首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
ONO-4057(5-[2-(2-Carboxyethyl)-3-[6-(4-methoxyphenyl)-5E- hexenyl]oxyphenoxy]valeric acid), an orally active leukotriene B4(LTB4) antagonist, displaced the binding of [3H] LTB4 to the LTB4 receptor in human neutrophil (Ki = 3.7 +/- 0.9 nM). ONO-4057 inhibited the LTB4-induced rise in cytosolic free calcium (the concentration causing 50% inhibition (IC50) = 0.7 +/- 0.3 microM) and inhibited human neutrophil aggregation, chemotaxis or degranulation induced by LTB4 (IC50 = 3.0 +/- 0.1, 0.9 +/- 0.1 and 1.6 +/- 0.1 microM) without showing any agonist activity at concentration up to 30 microM. ONO-4057 did not inhibit fMLP or C5a-induced neutrophil activation at concentrations up to 30 microM. In the in vivo study, ONO-4057 given orally, prevented LTB4-induced transient neutropenia or intradermal neutrophil migration in guinea pig (the dose causing 50% efficacy (ED50) = 25.6mg/kg or 5.3mg/kg). Furthermore, ONO-4057 given topically, suppressed phorbol-12-myristate-13-acetate (PMA)-induced neutrophil infiltration in guinea pig ear (the effective dose = 1 mg/ear). These results indicate that ONO-4057 is a selective and orally active LTB4 antagonist and may be a potential candidate for the treatment of various inflammatory diseases.  相似文献   

3.
SSR 146977 is a potent and selective antagonist of the tachykinin NK3 receptor. In Chinese hamster ovary cells expressing the human tachykinin NK3 receptor, SSR 146977 inhibited the binding of radioactive neurokinin B to NK3 receptors (Ki = 0.26 nM), senktide (10 nM) induced inositol monophosphate formation (IC50 = 7.8-13 nM), and intracellular calcium mobilization (IC50 = 10 nM). It antagonized [MePhe7]neurokinin B induced contractions of guinea pig ileum (pA2 = 9.07). Senktide (30 nM) induced firing rate increase of noradrenergic neurons in the guinea pig locus coeruleus and dopaminergic neurons in the guinea pig substantia nigra was also blocked by SSR 146977 (50 and 100 nM, respectively). In vivo, in the respiratory system, SSR 146977 inhibited bronchial hyperresponsiveness to acetylcholine, bronchial microvascular permeability hypersensitivity to histamine (doses of 0.1-1 mg/kg i.p.), and cough (doses of 0.03-1 mg/kg i.p.) provoked by citric acid in guinea pigs. In the central nervous system, SSR 146977 inhibited turning behaviour (ID50 = 0.2 mg/kg i.p. and 0.4 mg/kg p.o.) and prevented the decrease of locomotor activity (10 and 30 mg/kg i.p) mediated by the stimulation of NK3 receptors in gerbils. In guinea pigs, SSR 146977 antagonized senktide-induced acetylcholine release in the hippocampus (0.3 and 1 mg/kg i.p) and norepinephrine release in the prefrontal cortex (0.3 mg/kg i.p.). It also prevented haloperidol-induced increase of the number of spontaneously active dopamine A10 neurons (1 and 3 mg/kg i.p.).  相似文献   

4.
Airway hyperresponsiveness and airway inflammation are hallmarks of allergic asthma, the etiology of which is crucially linked to the presence of Th2 cytokines. A role for the complement anaphylatoxins C3a and C5a in allergic asthma was suggested, as deficiencies of the C3a receptor (C3aR) and of complement factor C5 modulate airway hyperresponsiveness, airway inflammation, and Th2 cytokine levels. However, such models do not allow differentiation of effects on the sensitization phase and the effector phase of the allergic response, respectively. In this study, we determined the role of the anaphylatoxins on the effector phase of asthma by pharmacological targeting of the anaphylatoxin receptors. C3aR and C5a receptor (C5aR) signaling was blocked using the nonpeptidic C3aR antagonist SB290157 and the neutralizing C5aR mAb 20/70 in a murine model of Aspergillus fumigatus extract induced pulmonary allergy. Airway hyperresponsiveness was substantially improved after C5aR blockade but not after C3aR blockade. Airway inflammation was significantly reduced in mice treated with the C3aR antagonist or the anti-C5aR mAb, as demonstrated by reduced numbers of neutrophils and eosinophils in bronchoalveolar lavage fluid. Of note, C5aR but not C3aR inhibition reduced lymphocyte numbers in bronchoalveolar lavage fluid. Cytokine levels of IL-5 and IL-13 in bronchoalveolar lavage fluid were not altered by C3aR or C5aR blockade. However, blockade of both anaphylatoxin receptors markedly reduced IL-4 levels. These data suggest an important and exclusive role for C5aR signaling on the development of airway hyperresponsiveness during pulmonary allergen challenge, whereas both anaphylatoxins contribute to airway inflammation and IL-4 production.  相似文献   

5.
Leukotriene B4 (LTB4) and 12-(R)-hydroxy-5,8,10,14-eicosatetraenoic acid (12-[R]-HETE) have been postulated to contribute to the pathophysiology of inflammatory diseases. SB 201993, (E)-3-[[[[6-(2-carboxyethenyl)-5-[[8-(4-methoxyphenyl)octyl] oxy]-2-pyridinyl] methyl] thio] methyl] benzoic acid, identified from a chemical series designed as ring-fused analogs of LTB4, was evaluated as an antagonist of LTB4- and 12-(R)-HETE-induced responses in vitro and for anti-inflammatory activity in vivo. SB 201993 competitively antagonized [3-H]-LTB4 binding to intact human neutrophils (Ki = 7.6 nM) and to membranes of RBL 2H3 cells expressing the LTB4 receptor (RBL 2H3-LTB4R; IC50 = 154 nM). This compound demonstrated competitive antagonism of LTB4- and 12-(R)-HETE-induced Ca2+ mobilization responses in human neutrophils (IC50s of 131 nM and 105 nM, respectively) and inhibited LTB4-induced Ca2+ mobilization in human cultured keratinocytes (IC50 = 61 nM), RBL 2H3-LTB4R cells (IC50 = 255 nM) and mouse neutrophils (IC50 = 410 nM). SB 201993 showed weak LTD4-receptor binding affinity (Ki = 1.9 microM) and inhibited 5-lipoxygenase (IC50 of 3.6 microM), both in vitro and ex vivo. In vivo, SB 201993 inhibited LTB4-induced neutrophil infiltration in mouse skin and produced dose-related, long lasting topical anti-inflammatory activity against the fluid and cellular phases of arachidonic acid-induced mouse ear inflammation (ED50 of 580 microg/ear and 390 microg/ear, respectively). Similarly, anti-inflammatory activity was also observed in the murine phorbol ester-induced cutaneous inflammation model (ED50 of 770 and 730 microg/ear, respectively, against the fluid and cellular phases). These results indicate that SB 201993 blocks the actions of LTB4 and 12-(R)-HETE and inhibits a variety of inflammatory responses; and thus may be a useful compound to evaluate the role of these mediators in disease models.  相似文献   

6.
There is a lack of radioactive probes, particularly radioiodinated probes, for the direct labeling of serotonin-1B (5-HT1B) and serotonin-1D (5-HT1D) binding sites. Serotonin-O-carboxymethylglycyltyrosinamide (S-CM-GTNH2) was shown previously to be specific for these two subtypes; we, therefore, linked a 125I to its tyrosine residue. Biochemical and pharmacological properties of S-CM-G[125I]TNH2-binding sites were studied by quantitative autoradiography on rat and guinea pig brain sections. S-CM-G[125I]TNH2 binding is saturable and reversible with a KD value of 1.3 nM in the rat and 6.4 nM in the guinea pig. Binding is heterogeneous, paralleling the anatomical distribution of 5-HT1B sites in the rat and of 5-HT1D sites in the guinea pig. The binding of 0.02 nM S-CM-G[125I]TNH2 was inhibited by low concentrations of 5-HT, S-CM-GTNH2, CGS 12066 B, 5-methoxytryptamine, and tryptamine in both species. Propranolol inhibited the radioligand binding with a greater affinity in the rat than in the guinea pig. Conversely, 8-hydroxy-2-(di-n-propylamino)tetralin inhibited S-CM-G[125I]TNH2 binding with a greater affinity in the guinea pig than in the rat. Other competitors, specific for 5-HT1C, 5-HT2, 5-HT3, and adrenergic receptors, inhibited S-CM-G[125I]TNH2 binding in rat and guinea pig substantia nigra and in other labeled structures known to contain these receptors, but only at high concentrations. S-CM-G[125I]TNH2 is then a useful new probe for the direct study of 5-HT1B and 5-HT1D binding sites.  相似文献   

7.
The effects of a second generation p38 mitogen-activated protein kinase (MAPK) inhibitor, SB 239063 [trans-1-(4-hydroxycyclohexyl)-4-(4-fluorophenyl)-5-(2-methoxypyridim idi n-4-yl)imidazole; IC(50) = 44 nM vs. p38 alpha], were assessed in models that represent different pathological aspects of chronic obstructive pulmonary disease (COPD) [airway neutrophilia, enhanced cytokine formation and increased matrix metalloproteinase (MMP)-9 activity] and in a model of lung fibrosis. Airway neutrophil infiltration and interleukin (IL)-6 levels, assessed by bronchoalveolar lavage 48 h after lipopolysaccharide (LPS) inhalation, were inhibited dose dependently by 3-30 mg/kg of SB 239063 given orally twice a day. In addition, SB 239063 (30 mg/kg orally) attenuated IL-6 bronchoalveolar lavage fluid concentrations (>90% inhibition) and MMP-9 activity (64% inhibition) assessed 6 h after LPS exposure. In guinea pig cultured alveolar macrophages, SB 239063 inhibited LPS-induced IL-6 production (IC(50) of 362 nM). In a bleomycin-induced pulmonary fibrosis model in rats, treatment with SB 239063 (2.4 or 4.8 mg/day via osmotic pump) significantly inhibited bleomycin-induced right ventricular hypertrophy (indicative of secondary pulmonary hypertension) and increases in lung hydroxyproline synthesis (indicative of collagen synthesis and fibrosis). Therefore, SB 239063 demonstrates activity against a range of sequelae commonly associated with COPD and fibrosis, supporting the therapeutic potential of p38 MAPK inhibitors such as SB 239063 in chronic airway disease.  相似文献   

8.
[125I]EXP985 is the first nonpeptide radioligand with high specific activity for the AT1 angiotensin receptor. The biochemical and pharmacological profiles of this ligand were determined using either ligand-receptor binding techniques in rat adrenal cortical microsomes or cellular Ca2+ mobilization in rat smooth muscle cells. Specific binding with 0.1 nM [125I]EXP985 increased slowly with time reaching an equilibrium at 60 min of incubation (22 degrees C). Scatchard analysis of the inhibition/binding data revealed a single class of binding sites having a Kd of 1.49 +/- 0.06 nM and a Bmax of 3.6 +/- 0.1 pmol/mg protein. These sites were saturable and the ligand-receptor complex dissociated with a t1/2 of 58 min. The binding was inhibited by Ang peptides with the following order of potency and IC50 (nM): Ang II (3.7) > Ang III (69) > Ang I (3650), and by the nonpeptide AT1 receptor antagonist, losartan, with an IC50 of 3.2 nM. PD123177, an AT2 selective antagonist, showed minimal inhibitory effect. Specific binding of [125I]EXP985 was found on rat aortic smooth cells. Ang II-induced Ca2+ mobilization in these cells was blocked by EXP985 in a noncompetitive manner. These data show that [125I]EXP985 (or its unlabeled) is a potent and highly specific radioligand or noncompetitive antagonist which represents a novel tool to further our understanding of the biochemistry of AT1 receptors.  相似文献   

9.
L-660,711 (3-(3-(2-(7-chloro-2-quinolinyl)ethenyl)phenyl) ((3-dimethyl amino-3-oxo propyl)thio)methyl)thio)propanoic acid is a potent and selective competitive inhibitor of [3H]leukotriene D4 binding in guinea pig (Ki value, 0.22 nM) and human (Ki value, 2.1 nM) lung membranes but is essentially inactive versus [3H]leukotriene C4 binding (IC50 value in guinea pig lung, 23 microM). Functionally it competitively antagonized contractions of guinea pig trachea and ileum induced by leukotriene (LT) D4 (respective pA2 values, 9.4 and 10.5) and LTE4 (respective pA2 values, 9.1 and 10.4) and contractions of human trachea induced by LTD4 (pA2 value, 8.5). L-660,711 (5.8 x 10(-8)M) antagonized contractions of guinea pig trachea induced by LTC4 in the absence (dose ratio = 28) but not in the presence of 45 mM L-serine borate (dose ratio less than 2). L-660,711 (1.9 x 10(-5)M) did not block contractions of guinea pig trachea induced by histamine, acetylcholine, 5-hydroxytryptamine, PGF2 alpha, U-44069, or PGD2. In the presence of atropine, mepyramine, and indomethacin, L-660,711 (1.9 x 10(-5)M) inhibited a small component of the response to antigen on guinea pig trachea but completely blocked anti-IgE-induced contractions of human trachea. L-660,711 (i.v.) antagonized bronchoconstriction induced in anesthetized guinea pigs by i.v. LTC4, LTD4, and LTE4 but did not block bronchoconstriction to arachidonic acid, U-44069, 5-hydroxytryptamine, histamine, or acetylcholine. Intraduodenal L-660,711 antagonized LTD4 (0.2-12.8 micrograms/kg)-induced bronchoconstriction in guinea pigs, and p.o. L-660,711 blocked LTD4- and Ascaris-induced bronchoconstriction in conscious squirrel monkeys and ovalbumin-induced bronchoconstriction in conscious sensitized rats treated with methysergide (3 micrograms/kg). The pharmacological profile of L-660,711 indicates that it is a potent, selective, orally active leukotriene receptor antagonist which is well suited to determine the role played by LTD4 and LTE4 in asthma and other pathophysiologic conditions.  相似文献   

10.
Guo Q  Subramanian H  Gupta K  Ali H 《PloS one》2011,6(7):e22559

Background

The complement component C3a activates human mast cells via its cell surface G protein coupled receptor (GPCR) C3aR. For most GPCRs, agonist-induced receptor phosphorylation leads to receptor desensitization, internalization as well as activation of downstream signaling pathways such as ERK1/2 phosphorylation. Previous studies in transfected COS cells overexpressing G protein coupled receptor kinases (GRKs) demonstrated that GRK2, GRK3, GRK5 and GRK6 participate in agonist-induced C3aR phosphorylation. However, the roles of these GRKs on the regulation of C3aR signaling and mediator release in human mast cells remain unknown.

Methodology/Principal Findings

We utilized lentivirus short hairpin (sh)RNA to stably knockdown the expression of GRK2, GRK3, GRK5 and GRK6 in human mast cell lines, HMC-1 and LAD2, that endogenously express C3aR. Silencing GRK2 or GRK3 expression caused a more sustained Ca2+ mobilization, attenuated C3aR desensitization, and enhanced degranulation as well as ERK1/2 phosphorylation when compared to shRNA control cells. By contrast, GRK5 or GRK6 knockdown had no effect on C3aR desensitization, but caused a significant decrease in C3a-induced mast cell degranulation. Interestingly, GRK5 or GRK6 knockdown rendered mast cells more responsive to C3a for ERK1/2 phosphorylation.

Conclusion/Significance

This study demonstrates that GRK2 and GRK3 are involved in C3aR desensitization. Furthermore, it reveals the novel finding that GRK5 and GRK6 promote C3a-induced mast cell degranulation but inhibit ERK1/2 phosphorylation via C3aR desensitization-independent mechanisms. These findings thus reveal a new level of complexity for C3aR regulation by GRKs in human mast cells.  相似文献   

11.
So far, there are no known peptidic effective receptor antagonists of both peripheral and central effects of cholecystokinin (CCK). Here, we describe a synthetic peptide derivative of CCK, t-butyloxycarbonyl-Tyr(SO3-)-Met-Gly-D-Trp-Nle-Asp 2-phenylethyl ester 1 (where Nle is norleucine), which is a potent CCK receptor antagonist. In rat and guinea pig dispersed pancreatic acini, this peptide derivative did not alter amylase secretion, but was able to antagonize the stimulation caused by cholecystokinin-related agonists. It caused a parallel rightward shift in the dose-response curve for the stimulation of amylase secretion with half-maximal inhibition of CCK-8-stimulated amylase release at a concentration of about 0.1 microM. Compound 1 was able to inhibit the binding of labeled CCK-9 (the C-terminal nonapeptide of CCK) to rat and guinea pig pancreatic acini (IC50 = 5 X 10(-8) M) as well as to guinea pig cerebral cortical membranes (IC50 = 5 X 10(-7) M). These results indicate that Compound 1 is a potent competitive CCK receptor antagonist.  相似文献   

12.
Deltakephalin, Tyr-D-Thr-Gly-Phe-Leu-Thr (DTLET) was rationally designed as pure delta-probe from proposed models of mu and delta opiate receptors. On peripheral organs, deltakephalin displays a 3000 times higher inhibitory potency on the electrically stimulated mouse vas deferens (IC50 = 0.15 nM) as on the guinea pig ileum (IC50 = 460 nM). As expected [3H]deltakephalin interacts at 35 degrees C in rat brain tissue to a single class of binding sites (delta) (Bmax = 0.115 pmole/mg protein) with a high affinity: KD = 1.35 nM from equilibrium measurements and KD = 0.43 nM from kinetic determinations. Deltakephalin occurs as the most specific ligand for delta-binding sites as shown by the following discrimination ratios KI(mu)/KI(delta): 0.31 for D-Ala2-D-Leu5-enkephalin; 0.15 for D-Ser2-Thr6-Leu-enkephalin and 0.05 for deltakephalin.  相似文献   

13.
Adenosine transport by rat and guinea pig synaptosomes was studied to establish the basis for the marked differences in the potency of some transport inhibitors in these species. An analysis of transport kinetics in the presence and absence of nitrobenzylthioinosine (NBTI) using synaptosomes derived from several areas of rat and guinea pig brain indicated that at least three systems contributed to adenosine uptake, the Km values of which were approximately 0.4, 3, and 15 microM in both species. In both species, the system with the Km of 3 microM was potently (IC50 of approximately 0.3 nM) and selectively inhibited by NBTI. This NBTI-sensitive system accounted for a greater proportion of the total uptake in the guinea pig than in the rat and was inhibited by dipyridamole, mioflazine, and related compounds more potently in the guinea pig. Preliminary experiments with other species indicate that adenosine transport in the mouse is similar to that in the rat, whereas in the dog and rabbit, it is more like that in the guinea pig. In the rat, none of the systems appeared to require Na+, but the two systems possessing the higher affinities for adenosine were inhibited by veratridine- and K(+)-induced depolarization. The transport systems were active over a broad pH range, with maximal activity between pH 6.5 and 7.0. Our results are consistent with the possibility that adenosine transport systems may be differentiated into uptake and release systems.  相似文献   

14.
15.
The pharmacological properties of 7,7-Diphenyl-2 [1-imino-2 (2-methoxy-phenyl)-ethyl] perhydroisoindol-4-one (3 aR, 7 aR) or RP67580 are described. This compound, derived from a novel chemical family, is a potent and selective substance P (SP) antagonist, in vitro and in vivo. In vitro, it inhibited in a competitive manner (IC50 = 10 nM) 3H-SP binding in rat brain (NK1 receptors). It did not interact with the two other tachykinin receptor sites (NK2 and NK3) nor the other receptor sites tested. Moreover, RP67580 competitively antagonized the contractile activity of SP on guinea-pig ileum (pA2 = 7.16); in contrast, it was inactive in rabbit pulmonary artery and in rat portal vein tissues which contain NK2 and NK3 receptors, respectively. In vivo, in the rat, RP67580 inhibited the plasmatic extravasation induced by administration of SP (ED50 = 0.04 mg/kg i.v.) as well as that induced by antidromic stimulation of a peripheral sensory nerve (ED50 = 0.15 mg/kg i.v.). In mice and rats, RP67580, like morphine, potently blocked the nociceptive effects of phenylbenzoquinone and formalin; its antinociceptive effect does not involve opiate receptors since it was not reversed by naloxone. These results indicate that RP67580 is a particularly valuable tool for investigating the physiological and pathological role of SP.  相似文献   

16.
In order to evaluate the role of calcium in the activation processes in eosinophils induced by platelet-activating factor (PAF), we investigated the changes in free cytoplasmatic Ca2+ concentration using fura-2. PAF causes a rapid and transitory rise of the intracellular free calcium ion concentration [( Ca2+]i) in purified guinea pig eosinophils of approx. 1000 nM above a basal level of 120.7 +/- 36.5 nM (n = 10). The effect was dose-related with a maximum rise at 1000 nM PAF and an EC50 of 17.4 nM and specifically inhibited by the PAF antagonist WEB 2086 with an IC50 of 95.5 nM. WEB 2086 did not affect either the leukotriene B4- or the fMet-Leu-Phe-induced elevation of [Ca2+]i. The response to PAF was dependent on external Ca2+ as it was significantly inhibited by EGTA (85.6 +/- 5.4%) and Ni2+ (95.8 +/- 2.1%) but not by the dihydropyridine antagonist nimodipine. We conclude that Ca2+ entry via receptor-operated Ca2+ channels may be involved in PAF-induced degranulation of eosinophils.  相似文献   

17.
Complement C3a promotes CXCL12-induced migration and engraftment of human and murine hemopoietic progenitor cells, suggesting a cross-influence between anaphylatoxin and chemokine axes. Here we have explored the underlying mechanism(s) of complement anaphylatoxin and chemokine cooperation. In addition to C3a, C3a-desArg and C4a but not C5a, are potent enhancers of CXCL12-induced chemotaxis of human and murine bone marrow (BM) stem/progenitor cells and B lineage cells. C3a enhancement of chemotaxis is chemokine specific because it is also observed for chemotaxis to CCL19 but not to CXCL13. The potentiating effect of C3a on CXCL12 is independent of the classical C3a receptor (C3aR). First, human BM CD34(+) and B lineage cells do not express C3aR by flow cytometry. Second, the competitive C3aR inhibitor SB290157 does not affect C3a-mediated enhancement of CXCL12-induced chemotaxis. Third, enhancement of chemotaxis of hemopoietic cells is also mediated by C3a-desArg, which does not bind to C3aR. Finally, C3a enhances CXCL12-induced chemotaxis of BM cells from C3aR knockout mice similar to BM cells from wild-type mice. Subsequent studies revealed that C3a increased the binding affinity of CXCL12 to human CXCR4(+)/C3aR(-), REH pro-B cells, which is compatible with a direct interaction between C3a and CXCL12. BM stromal cells were able to generate C3a, C3a-desArg, C4a, as well as CXCL12, suggesting that this pathway could function in vivo. Taken together, we demonstrate a C3a-CXCL12 interaction independent of the C3aR, which may provide a mechanism to modulate the function of CXCL12 in the BM microenvironment.  相似文献   

18.
The effects of a newly synthesized PAF antagonist E6123, (S)-(+)-6-(2-chlorophenyl)-3-cyclopropanecarbonyl-8,11-dimethyl-2, 3,4,5- tetrahydro-8H-pyrido[4',3':4,5]thieno[3,2-f][1,2,4]triazolo [4,3-a][1,4]diazepine, on in vivo inhaled PAF-induced pulmonary changes were investigated. E6123 inhibited PAF inhalation-induced bronchoconstriction in guinea pigs with an ED50 value (p.o.) of 1.3 micrograms/kg which was lower than those of other PAF-antagonists such as WEB2347 (ED50 = 26 micrograms/kg) and Y-24180 (ED50 = 12 micrograms/kg). E6123 significantly inhibited PAF inhalation-induced eosinophil infiltration into the bronchiole and trachea, and bronchial hyperreactivity in guinea pigs after oral administration at 1 and 10 micrograms/kg, respectively. E6123 inhibited the PAF-induced increase in intracellular free calcium ion concentration ([Ca2+]i) in guinea pig eosinophils with an IC50 value of 14 nM. The present results suggest that E6123 may be beneficial for the treatment of asthma, in which PAF is assumed to be involved.  相似文献   

19.
Neosurugatoxin, a Specific Antagonist of Nicotinic Acetylcholine Receptors   总被引:8,自引:6,他引:2  
Neosurugatoxin (NSTX) (3 nM-30 nM), recently isolated from the Japanese ivory mollusc (Babylonia japonica) exerted a potent antinicotinic action in the isolated guinea pig ileum. Specific [3H]nicotine binding to rat forebrain membranes was saturable, reversible, and of high affinity. Nicotinic cholinergic agonists exhibited a markedly greater affinity for [3H]nicotine binding sites than a muscarinic agonist, oxotremorine. Although alpha-bungarotoxin had no effect on [3H]nicotine binding, low concentrations (1 nM-1 microM) of NSTX inhibited [3H]nicotine binding in the forebrain membranes and its IC50 value was 69 +/- 6 nM. On the other hand, NSTX did not affect muscarinic receptor binding in the brain. These data indicate that NSTX may be of appreciable interest as a neurotoxin with a selective affinity for ganglionic nicotinic receptors.  相似文献   

20.
In normal rat liver, anaphylatoxin C5a receptors (C5aR) are only expressed by nonparenchymal cells, mainly Kupffer cells and hepatic stellate cells, but not by parenchymal cells, i.e., hepatocytes (HC). Nevertheless, C5a stimulates glucose output by HC. This HC-specific defense reaction is induced indirectly via prostanoids secreted by the C5aR-expressing Kupffer cells and hepatic stellate cells. It is shown here that under inflammatory conditions simulated by in vivo treatment of rats with IL-6 C5aR mRNA and protein were induced in HC in a time-dependent manner. Maximal mRNA and protein expression were observed at 4-8 h and 8-10 h, respectively, after IL-6 injection. The newly expressed receptors were functional, because recombinant rat C5a significantly activated glycogen phosphorylase in HC isolated from IL-6-treated but not in HC from control rats. In perfused livers of IL-6-treated animals in contrast to control animals, recombinant rat C5a-induced glucose output was not impaired by inhibition of prostanoid synthesis and function with the cyclooxygenase inhibitor indomethacin and the thromboxane receptor antagonist daltroban. These results indicate that HC-specific defense reactions might be differently regulated under normal and inflammatory conditions as shown here for the indirect prostanoid-dependent or direct C5a-induced activation of hepatocellular glycogen phyosphorylase and glucose output in control or IL-6-treated rats, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号