首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ion channels directly activated by cyclic nucleotides are present in the plasma membrane of retinal rod outer segments. These channels can be modulated by several factors including internal pH (pH(i)). Native cyclic nucleotide-gated channels were studied in excised membrane patches from the outer segment of retinal rods of the salamander. Channels were activated by cGMP or cAMP and currents as a function of voltage and cyclic nucleotide concentrations were measured as pH(i) was varied between 7.6 and 5.0. Increasing internal proton concentrations reduced the current activated by cGMP without modifying the concentration (K(1/2)) of cGMP necessary for half-activation of the maximal current. This effect could be well described as a reduction of single-channel current by protonation of a single acidic residue with a pK(1) of 5.1. When channels were activated by cAMP a more complex phenomenon was observed. K(1/2) for cAMP decreased by increasing internal proton concentration whereas maximal currents activated by cAMP increased by lowering pH(i) from 7.6 to 5.7-5.5 and then decreased from pH(i) 5.5 to 5.0. This behavior was attributed both to a reduction in single-channel current as measured with cGMP and to an increase in channel open probability induced by the binding of three protons to sites with a pK(2) of 6.  相似文献   

2.
The cyclic nucleotide-gated (CNG) channel of retinal rod photoreceptor cells is an allosteric protein whose activation is coupled to a conformational change in the ligand-binding site. The bovine rod CNG channel can be activated by a number of different agonists, including cGMP, cIMP, and cAMP. These agonists span three orders of magnitude in their equilibrium constants for the allosteric transition. We recorded single-channel currents at saturating cyclic nucleotide concentrations from the bovine rod CNG channel expressed in Xenopus oocytes as homomultimers of alpha subunits. The median open probability was 0.93 for cGMP, 0.47 for cIMP, and 0.01 for cAMP. The channels opened to a single conductance level of 26-30 pS at +80 mV. Using signal processing methods based on hidden Markov models, we determined that two closed and one open states are required to explain the gating at saturating ligand concentrations. We determined the maximum likelihood rate constants for two gating schemes containing two closed (denoted C) and one open (denoted O) states. For the C left and right arrow C left and right arrow O scheme, all rate constants were dependent on cyclic nucleotide. For the C left and right arrow O left and right arrow C scheme, the rate constants for only one of the transitions were cyclic nucleotide dependent. The opening rate constant was fastest for cGMP, intermediate for cIMP, and slowest for cAMP, while the closing rate constant was fastest for cAMP, intermediate for cIMP, and slowest for cGMP. We propose that interactions between the purine ring of the cyclic nucleotide and the binding domain are partially formed at the time of the transition state for the allosteric transition and serve to reduce the transition state energy and stabilize the activated conformation of the channel. When 1 microM Ni2+ was applied in addition to cyclic nucleotide, the open time increased markedly, and the closed time decreased slightly. The interactions between H420 and Ni2+ occur primarily after the transition state for the allosteric transition.  相似文献   

3.
X Zong  H Zucker  F Hofmann    M Biel 《The EMBO journal》1998,17(2):353-362
The activation of cyclic nucleotide-gated (CNG) channels is a complex process comprising the initial ligand binding and a consecutive allosteric transition from a closed to an open configuration. The cone and olfactory CNG channels differ considerably in cyclic nucleotide affinity and efficacy. In each channel, the cyclic nucleotide-binding site is connected to the last transmembrane segment of the channel by a linker peptide (C-linker) of approximately 90 amino acids. Here we report that replacement of three amino acids in the cone C-linker by the corresponding amino acids of the olfactory channel (I439V, D481A and D494S) profoundly enhanced the cAMP efficacy and increased the affinities for cAMP and cGMP. Unlike the wild-type cone channel, the mutated channel exhibited similar single-channel kinetics for both cGMP and cAMP, explaining the increase in cAMP efficacy. We thus conclude that the identified amino acids are major determinants of channel gating.  相似文献   

4.
Activation of cyclic nucleotide-gated (CNG) ion channels involves a conformational change in the channel protein referred to as the allosteric transition. The amino terminal region and the carboxyl terminal cyclic nucleotide-binding domain of CNG channels have been shown to be involved in the allosteric transition, but the sequence of molecular events occurring during the allosteric transition is unknown. We recorded single-channel currents from bovine rod CNG channels in which mutations had been introduced in the binding domain at position 604 and/or the rat olfactory CNG channel amino terminal region had been substituted for the bovine rod amino terminal region. Using a hidden Markov modeling approach, we analyzed the kinetics of these channels activated by saturating concentrations of cGMP, cIMP, and cAMP. We used thermodynamic mutant cycles to reveal an interaction during the allosteric transition between the purine ring of the cyclic nucleotides and the amino acid at position 604 in the binding site. We found that mutations at position 604 in the binding domain alter both the opening and closing rate constants for the allosteric transition, indicating that the interactions between the cyclic nucleotide and this amino acid are partially formed at the time of the transition state. In contrast, the amino terminal region affects primarily the closing rate constant for the allosteric transition, suggesting that the state-dependent stabilizing interactions between amino and carboxyl terminal regions are not formed at the time of the transition state for the allosteric transition. We propose that the sequence of events that occurs during the allosteric transition involves the formation of stabilizing interactions between the purine ring of the cyclic nucleotide and the amino acid at position 604 in the binding domain followed by the formation of stabilizing interdomain interactions.  相似文献   

5.
Cyclic nucleotide-gated (CNG) channels are critical components in the visual and olfactory signal transduction pathways, and they primarily gate in response to changes in the cytoplasmic concentration of cyclic nucleotides. We previously found that the ability of the native rod CNG channel to be opened by cGMP was markedly inhibited by analogues of diacylglycerol (DAG) without a phosphorylation reaction (Gordon, S.E., J. Downing-Park, B. Tam, and A.L. Zimmerman. 1995. Biophys. J. 69:409-417). Here, we have studied cloned bovine rod and rat olfactory CNG channels expressed in Xenopus oocytes, and have determined that they are differentially inhibited by DAG. At saturating [cGMP], DAG inhibition of homomultimeric (alpha subunit only) rod channels was similar to that of the native rod CNG channel, but DAG was much less effective at inhibiting the homomultimeric olfactory channel, producing only partial inhibition even at high [DAG]. However, at low open probability (P(o)), both channels were more sensitive to DAG, suggesting that DAG is a closed state inhibitor. The Hill coefficients for DAG inhibition were often greater than one, suggesting that more than one DAG molecule is required for effective inhibition of a channel. In single-channel recordings, DAG decreased the P(o) but not the single-channel conductance. Results with chimeras of rod and olfactory channels suggest that the differences in DAG inhibition correlate more with differences in the transmembrane segments and their attached loops than with differences in the amino and carboxyl termini. Our results are consistent with a model in which multiple DAG molecules stabilize the closed state(s) of a CNG channel by binding directly to the channel and/or by altering bilayer-channel interactions. We speculate that if DAG interacts directly with the channel, it may insert into a putative hydrophobic crevice among the transmembrane domains of each subunit or at the hydrophobic interface between the channel and the bilayer.  相似文献   

6.
Cyclic nucleotide-gated (CNG) channels, which were initially studied in retina and olfactory neurons, are activated by cytoplasmic cGMP or cAMP. Detailed comparisons of nucleotide-activated currents using nucleotide analogs and mutagenesis revealed channel-specific residues in the nucleotide-binding domain that regulate the binding and channel-activation properties. Of particular interest are N(1)-oxide cAMP, which does not activate bovine rod channels, and Rp-cGMPS, which activates bovine rod, but not catfish, olfactory channels. Previously, we showed that four residues coordinate the purine interactions in the binding domain and that three of these residues vary in the alpha subunits of the bovine rod, catfish, and rat olfactory channels. Here we show that both N(1)-oxide cAMP and Rp-cGMPS activate rat olfactory channels. A mutant of the bovine rod alpha subunit, substituted with residues from the rat olfactory channel at the three variable positions, was weakly activated by N(1)-oxide cAMP, and a catfish olfactory-like bovine rod mutant lost activation by Rp-cGMPS. These experiments underscore the functional importance of purine contacts with three residues in the cyclic nucleotide-binding domain. Molecular models of nucleotide analogs in the binding domains, constructed with AMMP, showed differences in the purine contacts among the channels that might account for activation differences.  相似文献   

7.
Single-channel properties of ionic channels gated by cyclic nucleotides.   总被引:3,自引:0,他引:3  
G Bucossi  M Nizzari    V Torre 《Biophysical journal》1997,72(3):1165-1181
This paper presents an extensive analysis of single-channel properties of cyclic nucleotide gated (CNG) channels, obtained by injecting into Xenopus laevis oocytes the mRNA encoding for the alpha and beta subunits from bovine rods. When the alpha and beta subunits of the CNG channel are coexpressed, at least three types of channels with different properties are observed. One type of channel has well-resolved, multiple conductive levels at negative voltages, but not at positive voltages. The other two types of channel are characterized by flickering openings, but are distinguished because they have a low and a high conductance. The alpha subunit of CNG channels has a well-defined conductance of about 28 pS, but multiple conductive levels are observed in mutant channels E363D and T364M. The conductance of these open states is modulated by protons and the membrane voltage, and has an activation energy around 44 kJ/mol. The relative probability of occupying any of these open states is independent of the cGMP concentration, but depends on extracellular protons. The open probability in the presence of saturating cGMP was 0.78, 0.47, 0.5, and 0.007 in the w.t. and mutants E363D, T364M, and E363G, and its dependence on temperature indicates that the thermodynamics of the transition between the closed and open state is also affected by mutations in the pore region. These results suggest that CNG channels have different conductive levels, leading to the existence of multiple open states in homomeric channels and to the flickering behavior in heteromeric channels, and that the pore is an essential part of the gating of CNG channels.  相似文献   

8.
Cyclic nucleotide-gated (CNG) channels open in response to direct binding of cyclic nucleotide messengers. Every subunit in a tetrameric CNG channel contains a cytoplasmic ligand-binding domain (BD) that includes a beta-roll (flanked by short helices) and a single C-terminal helix called the C-helix that was previously found to control efficacy (maximal open probability) and selectivity for cGMP versus cAMP. We constructed a series of chimeric CNG channel subunits, each containing a distinct BD sequence (chosen from among six phylogenetically divergent isoforms) fused to an invariant non-BD sequence. We assayed these "BD substitution" chimeras as homomeric CNG channels in Xenopus oo-cytes to compare their functions and found that the most efficient activation by both cAMP and cGMP derived from the BD of the catfish CNGA4 olfactory modulatory subunit (fCNGA4). We then tested the effects of replacing subregions of the bovine CNGA1 BD with corresponding fCNGA4 sequence and hence identified parts of the fCNGA4 BD producing efficient activation. For instance, replacing either the "hinge" that connects the roll and C-helix subdomains or the BD sequence N-terminal to the hinge greatly enhanced cAMP efficacy. Replacing the "loop-beta 8" region (the C-terminal end of the beta-roll) improved agonist sensitivity for cGMP selectively over cAMP. Our results thus identify multiple BD elements outside the C-helix that control selective ligand interaction and channel gating steps by distinct mechanisms. This suggests that the purine ring of the cyclic nucleotide may interact with both the beta-roll and the C-helix at different points in the mechanism.  相似文献   

9.
Cyclic nucleotide-sensitive ion channels are molecular pores that open in response to cAMP or cGMP, which are universal second messengers. Binding of a cyclic nucleotide to the carboxyterminal cyclic nucleotide binding domain (CNBD) of these channels is thought to cause a conformational change that promotes channel opening. The C-linker domain, which connects the channel pore to this CNBD, plays an important role in coupling ligand binding to channel opening. Current structural insight into this mechanism mainly derives from X-ray crystal structures of the C-linker/CNBD from hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels. However, these structures reveal little to no conformational changes upon comparison of the ligand-bound and unbound form. In this study, we take advantage of a recently identified prokaryote ion channel, SthK, which has functional properties that strongly resemble cyclic nucleotide-gated (CNG) channels and is activated by cAMP, but not by cGMP. We determined X-ray crystal structures of the C-linker/CNBD of SthK in the presence of cAMP or cGMP. We observe that the structure in complex with cGMP, which is an antagonist, is similar to previously determined HCN channel structures. In contrast, the structure in complex with cAMP, which is an agonist, is in a more open conformation. We observe that the CNBD makes an outward swinging movement, which is accompanied by an opening of the C-linker. This conformation mirrors the open gate structures of the Kv1.2 channel or MthK channel, which suggests that the cAMP-bound C-linker/CNBD from SthK represents an activated conformation. These results provide a structural framework for better understanding cyclic nucleotide modulation of ion channels, including HCN and CNG channels.  相似文献   

10.
Upon stimulation by odorants, Ca(2+) and Na(+) enter the cilia of olfactory sensory neurons through channels directly gated by cAMP. Cyclic nucleotide-gated channels have been found in a variety of cells and extensively investigated in the past few years. Glutamate residues at position 363 of the alpha subunit of the bovine retinal rod channel have previously been shown to constitute a cation-binding site important for blockage by external divalent cations and to control single-channel properties. It has therefore been assumed, but not proven, that glutamate residues at the corresponding position of the other cyclic nucleotide-gated channels play a similar role. We studied the corresponding glutamate (E340) of the alpha subunit of the bovine olfactory channel to determine its role in channel gating and in permeation and blockage by Ca(2+) and Mg(2+). E340 was mutated into either an aspartate, glycine, glutamine, or asparagine residue and properties of mutant channels expressed in Xenopus laevis oocytes were measured in excised patches. By single-channel recordings, we demonstrated that the open probabilities in the presence of cGMP or cAMP were decreased by the mutations, with a larger decrease observed on gating by cAMP. Moreover, we observed that the mutant E340N presented two conductance levels. We found that both external Ca(2+) and Mg(2+) powerfully blocked the current in wild-type and E340D mutants, whereas their blockage efficacy was drastically reduced when the glutamate charge was neutralized. The inward current carried by external Ca(2+) relative to Na(+) was larger in the E340G mutant compared with wild-type channels. In conclusion, we have confirmed that the residue at position E340 of the bovine olfactory CNG channel is in the pore region, controls permeation and blockage by external Ca(2+) and Mg(2+), and affects channel gating by cAMP more than by cGMP.  相似文献   

11.
Cyclic nucleotide-gated channels are key components in the transduction of visual and olfactory signals where their role is to respond to changes in the intracellular concentration of cyclic nucleotides. Although these channels poorly select between physiologically relevant monovalent cations, the gating by cyclic nucleotide is different in the presence of Na(+) or K(+) ions. This property was investigated using rod cyclic nucleotide-gated channels formed by expressing the subunit 1 (or alpha) in HEK293 cells. In the presence of K(+) as the permeant ion, the affinity for cGMP is higher than the affinity measured in the presence of Na(+). At the single channel level, subsaturating concentrations of cGMP show that the main effect of the permeant K(+) ions is to prolong the time channels remain open without major changes in the shut time distribution. In addition, the maximal open probability was higher when K(+) was the permeant ion (0.99 for K(+) vs. 0.95 for Na(+)) due to an increase in the apparent mean open time. Similarly, in the presence of saturating concentrations of cAMP, known to bind but unable to efficiently open the channel, permeant K(+) ions also prolong the time channels visit the open state. Together, these results suggest that permeant ions alter the stability of the open conformation by influencing of the O-->C transition.  相似文献   

12.
In the visual and olfactory systems, cyclic nucleotide-gated (CNG) ion channels convert stimulus-induced changes in the internal concentrations of cGMP and cAMP into changes in membrane potential. Although it is known that significant activation of these channels requires the binding of three or more molecules of ligand, the detailed molecular mechanism remains obscure. We have probed the structural changes that occur during channel activation by using sulfhydryl-reactive methanethiosulfonate (MTS) reagents and N-ethylmaleimide (NEM). When expressed in Xenopus oocytes, the alpha-subunit of the bovine retinal channel forms homomultimeric channels that are activated by cGMP with a K1/2 of approximately 100 microM. Cyclic AMP, on the other hand, is a very poor activator; a saturating concentration elicits only 1% of the maximum current produced by cGMP. Treatment of excised patches with MTS-ethyltrimethylamine (MTSET) or NEM dramatically potentiated the channel's response to both cyclic nucleotides. After MTSET treatment, the dose-response relation for cGMP was shifted by over two orders of magnitude to lower concentrations. The effect on channel activation by cAMP was even more striking. After modification, the channels were fully activated by cAMP with a K1/2 of approximately 60 microM. This potentiation was abolished by conversion of Cys481 to a nonreactive alanine residue. Potentiation occurred more rapidly in the presence of saturating cGMP, indicating that this region of the channel is more accessible when the channel is open. Cys481 is located in a linker region between the transmembrane and cGMP-binding domains of the channel. These results suggest that this region of the channel undergoes significant movement during the activation process and is critical for coupling ligand binding to pore opening. Potentiation, however, is not mediated by the recently reported interaction between the amino- and carboxy-terminal regions of the alpha-subunit. Deletion of the entire amino-terminal domain had little effect on potentiation by MTSET.  相似文献   

13.
14.
We previously found that native cyclic nucleotide-gated (CNG) cation channels from amphibian rod cells are directly and reversibly inhibited by analogues of diacylglycerol (DAG), but little is known about the mechanism of this inhibition. We recently determined that, at saturating cGMP concentrations, DAG completely inhibits cloned bovine rod (Brod) CNG channels while only partially inhibiting cloned rat olfactory (Rolf) channels (Crary, J.I., D.M. Dean, W. Nguitragool, P.T. Kurshan, and A.L. Zimmerman. 2000. J. Gen. Phys. 116:755-768; in this issue). Here, we report that a point mutation at position 204 in the S2-S3 loop of Rolf and a mouse CNG channel (Molf) found in olfactory epithelium and heart, increased DAG sensitivity to that of the Brod channel. Mutation of this residue from the wild-type glycine to a glutamate (Molf G204E) or aspartate (Molf G204D) gave dramatic increases in DAG sensitivity without changing the apparent cGMP or cAMP affinities or efficacies. However, unlike the wild-type olfactory channels, these mutants demonstrated voltage-dependent gating with obvious activation and deactivation kinetics. Interestingly, the mutants were also more sensitive to inhibition by the local anesthetic, tetracaine. Replacement of the position 204 glycine with a tryptophan residue (Rolf G204W) not only gave voltage-dependent gating and an increased sensitivity to DAG and tetracaine, but also showed reduced apparent agonist affinity and cAMP efficacy. Sequence comparisons show that the glycine at position 204 in the S2-S3 loop is highly conserved, and our findings indicate that its alteration can have critical consequences for channel gating and inhibition.  相似文献   

15.
Recent data suggest that the 3-phosphoinositides can modulate cyclic nucleotide signaling in rat olfactory receptor neurons (ORNs). Given the ability of diverse lipids to modulate ion channels, we asked whether phosphatidylinositol 3,4,5-trisphosphate (PIP3) can regulate the olfactory cyclic nucleotide-gated (CNG) channel as a possible mechanism for this modulation. We show that applying PIP3 to the intracellular side of inside-out patches from rat ORNs inhibits activation of the olfactory CNG channel by cAMP. The effect of PIP3 is immediate and partially reversible, and reflects an increase in the EC50 of cAMP, not a reduction in the single-channel current amplitude. The effect of PIP3 is significantly stronger than that of PIP2; other phospholipids tested have no appreciable effect on channel activity. PIP3 similarly inhibits the recombinant heteromeric (A2/A4) and homomeric (A2) olfactory CNG channel expressed in HEK293 cells, suggesting that PIP3 acts directly on the channel. These findings indicate that 3-phosphoinositides can be functionally important regulators of CNG channels.  相似文献   

16.
Four different nucleotide-gated ion channels are discussed in terms of their biophysical properties and their importance in cell physiology. Channels activated directly by cGMP are present in vertebrate and invertebrate photoreceptors. In both cases cGMP increases the fraction of time the channel remains in the open state. At least three cGMP molecules are involved in channel opening in vertebrate photoreceptors and the concentration of the cyclic nucleotide to obtain the half maximal effect is about 15 µM. The light-dependent channel of both vertebrates and invertebrates is poorly cation selective. The vertebrate channel allows divalent cations to pass through 10–15-fold more easily than monovalent ions. In agreement with their preference for divalent cations, this channel is blocked byl-cis Dialtazem, a molecule that blocks certain types of calcium channels. In olfactory neurons a channel activated by both cAMP and cGMP is found and, as in the light-dependent channel, several molecules of the nucleotide are needed to open the channel with a half maximal effect obtained in the range of 1–40 µM. The channel is poorly cationic selective. A K+ channel directly and specifically activated by cAMP is found inDrosophila larval muscle. At least three cAMP molecules are involved in the opening reaction. Half-maximal effect is obtained at about 50 µM. This channel is blocked by micromolar amount of tetraethylammonium applied internally. Interestingly, this channel has a probability of opening 10–20-fold larger in the mutantdunce, a mutant that possesses abnormally elevated intracellular cAMP level, than in the wild type.  相似文献   

17.
Cyclic nucleotide-gated (CNG) channels play important roles in the transduction of visual and olfactory information by sensing changes in the intracellular concentration of cyclic nucleotides. We have investigated the interactions between intracellularly applied quaternary ammonium (QA) ions and the alpha subunit of rod cyclic nucleotide-gated channels. We have used a family of alkyl-triethylammonium derivatives in which the length of one chain is altered. These QA derivatives blocked the permeation pathway of CNG channels in a concentration- and voltage-dependent manner. For QA compounds with tails longer than six methylene groups, increasing the length of the chain resulted in higher apparent affinities of approximately 1.2 RT per methylene group added, which is consistent with the presence of a hydrophobic pocket within the intracellular mouth of the channel that serves as part of the receptor binding site. At the single channel level, decyltriethyl ammonium (C10-TEA) ions did not change the unitary conductance but they did reduce the apparent mean open time, suggesting that the blocker binds to open channels. We provide four lines of evidence suggesting that QA ions can also bind to closed channels: (1) the extent of C10-TEA blockade at subsaturating [cGMP] was larger than at saturating agonist concentration, (2) under saturating concentrations of cGMP, cIMP, or cAMP, blockade levels were inversely correlated with the maximal probability of opening achieved by each agonist, (3) in the closed state, MTS reagents of comparable sizes to QA ions were able to modify V391C in the inner vestibule of the channel, and (4) in the closed state, C10-TEA was able to slow the Cd2+ inhibition observed in V391C channels. These results are in stark contrast to the well-established QA blockade mechanism in Kv channels, where these compounds can only access the inner vestibule in the open state because the gate that opens and closes the channel is located cytoplasmically with respect to the binding site of QA ions. Therefore, in the context of Kv channels, our observations suggest that the regions involved in opening and closing the permeation pathways in these two types of channels are different.  相似文献   

18.
19.
A Baumann  S Frings  M Godde  R Seifert    U B Kaupp 《The EMBO journal》1994,13(21):5040-5050
Cyclic nucleotide-gated (CNG) ion channels serve as downstream targets of signalling pathways in vertebrate photoreceptors and olfactory sensory neurons. Whether CNG channels subserve similar functions in invertebrate photoreception and olfaction is unknown. We have cloned genomic DNA and cDNA encoding a cGMP-gated channel from Drosophila. The gene contains at least seven exons. Heterologous expression of cloned cDNA in both Xenopus oocytes and HEK 293 cells gives rise to functional ion channels. The Drosophila CNG channel is approximately 50-fold more sensitive to cGMP than to cAMP. The voltage dependence of blockage by divalent cations is different compared with the CNG channel of rod photoreceptors, and the Ca2+ permeability is much larger. The channel mRNA is expressed in antennae and the visual system of Drosophila. It is proposed that CNG channels are involved in transduction cascades of both invertebrate photoreceptors and olfactory sensillae.  相似文献   

20.
We have cloned a functional cDNA encoding the cyclic nucleotide-gated channel selectively expressed in catfish olfactory sensory neurons. The cyclic nucleotide-gated channels share sequence and structural features with the family of voltage-gated ion channels. This homology is most evident in transmembrane region S4, the putative voltage sensor domain, and the H5 domain, thought to form the channel pore. We have characterized the single-channel properties of the cloned catfish channel and compared these properties with the channel in native catfish olfactory sensory neurons. The channel is activated equally well by cAMP and cGMP, shows only a slight voltage dependence of gating, and exhibits a pH- and voltage-dependent subconductance state similar to that observed for the voltage-gated L-type calcium channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号