首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1. A study has been made of the equilibrium existing between trypsin and the substances formed in the digestion of proteins which inhibit its action. 2. This substance could not be obtained by the hydrolysis of the proteins by acid or alkali. It is dialyzable. 3. The equilibrium between this substance (inhibitor) and trypsin is found to agree with the equation, trypsin + inhibitor ⇌ trypsin-inhibitor The equilibrium is reached instantaneously and is independent of the substrate concentration. If it be further assumed that the rate of hydrolysis is proportional to the concentration of the free trypsin and that the equilibrium conforms to the law of mass action, it is possible to calculate the experimental results by the application of the law of mass action. 4. The equilibrium has been studied by varying (a) the concentration of the inhibiting substance, (b) the concentration of trypsin, (c) the concentration of gelatin, and (d) the concentration of trypsin and inhibitor (the relative concentration of the two remaining the same). In all cases the results agree quantitatively with those predicted by the law of mass action. 5. It was found that the percentage retarding effect of the inhibiting substance on the rate of hydrolysis is independent of the hydrogen ion concentration between pH 6.3 and 10.0. 6. The fact that the experimental results agree with the mechanism outlined under 3, is contrary to the assumption that any appreciable amount of trypsin is combined with the gelatin at any one time; i.e., the velocity of the hydrolysis must depend on the time required for such a compound to form rather than for it to decompose. 7. The experiments may be considered as experimental proof of the validity of Arrhenius'' explanation of Schütz''s rule as applied to trypsin digestion. 8. Inactivated trypsin does not enter into the equilibrium.  相似文献   

2.
The rate of digestion, as determined by the increase in non-protein nitrogen or formol titration, of casein, gelatin, and hemoglobin with crystalline trypsin preparations increases nearly in proportion to the concentration of protein, but with crude pancreatic extract the rate of digestion becomes independent of the protein concentration in concentrations of more than 2.5 per cent. With both enzymes the rate of digestion of mixtures of 5 per cent casein and gelatin is greater than would be expected from the point of view of a compound between enzyme and substrate. The rate of digestion of 5 per cent casein in the presence of 5 per cent gelatin is exactly the same as that of 5 per cent casein alone. This result is obtained with both enzymes. The digestion of casein with crude trypsin follows the course of a monomolecular reaction quite closely while with purified trypsin the velocity constant decreases as the reaction proceeds. In the case of hemoglobin the monomolecular velocity constant decreases with both purified and crude enzyme. When the reaction is followed by changes in the viscosity of the solution the abnormal effect of changing substrate concentration disappears and the reaction is in fair agreement with the monomolecular equation. The results as a whole indicate that the abnormalities of the reaction are due to the occurrence of several consecutive reactions rather than to the formation of a substrate enzyme compound.  相似文献   

3.
1. It is pointed out that the apparent exceptions to the law of mass action found in enzyme reactions may be found in catalytic reactions in strictly homogeneous solutions. 2. These deviations in the rate of reaction from the law of mass action may be explained by the hypothesis that the active mass of the reacting substances is not directly proportional to the total concentration of substance taken. 3. In support of this suggestion it is shown that for any given concentration of pepsin the relative rate of digestion of concentrated and of dilute protein solutions is always the same. If the rate of digestion depended on the saturation of the surface of the enzyme by substrate the relative rate of digestion of concentrated protein solutions should increase more rapidly with the concentration of enzyme than that of dilute solutions. This was found not to be true, even when the enzyme could not be considered saturated in the dilute protein solutions. 4. The rate of digestion and the conductivity of egg albumin solutions of different concentration were found to be approximately proportional at the same pH. This agrees with the hypothesis first expressed by Pauli that the ionized protein is largely or entirely the form which is attacked by the enzyme. 5. The rate of digestion is diminished by a very large increase in the viscosity of the protein solution. This effect is probably a mechanical one due to the retardation of the diffusion of the enzyme.  相似文献   

4.
1. The hydrolysis of gelatin at a constant hydrogen ion concentration follows the course of a monomolecular reaction for about one-third of the reaction. 2. If the hydrogen ion concentration is not kept constant the amount of hydrolysis in certain ranges of acidity is proportional to the square root of the time (Schütz''s rule). 3. The velocity of hydrolysis in strongly acid solution (pH less than 2.0) is directly proportional to the hydrogen ion concentration as determined by the hydrogen electrode i.e., the "activity;" it is not proportional to the hydrogen ion concentration as determined by the conductivity ratio. 4. The addition of neutral salts increases the velocity of hydrolysis and the hydrogen ion concentration (as determined by the hydrogen electrode) to approximately the same extent. 5. The velocity in strongly alkaline solutions (pH greater than 10) is directly proportional to the hydroxyl ion concentration. 6. Between pH 2.0 and pH 10.0 the rate of hydrolysis is approximately constant and very much greater than would be calculated from the hydrogen and hydroxyl ion concentration. This may be roughly accounted for by the assumption that the uncombined gelatin hydrolyzes much more rapidly than the gelatin salt.  相似文献   

5.
The experiments described above show that the rate of digestion and the conductivity of protein solutions are very closely parallel. If the isoelectric point of a protein is at a lower hydrogen ion concentration than that of another, the conductivity and also the rate of digestion of the first protein extends further to the alkaline side. The optimum hydrogen ion concentration for the rate of digestion and the degree of ionization (conductivity) of gelatin solutions is the same, and the curves for the ionization and rate of digestion as plotted against the pH are nearly parallel throughout. The addition of a salt with the same anion as the acid to a solution of protein already containing the optimum amount of the acid has the same depressing effect on the digestion as has the addition of the equivalent amount of acid. These facts are in quantitative agreement with the hypothesis that the determining factor in the digestion of proteins by pepsin is the amount of ionized protein present in the solution. It was shown in a previous paper that this would also account for the peculiar relation between the rate of digestion and the concentration of protein. The amount of ionized protein in the solution depends on the amount of salt formed between the protein (a weak base) and the acid. This quantity, in turn, according to the hydrolysis theory of the salts of weak bases and strong acids, is a function of the hydrogen ion concentration, up to the point at which all the protein is combined with the acid as a salt. This point is the optimum hydrogen ion concentration for digestion, since the solution now contains the maximum concentration of protein ions. The hydrogen ion concentration in this range therefore is merely a convenient indicator of the amount of ionized protein present in the solution and takes no active part in the hydrolysis. After sufficient acid has been added to combine with all the protein, i.e. at pH of about 2.0, the further addition of acid serves to depress the ionization of the protein salt by increasing the concentration of the common anion. The hydrogen ion concentration is, therefore, no longer an indicator of the amount of ionized protein present, since this quantity is now determined by the anion concentration. Hence on the acid side of the optimum the addition of the same concentration of anion should have the same influence on the rate of digestion irrespective of whether it is combined with hydrogen or some other ion (provided, of course, that there is no other secondary effect of the other ion). The proposed mechanism is very similar to that suggested by Stieglitz and his coworkers for the hydrolysis of the imido esters. Pekelharing and Ringer have shown that pure pepsin in acid solution is always negatively charged; i.e., it is an anion. The experiments described above show further that it behaves just as would be expected of any anion in the presence of a salt containing the protein ion as the cation and as has been shown by Loeb to be the case with inorganic anions. Nothing has been said in regard to the quantitative agreement between the increasing amounts of ionized protein found in the solution (as shown by the conductivity values) and the amount predicted by the hydrolysis theory of the formation of salts of weak bases and strong acids. There is little doubt that the values are in qualitative agreement with such a theory. In order to make a quantitative comparison, however, it would be necessary to know the ionization constant of the protein and of the protein salt and also the number of hydroxyl (or amino) groups in the protein molecule as well as the molecular weight of the protein. Since these values are not known with any degree of certainty there appears to be no value at present in attempting to apply the hydrolysis equations to the data obtained. It it clear that the hypothesis as outlined above for the hydrolysis of proteins by pepsin cannot be extended directly to enzymes in general, since in many cases the substrate is not known to exist in an ionized condition at all. It is possible, however, that ionization is really present or that the equilibrium instead of being ionic is between two tautomeric forms of the substrate, only one of which is attacked by the enzyme. Furthermore, it is clear that even in the case of proteins there are difficulties in the way since the pepsin obtained from young animals, or a similar enzyme preparation from yeast or other microorganisms, is said to have a different optimum hydrogen ion concentration than that found for the pepsin used in these experiments. The activity of these enzyme preparations therefore would not be found to depend on the ionization of the protein. It is possible of course that the enzyme preparations mentioned may contain several proteolytic enzymes and that the action observed is a combination of the action of several enzymes. Dernby has shown that this is a very probable explanation of the action of the autolytic enzymes. The optimum hydrogen ion concentration for the activity of the pepsin used in these experiments agrees very closely with that found by Ringer for pepsin prepared by him directly from gastric juice and very carefully purified. Ringer''s pepsin probably represents as pure an enzyme preparation as it is possible to prepare. There is every reason to suppose therefore that the enzyme used in this work was not a mixture of several enzymes.  相似文献   

6.
The rate of digestion of concentrated casein solutions by low concentrations of trypsin at 0° has been followed. Under these conditions the enzyme is inhibited by the product of the reaction and under certain conditions this effect should lead to Schütz''s rule, i.e. the amount of hydrolysis should be proportional to the square root of the product of the time into the enzyme concentration. This is the result obtained. Both Schütz''s rule and Arrhenius'' equation fail to hold accurately owing to the incorrect relation assumed to hold between the rate of hydrolysis and the substrate concentration.  相似文献   

7.
1. In certain cases the rate of digestion of proteins by pepsin is not proportional to the total concentration of pepsin. 2. It is suggested that this is due to the fact that the enzyme in solution is in equilibrium with another substance (called peptone for convenience) and that the equilibrium is quantitatively expressed by the law of mass action, according to the following equation. See PDF for Equation It is assumed that only the uncombined pepsin affects the hydrolysis of the protein. 3. The hypothesis has been put in the form of a differential equation and found to agree quantitatively with the experimental results when the concentration of pepsin, peptone, or both is varied. 4. Pepsin inactivated with alkali enters the equilibrium to the same extent as active pepsin. 5. Under certain conditions (concentration of peptone large with respect to pepsin, and concentration of substrate relatively constant) the relative change in the amount of active pepsin is inversely proportional to the concentration of peptone and the equation simplifies to Schütz''s rule. 6. An integral equation is obtained which holds for the entire course of the digestion (except for the first few minutes) with varying enzyme concentration. This equation is identical in form with the one derived by Arrhenius for the action of ammonia on ethyl acetate. 7. It is pointed out that there are many analogies between the action of pepsin on albumin solutions and the action of toxins on an organism.  相似文献   

8.
1. The rate of hydrolysis of a casein solution by trypsin is not affected by the addition of gelatin. The trypsin, therefore, is not combined with the gelatin unless there is a separate enzyme for casein and for gelatin. 2. The presence of casein protects the gelatin-splitting power of trypsin from heat inactivation, and the presence of gelatin protects the casein-splitting power from heat inactivation. 3. It does not seem possible to account for both the above results by the assumption of an intermediate compound between enzyme and substrate, since, in order to account for the first result, a different enzyme must be assumed for each protein, while, to account for the second result, it must be assumed that the same enzyme attacks both.  相似文献   

9.
1. A method is described for measuring the swelling pressure of solid gelatin. 2. It was found that this pressure increases rapidly between 15° and 37°C., and that the percentage change is nearly independent of the concentration of gelatin. 3. It is suggested that this pressure is due to the osmotic pressure of a soluble constituent of the gelatin held in the network of insoluble fibers, and that gelatin probably consists of a mixture of at least two substances or groups of substances, one of which is soluble in cold water, does not form a gel, and has a low viscosity and a high osmotic pressure. The second is insoluble in cold water, forms a gel in very low concentration, and swells much less than ordinary gelatin. 4. Two fractions, having approximately the above properties, were isolated from gelatin by alcohol precipitation at different temperatures. 5. Increasing the temperature and adding neutral salts greatly increase the pressure of the insoluble fraction and have little effect on that of the soluble fraction. 6. Adding increasing amounts of the soluble fraction to the insoluble one results in greater and greater swelling. 7. These results are considered as evidence for the idea that the swelling of gelatin in water or salt solutions is an osmotic phenomenon, and that gelatin consists of a network of an insoluble substance enclosing a solution of a soluble constituent.  相似文献   

10.
1. At equal hydrogen ion concentration the rate of pepsin digestion of gelatin, egg albumin, blood albumin, casein, and edestin is the same in solutions of hydrochloric, nitric, sulfuric, oxalic, citric, and phosphoric acids. Acetic acid diminishes the rate of digestion of all the proteins except gelatin. 2. There is no evidence of antagonistic salt action in the effect of acids on the pepsin digestion of proteins. 3. The state of aggregation of the protein, i.e. whether in solution or not, and the viscosity of the solution have no marked influence on the rate of digestion of the protein.  相似文献   

11.
A new crystalline protein, chymo-trypsinogen, has been isolated from acid extracts of fresh cattle pancreas. This protein is not an enzyme but is transformed by minute amounts of trypsin into an active proteolytic enzyme called chymo-trypsin. The chymo-trypsin has also been obtained in crystalline form. The chymo-trypsinogen cannot be activated by enterokinase, pepsin, inactive trypsin, or calcium chloride. There is an extremely slow spontaneous activation upon standing in solution. The activation of chymo-trypsinogen by trypsin follows the course of a monomolecular reaction the velocity constant of which is proportional to the trypsin concentration and independent of the chymotrypsinogen concentration. The rate of activation is a maximum at pH 7.0–8.0. Activation is accompanied by an increase of six primary amino groups per mole but no split products could be found, indicating that the activation consists in an intramolecular rearrangement. There is a slight change in optical activity but no change in molecular weight. The physical and chemical properties of both proteins are constant through a series of fractional crystallizations. The activity of chymo-trypsin decreases in proportion to the destruction of the native protein by pepsin digestion or denaturation by heat or acid. Chymo-trypsin has powerful milk-clotting power but does not clot blood plasma and differs qualitatively in this respect from the crystalline trypsin previously reported. It hydrolyzes sturin, casein, gelatin, and hemoglobin more slowly than does crystalline trypsin but the hydrolysis of casein is carried much further. The hydrolysis takes place at different linkages from those attacked by trypsin. The optimum pH for the digestion of casein is about 8.0–9.0. It does not hydrolyze any of a series of dipeptides or polypeptides tested. Several chemical and physical properties of both proteins have been determined.  相似文献   

12.
The rates of digestion of keratose have been determined with three commercial enzymes, ranging widely in strength. It has been found that the weaker the enzyme preparation, the more nearly does the course of the hydrolysis conform to that of a reaction of the first order. This has been explained on the assumption that in solution an equilibrium exists between active enzyme, and enzyme combined with inert material. In very impure enzyme preparations, the large quantities of combined enzyme act as a reservoir for active enzyme, maintaining a constant concentration of active enzyme during the course of the digestion.  相似文献   

13.
1. A quantitative method for the determination of pepsin is described depending on the change in conductivity of a digesting egg albumin solution. 2. The combination of pepsin with an insoluble substrate has been followed by this method. 3. The amount of pepsin removed from solution by a given weight of substrate is independent of the size of the particles of the substrate. 4. There is an optimum zone of hydrogen ion concentration for the combination of enzyme and substrate corresponding to the optimum for digestion. 5. It is suggested that the pepsin combines largely or entirely with the ionized protein.  相似文献   

14.
1. The kinetics of milk clotting by asclepain, the protease of Asclepias speciosa, were investigated. At higher concentrations of enzyme, the clotting time was inversely proportional to the enzyme concentration. 2. The digestion of casein and hemoglobin in 6.6 M urea by asclepain follows the second order reaction rate. The rate was roughly second order for casein in water. 3. Evaluation of the nature of the enzyme-substrate intermediate indicates that one molecule of asclepain combines with one molecule of casein or hemoglobin in urea solution. 4. Inhibition by the reaction products was deduced from the fact that the digestion velocity of hemoglobin in urea solution varied with the asclepain concentration in agreement with the Schütz-Borissov rule.  相似文献   

15.
When concentrated dispersions of tripalmitin in Triton X-100 are added to reaction mixtures containing soluble beef liver lipase, the rate of hydrolysis of tripalmitin increases with incubation time. When the diluted substrate is aged at 37 degrees C for 3 hr before the addition of enzyme, the rate of hydrolysis is greater than the rate with freshly diluted dispersions and is constant for at least 2 hr. The reciprocal of the rate of hydrolysis is a complex function of the reciprocal of the substrate concentration when measured with freshly diluted substrate dispersions. A linear relationship between these reciprocals is obtained when measured with aged preparations of substrate. The rate and extent of increase of the velocity of hydrolysis of the aged substrate in relation to the velocity of hydrolysis of freshly diluted substrate are directly proportional to the substrate concentration and inversely proportional to the Triton X-100 concentration. The apparent V(max) of beef liver lipase for tripalmitin in diluted and aged dispersions is independent of the Triton X-100 concentration, while the apparent K(m) is inversely proportional to the Triton X-100 concentration. The apparent K(m) for tripalmitin complexes at zero Triton X-100 concentration was judged to be 7.5 x 10(-5) m. The molecular size of dispersion complexes does not change significantly as dispersions are aged. The spherical diameter of the complexes assessed by gel filtration techniques is in the order of 100 A.  相似文献   

16.
Proofreading/editing in protein synthesis is essential for accurate translation of information from the genetic code. In this article we present a theoretical investigation of efficiency of a kinetic proofreading mechanism that employs hydrolysis of the wrong substrate as the discriminatory step in enzyme catalytic reactions. We consider aminoacylation of tRNAIle which is a crucial step in protein synthesis and for which experimental results are now available. We present an augmented kinetic scheme and then employ methods of stochastic simulation algorithm to obtain time dependent concentrations of different substances involved in the reaction and their rates of formation. We obtain the rates of product formation and ATP hydrolysis for both correct and wrong substrates (isoleucine and valine in our case, respectively), in single molecular enzyme as well as ensemble enzyme kinetics. The present theoretical scheme correctly reproduces (i) the amplitude of the discrimination factor in the overall rates between isoleucine and valine which is obtained as (1.8×102).(4.33×102) = 7.8×104, (ii) the rates of ATP hydrolysis for both Ile and Val at different substrate concentrations in the aminoacylation of tRNAIle. The present study shows a non-michaelis type dependence of rate of reaction on tRNAIle concentration in case of valine. The overall editing in steady state is found to be independent of amino acid concentration. Interestingly, the computed ATP hydrolysis rate for valine at high substrate concentration is same as the rate of formation of Ile-tRNAIle whereas at intermediate substrate concentration the ATP hydrolysis rate is relatively low. We find that the presence of additional editing domain in class I editing enzyme makes the kinetic proofreading more efficient through enhanced hydrolysis of wrong product at the editing CP1 domain.  相似文献   

17.
The swelling of isoelectric gelatin added to various volumes of acid of different concentration at 5°C. has been determined. The swelling is determined only by the concentration of the supernatant solution at equilibrium and is independent of the volume of acid. Similar experiments with unpurified gelatin show that in this case, owing to the presence of neutral salts the swelling is a function of the volume as well as the concentration of acid. Both results are predicted by the Procter-Wilson-Loeb theory of the swelling of gelatin.  相似文献   

18.
1. In the absence of protective agents, highly purified ascorbic acid oxidase is rapidly inactivated during the enzymatic oxidation of ascorbic acid under optimum experimental conditions. This inactivation, called reaction inactivation to distinguish it from the loss in enzyme activity that frequently occurs in diluted solutions of the oxidase prior to the reaction, is indicated by incomplete oxidation of the ascorbic acid as measured by oxygen uptake; i.e., "inactivation totals." 2. A minor portion of the reaction inactivation appears to be due to environmental factors such as rate of shaking of the manometers, pH of the system, substrate concentration, and oxidase concentration. The presence of inert protein (gelatin) in the system ameliorates the environmental inactivation to a considerable extent, and variation of the above factors in the presence of gelatin has much less effect on the inactivation totals than in the absence of gelatin. 3. A major portion of the reaction inactivation of the oxidase appears to be due to some factor inherent in the ascorbic acid-ascorbic acid oxidase-oxygen system, possibly a highly reactive "redox" form of oxygen other than H2O2 or H2O. The inactivation cannot be attributed to dehydroascorbic acid, the oxidation product of ascorbic acid. 4. Small amounts of native catalase, native peroxidase, native or denatured methemoglobin, and hemin when added to the system, markedly protect the oxidase against inactivation. Cytochrome c has no such protective action. Likewise proteins such as egg albumin, gelatin, denatured catalase, or denatured peroxidase show no such protective action. 5. None of the protective agents mentioned above affect the initial rate of oxygen uptake or change the total oxygen absorbed for complete oxidation of the ascorbic acid, and hence do not act by removal of hydrogen peroxide, per se. 6. Sodium azide and hydroxylamine hydrochloride which inhibit catalase and peroxidase activity also inhibit the protective action of these iron-porphyrin enzymes.  相似文献   

19.
When living cells of Nitella are first exposed to (1) phosphate buffer mixture, or (2) phosphoric acid, or (3) hydrochloric acid, or (4) sodium chloride, or (5) sodium borate, and are then placed in a solution of brilliant cresyl blue made up with a borate buffer mixture at pH 7.85, the rate of penetration of the dye into the vacuole is decreased as compared with the rate in the case of cells transferred directly from tap water to the same dye solution. When cells exposed to any one of these solutions are placed in the dye solution made up with phosphate buffer solution at pH 7.85, the rate of penetration of dye into the vacuole is the same as the rate in the case of cells transferred from the tap water to the same dye solution. It is probable that this removal of the inhibiting effect is due primarily to the presence of certain concentration of sodium and potassium ions in the phosphate buffer solution. If a sufficient concentration of sodium ions is added to the dye made up with a borate buffer mixture the inhibiting effect is removed just as it is in the case of the dye made up with the phosphate buffer mixture. The inhibiting effect of some of these substances is found to be removed by the dye containing a sufficient concentration of bivalent cations, or by washing the cells with salts of bivalent cations. The inhibiting effect and its removal are discussed from a theoretical standpoint.  相似文献   

20.
1. The effect of the addition of acid on the amount of ionized protein has been compared with the effect on the rate of digestion of gelatin, casein, and hemoglobin by pepsin. 2. A similar comparison has been made of the addition of alkali in the case of trypsin with gelatin, casein, hemoglobin, globin, and edestin. 3. In general, the rate of digestion may be predicted from the amount of ionized protein as determined by the titration curve or conductivity. The rate of digestion is a minimum at the isoelectric point of the protein and a maximum at that pH at which the protein is completely combined with acid or alkali to form a salt. 4. The physical properties of the protein solution have little or no effect on the rate of digestion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号