首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Mutant R96H is a classic temperature‐sensitive mutant of bacteriophage T4 lysozyme. It was in fact the first variant of the protein to be characterized structurally. Subsequently, it has been studied extensively by a variety of experimental and computational techniques, but the reasons for the loss of stability of the mutant protein remain controversial. In the crystallographic refinement of the mutant structure at 1.9 Å resolution one of the bond angles at the site of substitution appeared to be distorted by about 11°, and it was suggested that this steric strain was one of the major factors in destabilizing the mutant. Different computationally‐derived models of the mutant structure, however, did not show such distortion. To determine the geometry at the site of mutation more reliably, we have extended the resolution of the data and refined the wildtype (WT) and mutant structures to be better than 1.1 Å resolution. The high‐resolution refinement of the structure of R96H does not support the bond angle distortion seen in the 1.9 Å structure determination. At the same time, it does confirm other manifestations of strain seen previously including an unusual rotameric state for His96 with distorted hydrogen bonding. The rotamer strain has been estimated as about 0.8 kcal/mol, which is about 25% of the overall reduction in stability of the mutant. Because of concern that contacts from a neighboring molecule in the crystal might influence the geometry at the site of mutation we also constructed and analyzed supplemental mutant structures in which this crystal contact was eliminated. High‐resolution refinement shows that the crystal contacts have essentially no effect on the conformation of Arg96 in WT or on His96 in the R96H mutant.  相似文献   

3.
Template-based methods for predicting protein structure provide models for a significant portion of the protein but often contain insertions or chain ends (InsEnds) of indeterminate conformation. The local structure prediction "problem" entails modeling the InsEnds onto the rest of the protein. A well-known limit involves predicting loops of ≤12 residues in crystal structures. However, InsEnds may contain as many as ~50 amino acids, and the template-based model of the protein itself may be imperfect. To address these challenges, we present a free modeling method for predicting the local structure of loops and large InsEnds in both crystal structures and template-based models. The approach uses single amino acid torsional angle "pivot" moves of the protein backbone with a C(β) level representation. Nevertheless, our accuracy for loops is comparable to existing methods. We also apply a more stringent test, the blind structure prediction and refinement categories of the CASP9 tournament, where we improve the quality of several homology based models by modeling InsEnds as long as 45 amino acids, sizes generally inaccessible to existing loop prediction methods. Our approach ranks as one of the best in the CASP9 refinement category that involves improving template-based models so that they can function as molecular replacement models to solve the phase problem for crystallographic structure determination.  相似文献   

4.
A series of crystal structures of trypsin, containing either an autoproteolytic cleaved peptide fragment or a covalently bound inhibitor, were determined at atomic and ultra-high resolution and subjected to ab initio quantum chemical calculations and multipole refinement. Quantum chemical calculations reproduced the observed active site crystal structure with severe deviations from standard stereochemistry and indicated the protonation state of the catalytic residues. Multipole refinement directly revealed the charge distribution in the active site and proved the validity of the ab initio calculations. The combined results confirmed the catalytic function of the active site residues and the two water molecules acting as the nucleophile and the proton donor. The crystal structures represent snapshots from the reaction pathway, close to a tetrahedral intermediate. The de-acylation of trypsin then occurs in true SN2 fashion.  相似文献   

5.
Cytochrome c oxidase contains two established proton-conducting structures, the D- and K-pathways. The role of the K-pathway appears to be to conduct the first two protons to be used in water formation, which are taken up on reduction of the oxidized enzyme. Previous computational work has suggested that Lys(I)-319 is neutral over a large pH range and in various redox states. We have constructed oxidase models in different redox states using quantum-chemically derived charge parameters for the redox metal centers. The protonation behaviour of titratable sites in the two-subunit enzyme was defined by continuum electrostatics. The calculations reported here show substantial protonation of Lys(I)-319 at neutral pH once the stable X-ray crystallographic water molecule found immediately next to it is treated explicitly. The immediate structure of the Lys(I)-319 environment is independent of redox state, but the pK(a) value of this residue changes with the redox state of the binuclear heme a3/Cu(B) site whenever that change is electrically uncompensated. Lys(I)-319 is also found to interact electrostatically with the conserved residue Glu(II)-62 in subunit II. These results are discussed in relation to the role of the K-pathway in oxidase function.  相似文献   

6.
Invariant water molecules that are of structural or functional importance to proteins are detected from their presence in the same location in different crystal structures of the same protein or closely related proteins. In this study we have investigated the location of invariant water molecules from MD simulations of ribonuclease A, HIV1-protease and Hen egg white lysozyme. Snapshots of MD trajectories represent the structure of a dynamic protein molecule in a solvated environment as opposed to the static picture provided by crystallography. The MD results are compared to an analysis on crystal structures. A good correlation is observed between the two methods with more than half the hydration sites identified as invariant from crystal structures featuring as invariant in the MD simulations which include most of the functionally or structurally important residues. It is also seen that the propensities of occupying the various hydration sites on a protein for structures obtained from MD and crystallographic studies are different. In general MD simulations can be used to predict invariant hydration sites when there is a paucity of crystallographic data or to complement crystallographic results.  相似文献   

7.
Achieving atomic-level accuracy in comparative protein models is limited by our ability to refine the initial, homolog-derived model closer to the native state. Despite considerable effort, progress in developing a generalized refinement method has been limited. In contrast, methods have been described that can accurately reconstruct loop conformations in native protein structures. We hypothesize that loop refinement in homology models is much more difficult than loop reconstruction in crystal structures, in part, because side-chain, backbone, and other structural inaccuracies surrounding the loop create a challenging sampling problem; the loop cannot be refined without simultaneously refining adjacent portions. In this work, we single out one sampling issue in an artificial but useful test set and examine how loop refinement accuracy is affected by errors in surrounding side-chains. In 80 high-resolution crystal structures, we first perturbed 6-12 residue loops away from the crystal conformation, and placed all protein side chains in non-native but low energy conformations. Even these relatively small perturbations in the surroundings made the loop prediction problem much more challenging. Using a previously published loop prediction method, median backbone (N-Calpha-C-O) RMSD's for groups of 6, 8, 10, and 12 residue loops are 0.3/0.6/0.4/0.6 A, respectively, on native structures and increase to 1.1/2.2/1.5/2.3 A on the perturbed cases. We then augmented our previous loop prediction method to simultaneously optimize the rotamer states of side chains surrounding the loop. Our results show that this augmented loop prediction method can recover the native state in many perturbed structures where the previous method failed; the median RMSD's for the 6, 8, 10, and 12 residue perturbed loops improve to 0.4/0.8/1.1/1.2 A. Finally, we highlight three comparative models from blind tests, in which our new method predicted loops closer to the native conformation than first modeled using the homolog template, a task generally understood to be difficult. Although many challenges remain in refining full comparative models to high accuracy, this work offers a methodical step toward that goal.  相似文献   

8.
9.
Ban YE  Rudolph J  Zhou P  Edelsbrunner H 《Proteins》2006,62(4):852-864
Evaluating the quality of experimentally determined protein structural models is an essential step toward identifying potential errors and guiding further structural refinement. Herein, we report the use of proton local density as a sensitive measure to assess the quality of nuclear magnetic resonance (NMR) structures. Using 256 high-resolution crystal structures with protons added and optimized, we show that the local density of different proton types display distinct distributions. These distributions can be characterized by statistical moments and are used to establish local density Z-scores for evaluating both global and local packing for individual protons. Analysis of 546 crystal structures at various resolutions shows that the local density Z-scores increase as the structural resolution decreases and correlate well with the ClashScore (Word et al. J Mol Biol 1999;285(4):1711-1733) generated by all atom contact analysis. Local density Z-scores for NMR structures exhibit a significantly wider range of values than for X-ray structures and demonstrate a combination of potentially problematic inflation and compression. Water-refined NMR structures show improved packing quality. Our analysis of a high-quality structural ensemble of ubiquitin refined against order parameters shows proton density distributions that correlate nearly perfectly with our standards derived from crystal structures, further validating our approach. We present an automated analysis and visualization tool for proton packing to evaluate the quality of NMR structures.  相似文献   

10.
《BBA》2020,1861(10):148239
Cytochrome c Oxidase (CcO) is the terminal electron acceptor in aerobic respiratory chain, reducing O2 to water. The released free energy is stored by pumping protons through the protein, maintaining the transmembrane electrochemical gradient. Protons are held transiently in a proton loading site (PLS) that binds and releases protons driven by the electron transfer reaction cycle. Multi-Conformation Continuum Electrostatics (MCCE) was applied to crystal structures and Molecular Dynamics snapshots of the B-type Thermus thermophilus CcO. Six residues are identified as the PLS, binding and releasing protons as the charges on heme b and the binuclear center are changed: the heme a3 propionic acids, Asp287, Asp372, His376 and Glu126B. The unloaded state has one proton and the loaded state two protons on these six residues. Different input structures, modifying the PLS conformation, show different proton distributions and result in different proton pumping behaviors. One loaded and one unloaded protonation states have the loaded/unloaded states close in energy so the PLS binds and releases a proton through the reaction cycle. The alternative proton distributions have state energies too far apart to be shifted by the electron transfers so are locked in loaded or unloaded states. Here the protein can use active states to load and unload protons, but has nearby trapped states, which stabilize PLS protonation state, providing new ideas about the CcO proton pumping mechanism. The distance between the PLS residues Asp287 and His376 correlates with the energy difference between loaded and unloaded states.  相似文献   

11.
The majority of 3D structures of macromolecules are currently determined by macromolecular crystallography, which employs the diffraction of X-rays on single crystals. However, during diffraction experiments, the X-rays can damage the protein crystals by ionization processes, especially when powerful X-ray sources at synchrotron facilities are used. This process of radiation damage generates photo-electrons that can get trapped in protein moieties. The 3D structure derived from such experiments can differ remarkably from the structure of the native molecule. Recently, the crystal structures of different oxidation states of horseradish peroxidase and nickel-containing superoxide dismutase were determined using crystallographic redox titration performed during the exposure of the crystals to the incident X-ray beam. Previous crystallographic analyses have not shown the distinct structures of the active sites associated with the redox state of the structural features of these enzymes. These new studies show that, for protein moieties that are susceptible to radiation damage and prone to reduction by photo-electrons, care is required in both the design of the diffraction experiment and the analysis and interpretation.  相似文献   

12.
We present a critical assessment of the performance of our homology model refinement method for G protein‐coupled receptors (GPCRs), called LITICon that led to top ranking structures in a recent structure prediction assessment GPCRDOCK2010. GPCRs form the largest class of drug targets for which only a few crystal structures are currently available. Therefore, accurate homology models are essential for drug design in these receptors. We submitted five models each for human chemokine CXCR4 (bound to small molecule IT1t and peptide CVX15) and dopamine D3DR (bound to small molecule eticlopride) before the crystal structures were published. Our models in both CXCR4/IT1t and D3/eticlopride assessments were ranked first and second, respectively, by ligand RMSD to the crystal structures. For both receptors, we developed two types of protein models: homology models based on known GPCR crystal structures, and ab initio models based on the prediction method MembStruk. The homology‐based models compared better to the crystal structures than the ab initio models. However, a robust refinement procedure for obtaining high accuracy structures is needed. We demonstrate that optimization of the helical tilt, rotation, and translation is vital for GPCR homology model refinement. As a proof of concept, our in‐house refinement program LITiCon captured the distinct orientation of TM2 in CXCR4, which differs from that of adrenoreceptors. These findings would be critical for refining GPCR homology models in future. Proteins 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Water plays an essential role in most biological processes. Water molecules solvating biomolecules are generally in fast exchange with the environment. Nevertheless, well-defined electron density is seen for water associated with proteins whose crystal structure is determined to high resolution. The relative accessibility of these water sites is likely to be relevant to their biological role but is difficult to assess. A time-averaging crystallographic refinement simulation on basic pancreatic trypsin inhibitor successfully characterizes the relative accessibility of the crystallographic water sites. In such a refinement simulation water diffuses through the crystal lattice in a manner that is consistent with the crystallographic data. This refinement discovers that internal crystallographic waters in this particular protein are bridged to the outside protein surface via a series of progressively more accessible water sites. On the surface of the protein, water molecules exchange quickly between crystallographic water sites. Time-averaging crystallographic refinement provides a view based on experimental data of the relative accessibility of water sites in and around a protein in a crystalline environment. Proteins 1999;36:501-511.  相似文献   

14.
This paper explores the dependence of the molecular dynamics (MD) trajectory of a protein molecule on the titration state assigned to the molecule. Four 100-ps MD trajectories of bovine pancreatic trypsin inhibitor (BPTI) were generated, starting from two different structures, each of which was held in two different charge states. The two starting structures were the X-ray crystal structure and one of the solution structures determined by NMR, and the charge states differed only in the ionization state of N terminus. Although it is evident that the MD simulations were too short to sample fully the equilibrium distribution of structures in each case, standard Poisson-Boltzmann titration state analysis of the resulting configurations shows general agreement between the overall titration behavior of the protein and the charge state assumed during MD simulation: at pH 7, the total net charge of the protein resulting from the titration analysis is consistently lower for the protein with the N terminus assumed to be neutral than for the protein with the N terminus assumed to be charged. For most of the ionizable residues, the differences in the calculated pKaS among the four trajectories are statistically negligible and remain in good agreement with the data obtained by crystal structure titration and by experiment. The exceptions include the N terminus, which responds directly to the change of its imposed charge; the C terminus, which in the NMR structure interacts strongly with the former; and a few other residues (Arg 1, Glu 7, Tyr 35, and Arg 42) whose pKaS reflect the initial structure and the limited trajectory lengths. This study illustrates the importance of the careful assignment of protonation states at the start of MD simulations and points to the need for simulation methods that allow for the variation of the protonation state in the calculation of equilibrium properties.  相似文献   

15.
Using the crystal structure of Despentapeptide (B26-B30) insulin (DPI as the search model, the crystal structure of DesB1-B2 Despentapeptide (B26-B30) insulin (DesB1-2 DPI) has been studied by the molecular replacement method. There is one DesB1-2 DPI molecule in each crystallographic asymmetric unit. The cross rotation function search and the translation function search show apparent peaks and thus determine the orientation and position of DesB1-2 DPI molecule in the cell respectively. The subsequent three-dimensional structural rebuilding and refinement of DesB1-2 DPI molecule confirm the results by molecular replacement method.  相似文献   

16.
Movement is crucial to the biological function of many proteins, yet crystallographic structures of proteins can give us only a static snapshot. The protein dynamics that are important to biological function often happen on a timescale that is unattainable through detailed simulation methods such as molecular dynamics as they often involve crossing high-energy barriers. To address this coarse-grained motion, several methods have been implemented as web servers in which a set of coordinates is usually linearly interpolated from an initial crystallographic structure to a final crystallographic structure. We present a new morphing method that does not extrapolate linearly and can therefore go around high-energy barriers and which can produce different trajectories between the same two starting points. In this work, we evaluate our method and other established coarse-grained methods according to an objective measure: how close a coarse-grained dynamics method comes to a crystallographically determined intermediate structure when calculating a trajectory between the initial and final crystal protein structure. We test this with a set of five proteins with at least three crystallographically determined on-pathway high-resolution intermediate structures from the Protein Data Bank. For simple hinging motions involving a small conformational change, segmentation of the protein into two rigid sections outperforms other more computationally involved methods. However, large-scale conformational change is best addressed using a nonlinear approach and we suggest that there is merit in further developing such methods.  相似文献   

17.
SuperStar is an empirical method for identifying interaction sites in proteins, based entirely on the experimental information about non-bonded interactions, present in the IsoStar database. The interaction information in IsoStar is contained in scatterplots, which show the distribution of a chosen probe around structure fragments. SuperStar breaks a template molecule (e.g. a protein binding site) into structural fragments which correspond to those in the scatterplots. The scatterplots are then superimposed on the corresponding parts of the template and converted into a composite propensity map.The original version of SuperStar was based entirely on scatterplots from the CSD. Here, scatterplots based on protein-ligand interactions are implemented in SuperStar, and validated on a test set of 122 X-ray structures of protein-ligand complexes. In this validation, propensity maps are compared with the experimentally observed positions of ligand atoms of comparable types. Although non-bonded interaction geometries in small molecule structures are similar to those found in protein-ligand complexes, their relative frequencies of occurrence are different. Polar interactions are more common in the first class of structures, while interactions between hydrophobic groups are more common in protein crystals. In general, PDB and CSD-based SuperStar maps appear equally successful in the prediction of protein-ligand interactions. PDB-based maps are more suitable to identify hydrophobic pockets, and inherently take into account the experimental uncertainties of protein atomic positions. If the protonation state of a histidine, aspartate or glutamate protein side-chain is known, specific CSD-based maps for that protonation state are preferred over PDB-based maps which represent an ensemble of protonation states.  相似文献   

18.
The structure of d(CGCGCG) crystallized in the presence of magnesium and sodium ions alone is compared to that of the spermine form of the molecule. The very high resolution nature of these structure determinations allows the first true examination of an oligonucleotide structure in fine detail. The values of bond distances and angles are compared to those derived from small molecule crystal structures. In addition, the interactions of cations and polyamines with the Z-DNA helix are analyzed. In particular, multiple cationic charges appear to offer enhanced stabilization for the Z-DNA conformation. The location of spermine molecules along the edge of the deep groove and also spanning the entrance to the groove emphasizes the importance of polyamines for stabilizing this left-handed structure. On averaging, we obtained very similar structural parameters for the two different structures with standard deviations generally smaller than the deviations of the crystallographic model from ideal values. This indicates a high degree of accuracy of the two structures, which have been refined using different data and different refinement methods. The derived bond lengths and angles may thus be more representative of this polymeric DNA structure than those derived from mono- and dinucleotide structures at a similar accuracy.  相似文献   

19.
A recently determined atomic structure of an H+-coupled ATP-synthase membrane rotor has revived the long-standing question of whether protons may be bound to these structures in the form of a hydronium ion. Using both classical and quantum-mechanical simulations, we show that this notion is implausible. Ab initio molecular dynamics simulations of the binding site demonstrate that the putative H3O+ deprotonates within femtoseconds. The bound proton is thus transferred irreversibly to the carboxylate side chain found in the ion-binding sites of all ATP-synthase rotors. This result is consistent with classical simulations of the rotor in a phospholipid membrane, on the 100-nanosecond timescale. These simulations show that the hydrogen-bond network seen in the crystal structure is incompatible with a bound hydronium. The observed coordination geometry is shown to correspond instead to a protonated carboxylate and a bound water molecule. In conclusion, this study underscores the notion that binding and transient storage of protons in the membrane rotors of ATP synthases occur through a common chemical mechanism, namely carboxylate protonation.  相似文献   

20.
Ergenekan CE  Tan ML  Ichiye T 《Proteins》2005,61(4):823-828
Molecular dynamics simulations based on a 0.95-A resolution crystal structure of Pyrococcus furiosus have been performed to elucidate the effects of the environment on the structure of rubredoxin, and proteins in general. Three 1-ns simulations are reported here: two crystalline state simulations at 123 and 300 K, and a solution state simulation at 300 K. These simulations show that temperature has a greater impact on the protein structure than the close molecular contacts of the crystal matrix in rubredoxin, although both have an effect on its dynamic properties. These results indicate that differences between NMR solution structures and X-ray crystal structures will be relatively minor if they are done at similar temperatures. In addition, the crystal simulations appears to mimic previous crystallographic experiments on the effects of cryo-temperature on temperature factors, and might provide a useful tool in the structural analysis of protein structures solved at cryo-temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号