共查询到19条相似文献,搜索用时 156 毫秒
1.
翅果油树叶表皮毛发育的研究 总被引:1,自引:1,他引:1
利用扫描电镜和光学显微镜,对国家二级保护植物翅果油树(Elaeagnus mollis Diels)叶表皮毛的结构及发育,进行了详细的观察。翅果油树叶表皮毛有两种类型:分枝状表皮毛和盾状表皮毛,两者都是由头部和柄部组成。两类表皮毛的原始细胞均起源于叶原基或幼叶的原表皮细胞,经过两次垂周分裂形成四细胞。在发育后期,四细胞的分化状态决定表皮毛的类型。若四细胞平周分裂成上下八细胞,将发育成分枝状表皮毛的头部;若继续垂周分裂成同层八细胞,将发育成盾状表皮毛的头部。柄部的发育过程基本相同,都是由紧靠头部的表皮细胞和叶肉细胞发育而来。 相似文献
2.
植物表皮毛发育的分子遗传控制 总被引:13,自引:0,他引:13
植物表皮毛是一种特化的单细胞表皮结构。近年来,通过对拟南芥表皮毛的分子遗传研究已发现了多个直接控制表皮毛发育的基因,它们都编码转录因子,包括M^1YB类转录因子(GLABROUS1、WEREWOLF、TRIPTY-CHON、CAPRICE),含WD40重复序列的转录因子(TRANSPARENT TESTA GLABRA1),bHLH类转录因子(GLABROUS3)。含HD—ZIP的转录因子(GLABROUS2),WRKY类转录因子(TRANSPARENT TESTA GLABRA2)。进一步的实验证明GL1/WER—GL3—TTG1通过形成一个转录调控复合体来控制表皮毛和根毛的发育。在根毛和表皮毛的发育过程中,临近的细胞竞争表达这些转录因子决定原初细胞的命运(包括GL1/WER,GL3,TTG1,GL2),同时,还表达一些转录因子阻止临近细胞接受这个命运(包括TRY和CPC)。此外,这一复合体还是其他器官(如种皮、下胚轴气孔等)发育所共用的一种调控机制。 相似文献
3.
4.
5.
6.
7.
在发掘和鉴定调控植物表皮毛发育的新因子过程中,获得了一个表皮毛发育异常的拟南芥隐性突变体abt3-1(aberrantly branched trichome 3-1)。与野生型拟南芥(Col-0)相比,其表皮毛分支数目明显增加。另外,abt3-1还表现出植株小、叶形宽、叶色发灰、主根短等发育缺陷。利用图位克隆技术将该突变基因ABT3定位在1号染色体上,分子标记在F28G11#3与F4N21#1之间,物理距离为134kb。该研究将为进一步克隆ABT3基因及研究其在调控植物生长发育过程中的作用奠定基础。 相似文献
8.
利用光学显微镜、扫描电镜和透射电镜技术,观察了龙葵“四叶一心”期时叶片及茎表皮的腺毛的种类、分布,探究了不同类型腺毛的起源、生长、成熟、分泌、衰老等发育过程的细胞学特征;通过组织化学染色和荧光显微技术,观察了龙葵腺毛成分、分布,为龙葵的进一步开发利用提供参考。结果表明:(1)龙葵腺毛分为单细胞头腺毛和多细胞头腺毛两类,前者主要分布于茎表面和叶上下表皮,后者主要分布于茎表面的单细胞头腺毛之间、叶脉及叶边缘;(2)龙葵腺毛发育起始于表皮细胞突起,单细胞头腺毛行顶端生长,具1-4个柄细胞,四种类型;多细胞头腺毛可再分为一层、两层与三层多细胞头腺毛,另具三种特殊类型;(3)龙葵成熟腺毛具分泌能力,通过皮下空间的物质积累导致腺毛头细胞表面形成突起、包块、破口,最终释放分泌物;而头细胞与柄细胞随即皱缩、衰老。(4)超微结构显示,腺毛头细胞中内质网与高尔基体极为丰富,合成代谢及分泌活动活跃,产生大量包裹嗜锇物质的囊泡,囊泡与细胞壁融合,进而将嗜锇物质转移至细胞壁并积累,随后储存在角质层下的皮下空间直至分泌释放;(5)组织化学染色结果表明,腺毛含有萜类、生物碱、脂类、蛋白质、酚类和多糖。头细胞中主要含有萜类、生物碱、脂类、蛋白质、酚类和中性多糖;柄细胞中主要含有萜类、生物碱、脂类。 相似文献
9.
表皮毛是植物地上部分表皮细胞向外突出延伸的特化毛状结构,不仅可以保护植物免受病虫的危害,还具有一定的经济和药用价值,对其调控的分子机制的阐明有利于植物的分子设计育种和遗传改良。近年来,模式植物拟南芥表皮毛形成的调控模式基本被阐明,其他植物表皮毛的调控机制也取得很大进展。鉴于此,文中综述了拟南芥和棉花(单细胞表皮毛)及番茄和青蒿(多细胞表皮毛)在基因和激素水平上对表皮毛的发育调控,同时简要介绍了其他典型单、双子叶植物表皮毛相关的研究进展,最后,展望了植物表皮毛的研究方向和应用前景。 相似文献
10.
为讨论叶表皮毛状体特征的分类学价值和系统学意义,借助体视显微镜和扫描电镜对中国杨属(Populus)33个物种的叶表皮毛状体进行了观察和分析。结果表明:杨属物种叶片毛状体整体上是非腺状的、简单的、基底固定的;除胡杨(P. euphratica)叶表皮没有毛状体外,其余物种叶表皮均被有毛状体,但毛状体的分布、形态、长度等在物种间存在不同程度差异。毛状体外形(圆柱状至条带状)、弯曲程度(直立至曲卷)、相对于叶表皮表面的方向(伏贴或不伏贴)及毛状体长度具有一定的分类学意义。结合分子系统发育研究提供的进化框架,本研究认为杨属叶表皮毛状体特征在亚属水平难以区分,但胡杨亚属(subg. Turanga)和白杨亚属(subg.Populus)在种间水平可区分很多物种,尤其是白杨亚属内的物种毛状体差异大;脂杨亚属(subg. Tacamahaca)内叶片毛状体相似且稳定,但不同分支上的叶片毛状体在长度上有差异。毛状体特征整合后可划分为以下类型:无毛、毡毛、绢毛、短柔毛和长柔毛。 相似文献
11.
12.
13.
A wound-inducible proteinase Inhibitor I gene from tomato containing 725 bp of the 5 region and 2.5 kbp of the 3 region was stably incorporated into the genome of black nightshade plants (Solanum nigrum) using an Agrobacterium Ti plasmid-derived vector. Transgenic nightshade plants were selected that expressed the tomato Inhibitor I protein in leaf tissue. The leaves of the plants contained constitutive levels of the inhibitor protein of up to 60 g/g tissue. These levels increased by a factor of about two in response to severe wounding. Only leaves and petioles exhibited the presence of the inhibitor, indicating that the gene exhibited the same tissue specificity of expression found in situ in wounded tomato leaves. Inhibitor I was extracted from leaves of wounded transformed nightshade plants and was partially purified by affinity chromatography on a chymotrypsin-Sepharose column. The affinity-purified protein was identical to the native tomato Inhibitor I in its immunological reactivity and in its inhibitory activity against chymotrypsin. The protein exhibited the same M
r of 8 kDa as the native tomato Inhibitor I and its N-terminal amino acid sequence was identical to that of the native tomato inhibitor I, indicating that the protein was properly processed in nightshade plants. These expriments are the first report of the expression of a member of the wound-inducible tomato Inhibitor I gene family in transgenic plants. The results demonstrate that the gene contains elements that can be regulated in a wound-inducible, tissuespecific manner in nightshade plants. 相似文献
14.
15.
Trichomes are specialized structures that develop from epidermal cells in the aerial parts of plants, and are an excellent model system to study all aspects of cell differentiation including cell fate determination, cell cycle regulation, cell polarity and cell expansion. The development of the trichome is a process of integration of both external signals and endogenous developmental programs. During recent years, molecular analysis of trichome development at different stages has been well studied, and through the mutant phenotypes and the function of corresponding genes, the underlying mechanism has been revealed in a first glimpse. This paper offers a mini-view on this integration process with emphasis on the effects of plant hormone signaling on trichome development in plants through GLABROUS INFLORESCENCE STEMS (GIS) family and subfamily genes. 相似文献
16.
17.