specific antiserum, suggesting that non-transfected cell lines contain at least two endogenous APLP2 CSPGs, probably derived by alternative splicing of the APLP2 KPI domain. The fraction of the APLP2 proteins in the CSPG form was dependent on the particular cell line examined. The proteoglycan nature of APP and APLP2 suggests that addition of the CS glycosaminoglycan chains is important for the implementation of the biological function of these proteins. However, the differential expression of these two proteoglycans suggests that their physiological roles and their possible involvement in Alzheimer's disease may differ.  相似文献   

13.
14.
The amyloid precursor protein (APP) belongs to a conserved gene family, also including the amyloid precursor-like proteins, APLP1 and APLP2. We have previously shown that all members of the APP protein family are up-regulated upon retinoic acid (RA)-induced neuronal differentiation of SH-SY5Y neuroblastoma cells. Here, we demonstrate that RA also affects the processing of APLP2 and APP, as shown by increased shedding of both sAPLP2 and sAPPalpha, as well as elevated levels of the APP intracellular domains (AICDs). Brain-derived neurotrophic factor (BDNF) has been reported to induce APP promoter activity and RA induces expression of the tyrosine kinase receptor B (TrkB) in neuroblastoma cells. We show that the increase in shedding of both APLP2 and APP in response to RA is not mediated through the TrkB receptor. However, BDNF concomitant with RA increased the expression of APP even further. In addition, the secretion of sAPLP2 and sAPPalpha as well as the levels of AICDs were increased in response to BDNF. In contrast, the levels of membrane-bound APP C-terminal fragment C99 significantly decreased. Our results suggest that RA and BDNF shifts APP processing towards the alpha-secretase pathway. In addition, we show that RA and BDNF regulate N-linked glycosylation of APLP1.  相似文献   

15.
Regulated intramembrane proteolysis of the amyloid precursor protein (APP) by the protease activities α-, β- and γ-secretase controls the generation of the neurotoxic amyloid β peptide. APLP2, the amyloid precursor-like protein 2, is a homolog of APP, which shows functional overlap with APP, but lacks an amyloid β domain. Compared to APP, less is known about the proteolytic processing of APLP2, in particular in neurons, and the cleavage sites have not yet been determined. APLP2 is cleaved by the β-secretase BACE1 and additionally by an α-secretase activity. The two metalloproteases ADAM10 and ADAM17 have been suggested as candidate APLP2 α-secretases in cell lines. Here, we used RNA interference and found that ADAM10, but not ADAM17, is required for the constitutive α-secretase cleavage of APLP2 in HEK293 and SH-SY5Y cells. Likewise, in primary murine neurons knock-down of ADAM10 suppressed APLP2 α-secretase cleavage. Using mass spectrometry we determined the proteolytic cleavage sites in the APLP2 sequence. ADAM10 was found to cleave APLP2 after arginine 670, whereas BACE1 cleaves after leucine 659. Both cleavage sites are located in close proximity to the membrane. γ-secretase cleavage was found to occur at different peptide bonds between alanine 694 and valine 700, which is close to the N-terminus of the predicted APLP2 transmembrane domain. Determination of the APLP2 cleavage sites enables functional studies of the different APLP2 ectodomain fragments and the production of cleavage-site specific antibodies for APLP2, which may be used for biomarker development.  相似文献   

16.
The key protein in Alzheimer's disease, the amyloid precursor protein (APP), is a ubiquitously expressed copper-binding glycoprotein that gives rise to the Abeta amyloid peptide. Whereas overexpression of APP results in significantly reduced brain copper levels in three different lines of transgenic mice, knock-out animals revealed increased copper levels. A provoked rise in peripheral levels of copper reduced concentrations of soluble amyloid peptides and resulted in fewer pathogenic Abeta plaques. Contradictory evidence has been provided by the efficacy of copper chelation treatment with the drug clioquinol. Using a yeast model system, we show that adding clioquinol to the yeast culture medium drastically increased the intracellular copper concentration but there was no significant effect observed on zinc levels. This finding suggests that clioquinol can act therapeutically by changing the distribution of copper or facilitating copper uptake rather than by decreasing copper levels. The overexpression of the human APP or APLP2 extracellular domains but not the extracellular domain of APLP1 decreased intracellular copper levels. The expression of a mutant APP deficient for copper binding increased intracellular copper levels several-fold. These data uncover a novel biological function for APP and APLP2 in copper efflux and provide a new conceptual framework for the formerly diverging theories of copper supplementation and chelation in the treatment of Alzheimer's disease.  相似文献   

17.
Amyloid beta (Aβ) precursor protein (APP) is a key protein in the pathogenesis of Alzheimer’s disease (AD). Both APP and its paralogue APLP1 (amyloid beta precursor-like protein 1) have multiple functions in cell adhesion and proliferation. Previously it was thought that autophagy is a novel beta-amyloid peptide (Aβ)-generating pathway activated in AD. However, the protein proteolysis of APLP1 is still largely unknown. The present study shows that APLP1 is rapidly degraded in neuronal cells in response to stresses, such as proteasome inhibition. Activation of the endoplasmic reticulum (ER) stress by proteasome inhibitors induces autophagy, causing reduction of mature APLP1/APP. Blocking autophagy or JNK stress kinase rescues the protein expression for both APP and APLP1. Therefore, our results suggest that APP/APLP1 is degraded through autophagy and the APLP1 proteolysis is mainly mediated by autophagy-lysosome pathway.  相似文献   

18.
The synapse loss and neuronal cell death characteristic of Alzheimer's disease (AD) are believed to result in large part from the neurotoxic effects of beta-amyloid peptide (Abeta), a 40-42 amino acid peptide(s) derived proteolytically from beta-amyloid precursor protein (APP). However, APP is also cleaved intracellularly to generate a second cytotoxic peptide, C31, and this cleavage event occurs in vivo as well as in vitro and preferentially in the brains of AD patients (Lu et al. 2000). Here we show that APPC31 is toxic to neurons in primary culture, and that like APP, the APP family members APLP1 and possibly APLP2 are cleaved by caspases at their C-termini. The carboxy-terminal peptide derived from caspase cleavage of APLP1 shows a degree of neurotoxicity comparable to APPC31. Our results suggest that even though APLP1 and APLP2 cannot generate Abeta, they may potentially contribute to the pathology of AD by generating peptide fragments whose toxicity is comparable to that of APPC31.  相似文献   

19.
BACE1 suppression by RNA interference in primary cortical neurons   总被引:19,自引:0,他引:19  
Extracellular deposition of amyloid-beta (Abeta) aggregates in the brain represents one of the histopathological hallmarks of Alzheimer's disease (AD). Abeta peptides are generated from proteolysis of the amyloid precursor proteins (APPs) by beta- and gamma-secretases. Beta-secretase (BACE1) is a type I integral membrane glycoprotein that can cleave APP first to generate C-terminal 99- or 89-amino acid membrane-bound fragments containing the N terminus of Abeta peptides (betaCTF). As BACE1 cleavage is an essential step for Abeta generation, it is proposed as a key therapeutic target for treating AD. In this study, we show that small interfering RNA (siRNA) specifically targeted to BACE1 can suppress BACE1 (but not BACE2) protein expression in different cell systems. Furthermore, BACE1 siRNA reduced APP betaCTF and Abeta production in primary cortical neurons derived from both wild-type and transgenic mice harboring the Swedish APP mutant. The subcellular distribution of APP and presenilin-1 did not appear to differ in BACE1 suppressed cells. Importantly, pretreating neurons with BACE1 siRNA reduced the neurotoxicity induced by H2O2 oxidative stress. Our results indicate that BACE1 siRNA specifically impacts on beta-cleavage of APP and may be a potential therapeutic approach for treating AD.  相似文献   

20.
The view that only the production and deposition of Abeta plays a decisive role in Alzheimer's disease has been challenged by recent evidence from different model systems, which attribute numerous functions to the amyloid precursor protein (APP). To investigate the potential cellular functions of APP and its paralogs, we use transgenic Drosophila as a model. Upon overexpression of the APP-family members, transformations of cell fates during the development of the peripheral nervous system were observed. Genetic analysis showed that APP, APLP1 and APLP2 induce Notch gain-of-function phenotypes, identified Numb as a potential target and provided evidence for a direct involvement of Disabled and Neurotactin in the induction of the phenotypes. The severity of the induced phenotypes not only depended on the dosage and the particular APP-family member but also on particular domains of the molecules. Studies with Drosophila APPL confirmed the results obtained with human proteins and the analysis of flies mutant for the appl gene further supports an involvement of APP-family members in neuronal development and a crosstalk between the APP family and Notch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号