共查询到20条相似文献,搜索用时 15 毫秒
1.
Poulin R 《Proceedings. Biological sciences / The Royal Society》2000,267(1445):787-792
New scientific paradigms often generate an early wave of enthusiasm among researchers and a barrage of studies seeking to validate or refute the newly proposed idea. All else being equal, the strength and direction of the empirical evidence being published should not change over time, allowing one to assess the generality of the paradigm based on the gradual accumulation of evidence. Here, I examine the relationship between the magnitude of published quantitative estimates of parasite-induced changes in host behaviour and year of publication from the time the adaptive host manipulation hypothesis was first proposed. Two independent data sets were used, both originally gathered for other purposes. First, across 137 comparisons between the behaviour of infected and uninfected hosts, the estimated relative influence of parasites correlated negatively with year of publication. This effect was contingent upon the transmission mode of the parasites studied. The negative relationship was very strong among studies of parasites which benefit from host manipulation (transmission to the next host occurs by predation on an infected intermediate host), i.e. among studies which were explicit tests of the adaptive manipulation hypothesis. There was no correlation with year of publication among studies on other types of parasites which do not seem to receive benefits from host manipulation. Second, among 14 estimates of the relative, parasite-mediated increase in transmission rate (i.e. increases in predation rates by definitive hosts on intermediate hosts), the estimated influence of parasites again correlated negatively with year of publication. These results have several possible explanations, but tend to suggest biases with regard to what results are published through time as accepted paradigms changed. 相似文献
2.
The intertidal cockle Austrovenus stutchburyi exists in a symbiotic relationship with the mud flat anemone Anthopleura aureoradiata, the latter using the shell of buried cockles as the only available hard substrate for attachment. The cockles are also host to a detrimental larval trematode Curtuteria australis that invades the bivalves through the filtration current, and here we demonstrate that the anemones significantly depress the rate by which cockles accumulate parasites in the field. Along the tidal gradient, the relative parasite load of cockles was lowest where anemones were most abundant, and the area occupied by anemones per square meter sediment surface explained 30% of the spatial variation in infection intensity. At a smaller spatial scale, parasite loads were significantly lower (34%) in cockles from patches with than without anemones at the same tidal height. A field experiment manipulating the density of anemones showed that the rate of parasite accumulation in cockles decreased with increasing anemone density, and that the generally positive relationship between infection intensity and cockle size tended to disappear in the presence of anemones. The results suggest that the anemone-cockle symbiosis is a non-obligate mutualistic relationship in which the former is provided with a suitable substrate for attachment whereas the latter obtains protection against parasitic infections. 相似文献
3.
The scaling of parasite biomass with host biomass in lake ecosystems: are parasites limited by host resources? 下载免费PDF全文
The standing crop biomass of different populations or trophic levels reflects patterns of energy flow through an ecosystem. The contribution of parasites to total biomass is often considered negligible; recent evidence suggests otherwise, although it comes from a narrow range of natural systems. Quantifying how local parasite biomass, whether that of a single species or an assemblage of species sharing the same host, varies across localities with host population biomass, is critical to determine what constrains parasite populations. We use an extensive dataset on all free‐living and parasitic metazoan species from multiple sites in New Zealand lakes to measure parasite biomass and test how it covaries with host biomass. In all lakes, trematodes had the highest combined biomass among parasite taxa, ranging from about 0.01 to 0.25 g m?2, surpassing the biomass of minor free‐living taxa. Unlike findings from other studies, the life stage contributing the most to total trematode biomass was the metacercarial stage in the second intermediate host, and not sporocysts or rediae within snail first intermediate hosts, possibly due to low prevalence and small snail sizes. For populations of single parasite species, we found no relationship between host and parasite biomass for either juvenile or adult nematodes. In contrast, all life stages of trematodes had local biomasses that correlated positively with those of their hosts. For assemblages of parasite species sharing the same host, we found strong relationships between local host population biomass and the total biomass of parasites supported. In these host–parasite biomass relationships, the scaling factor (slope in log‐log space) suggests that parasites may not be making full use of available host resources. Host populations appear capable of supporting a little more parasite biomass, and may be open to expansion of existing parasites or invasion by new ones. 相似文献
4.
Revisiting synchronous gamete release by fucoid algae in the intertidal zone: fertilization success and beyond? 总被引:1,自引:0,他引:1
In the marine environment, both external fertilization and settlementare critical processes linking adult and early juvenile life-historyphases. The success of both processes can be tightly linkedin organisms lacking a larval dispersive phase. This reviewfocuses on synchronous gamete release (= spawning) in fucoidalgae. These brown macroalgae are important components of temperateintertidal ecosystems in many parts of the world, and achievesynchronous gamete release by integrating various environmentalsignals. Photosynthesis-dependent sensing of boundary-layerinorganic carbon fluxes, as well as blue light and green lightsignals, possibly perceived via a chloroplast-located photoreceptor(s),are integrated into pathways that restrict gamete release toperiods of low water motion. Avoidance of turbulent and/or highflow conditions in the intertidal zone allows high levels offertilization success in this group. Temporal patterns and synchronyof spawning in natural populations are reviewed. Most species/populationshave a more or less semilunar periodicity, although phase differencesoccur both between and within species at different geographicallocations, raising the possibility that tidal and diurnal cuesare more important than semilunar cues in entraining the response.The ecological and evolutionary role(s) of synchronous spawningin the intertidal zone are considered, particularly with regardto hybridization/reproductive isolation in species complexes,and reproductive versus recruitment assurance in the intertidalzone, where synchronous spawning during calm periods may beimportant for recruitment assurance in addition to fertilizationsuccess. Ways in which the roles of spawning synchrony couldbe tested in closely related species with contrasting matingsystems (outcrossing versus selfing) are discussed. 相似文献
5.
Spatial variability in the distribution of macroalgae and invertebrates was examined at a number of sites in the Strait of
Magellan. Two main predictions of models of zonation were tested in this study: (1) consistency in patterns of vertical distribution
among sites one to tens of kilometers apart, and (2) homogeneity between areas at the same level on the shore, tens to hundreds
of meters apart. Two types of habitat were considered: continuous rocky shores and blocks of rock in gravel beaches. In the
former habitat, percent cover estimates of sessile organisms (algae and mussels) were obtained from three replicated plots
(0.5 × 0.5 m) sampled non-destructively in each of three random areas (stretches of shore about 20 m long) at each of three
levels on the shore: high, middle and low intertidal zone. This procedure was repeated at six different sites along the Chilean
coast of the Strait of Magellan. Blocks of rock were sampled at two sites about 1 km apart. Estimates of the abundance of
sessile (barnacles and mussels) and mobile (limpets) organisms were obtained for six blocks at each of two levels on the shore
(high and low intertidal zone) at each site. At each level on the shore, three blocks were sampled on the top and three on
the vertical sides. A single plot was sampled on each block. This design allowed a test of the null hypothesis of no interactive
effects between position on the blocks and level on the shore. Both the predictions were falsified: (1) there were large between-site
differences in the vertical structure of assemblages and (2) variability between areas at the same level on the shore was
large for some of the most common algae. In contrast, the null hypothesis of no interactive effects of position on the blocks
and level on the shore was retained. The results of this study show that vertical position on the shore alone is not a good
predictor of the structure of assemblages of benthic organisms in the rocky intertidal of the Strait of Magellan.
Received: 9 December 1996 / Accepted: 2 May 1997 相似文献
6.
The objective of this paper is to critically evaluate the significance of parasite-altered host behaviour in the Toxocara mouse model particularly in the light of the Manipulation Hypothesis. Murine behaviours were examined in both outbred and inbred strains of mice infected with different doses of Toxocara canis ova. Behaviours investigated included activity, exploration, response to novelty, anxiety, learning, memory and social behaviour. Subsequent modifications to the behaviour of infected mice were investigated with respect to dose administered and larval accumulation in the brain. There was substantial variation in the number of larvae recovered from brains of individual mice, which received similar doses of Toxocara ova. Furthermore, the numbers of larvae recovered at different doses differed significantly between an outbred and inbred strain of mouse. Alterations in infected host behaviour occurred and were related to the number of larvae recovered from the brain. For social behaviour in outbred mice, a high infection in the brain reduced levels of aggressive behaviour and increased levels of flight and defensive behaviours. In contrast, outbred mice with a low infection in the brain displayed a greater level of risk behaviour in respect of predator odour and the light/dark box compared to control or high infection mice. Post-infection, outbred mice were more immobile whereas inbred mice showed reduced immobility and increased digging and climbing. Impaired learning ability was observed in outbred mice with moderate and high levels of infection in the brain compared to control and low infection mice. Toxocara infection has an impact upon a diverse range of murine behaviours with little evidence for a specific and hence an adaptive alteration. Many of the effects on murine host behaviour by Toxocara are likely to be pathological side effects of infection rather than as a consequence of adaptive host-manipulation. Observed changes in murine behaviour may be relevant to human toxocariasis. 相似文献
7.
8.
Leishmania parasites invade host macrophages, causing infections that are either limited to skin or spread to internal organs. In this study, 3 species causing cutaneous leishmaniasis, L. major, L. aethiopica and L. tropica, were tested for their ability to interfere with apoptosis in host macrophages in 2 different lines of human monocyte-derived macrophages (cell lines THP-1 and U937) and the results confirmed in peripheral blood mononuclear cells (PBMC). All 3 species induced early apoptosis 48 h after infection (expression of phosphatidyl serine on the outer membrane). There were significant increases in the percentage of apoptotic cells both for U937 and PBMC following infection with each of the 3 species. Early apoptotic events were confirmed by mitochondrial membrane permeabilization detection and caspase activation 48 and 72 h after infection. Moreover, the percentage of infected THP-1 and U937 macrophages increased significantly (up to 100%) following treatment with an apoptosis inducer. Since phosphatidyl serine externalization on apoptosing cells acts as a signal for engulfment by macrophages, induction of apoptosis in the parasitized cells could actively participate in spreading the infection. In summary, parasite-containing apoptotic bodies with intact membranes could be released and phagocytosed by uninfected macrophages. 相似文献
9.
Malarial transmission to the human host is established by sporozoite infection of the liver. Sporozoites are released from the mosquito salivary glands and carried by the blood flow to the liver sinusoid. In the sinusoid, sporozoites leave the blood circulation by crossing the sinusoidal cell layer to infect hepatocytes, the site for their development into the erythrocyte-invasive forms. Traversal of the sinusoidal cell layer and subsequent hepatocyte infection are the most important events in sporozoite liver invasion, but the molecular basis of both events remains to be elucidated. The present review of sporozoite liver invasion focuses on recent advances in this topic obtained by application of reverse genetics. Sporozoites traverse host cells, rupturing the host cell membrane in the process. Three microneme proteins have important roles in this motility. Disruption of one of these genes abolishes or severely impairs cell traversal without affecting other types of invasive motility. Studies using these disruptant parasites indicate that cell-traversal ability is required for crossing the sinusoidal cell layer and accessing the hepatocytes for infection. This process is homologous to midgut epithelium penetration by the malarial ookinete, because identical or paralogous genes are critically involved in both processes. After arrival at the hepatocyte, the invasion mode of the sporozoites switches from cell traversal to hepatocyte infection. 相似文献
10.
Lauren J. Cator Justin George Simon Blanford Courtney C. Murdock Thomas C. Baker Andrew F. Read Matthew B. Thomas 《Proceedings. Biological sciences / The Royal Society》2013,280(1763)
Previous studies have suggested that Plasmodium parasites can manipulate mosquito feeding behaviours such as probing, persistence and engorgement rate in order to enhance transmission success. Here, we broaden analysis of this ‘manipulation phenotype’ to consider proximate foraging behaviours, including responsiveness to host odours and host location. Using Anopheles stephensi and Plasmodium yoelii as a model system, we demonstrate that mosquitoes with early stage infections (i.e. non-infectious oocysts) exhibit reduced attraction to a human host, whereas those with late-stage infections (i.e. infectious sporozoites) exhibit increased attraction. These stage-specific changes in behaviour were paralleled by changes in the responsiveness of mosquito odourant receptors, providing a possible neurophysiological mechanism for the responses. However, we also found that both the behavioural and neurophysiological changes could be generated by immune challenge with heat-killed Escherichia coli and were thus not tied explicitly to the presence of malaria parasites. Our results support the hypothesis that the feeding behaviour of female mosquitoes is altered by Plasmodium, but question the extent to which this is owing to active manipulation by malaria parasites of host behaviour. 相似文献
11.
Michael D. Voysey P. J. Nico de Bruyn Andrew B. Davies 《Biological reviews of the Cambridge Philosophical Society》2023,98(5):1509-1529
Megaherbivores perform vital ecosystem engineering roles, and have their last remaining stronghold in Africa. Of Africa's remaining megaherbivores, the common hippopotamus (Hippopotamus amphibius) has received the least scientific and conservation attention, despite how influential their ecosystem engineering activities appear to be. Given the potentially crucial ecosystem engineering influence of hippos, as well as mounting conservation concerns threatening their long-term persistence, a review of the evidence for hippos being ecosystem engineers, and the effects of their engineering, is both timely and necessary. In this review, we assess, (i) aspects of hippo biology that underlie their unique ecosystem engineering potential; (ii) evaluate hippo ecological impacts in terrestrial and aquatic environments; (iii) compare the ecosystem engineering influence of hippos to other extant African megaherbivores; (iv) evaluate factors most critical to hippo conservation and ecosystem engineering; and (v) highlight future research directions and challenges that may yield new insights into the ecological role of hippos, and of megaherbivores more broadly. We find that a variety of key life-history traits determine the hippo's unique influence, including their semi-aquatic lifestyle, large body size, specialised gut anatomy, muzzle structure, small and partially webbed feet, and highly gregarious nature. On land, hippos create grazing lawns that contain distinct plant communities and alter fire spatial extent, which shapes woody plant demographics and might assist in maintaining fire-sensitive riverine vegetation. In water, hippos deposit nutrient-rich dung, stimulating aquatic food chains and altering water chemistry and quality, impacting a host of different organisms. Hippo trampling and wallowing alters geomorphological processes, widening riverbanks, creating new river channels, and forming gullies along well-utilised hippo paths. Taken together, we propose that these myriad impacts combine to make hippos Africa's most influential megaherbivore, specifically because of the high diversity and intensity of their ecological impacts compared with other megaherbivores, and because of their unique capacity to transfer nutrients across ecosystem boundaries, enriching both terrestrial and aquatic ecosystems. Nonetheless, water pollution and extraction for agriculture and industry, erratic rainfall patterns and human–hippo conflict, threaten hippo ecosystem engineering and persistence. Therefore, we encourage greater consideration of the unique role of hippos as ecosystem engineers when considering the functional importance of megafauna in African ecosystems, and increased attention to declining hippo habitat and populations, which if unchecked could change the way in which many African ecosystems function. 相似文献
12.
Host manipulation by parasites in the world of dead-end predators: adaptation to enhance transmission? 总被引:1,自引:0,他引:1
Seppälä O Valtonen ET Benesh DP 《Proceedings. Biological sciences / The Royal Society》2008,275(1643):1611-1615
Trophically transmitted parasites often alter their intermediate host's phenotype, thereby predisposing the hosts to increased predation. This is generally considered a parasite strategy evolved to enhance transmission to the next hosts. However, the adaptive value of host manipulation is not clear as it may be associated with costs, such as increased susceptibility to predators that are unsuitable next hosts for the parasites. We examined the ratio between the benefits and costs of host manipulation for transmission success of Acanthocephalus lucii (Acanthocephala), a parasite that alters the hiding behaviour and pigmentation of its isopod hosts. We experimentally compared the susceptibility of infected and uninfected isopods to predation by perch (Perca fluvialis; definitive host of the parasite) and dragonfly larvae (dead end). We found that the parasite predisposed the isopods to predation by both predators. However, the increased predation vulnerability of the infected isopods was higher towards perch. This suggests that, despite the costs due to non-host predation, host manipulation may still be advantageous for the parasite. 相似文献
13.
The cell membrane regulates many physiological processes including cellular communication,homing and metabolism. It is therefore not surprising that the composition of the host cell membrane is manipulated by intracellular pathogens. Among these, the human oncogenic herpesviruses Epstein–Barr virus(EBV) and Kaposi's sarcoma-associated herpesvirus(KSHV)exploit the host cell membrane to avoid immune surveillance and promote viral replication.Accumulating evidence has shown that both EBV and KSHV directly encode several similar membrane-associated proteins, including receptors and receptor-specific ligands(cytokines and chemokines), to increase virus fitness in spite of host antiviral immune responses. These proteins are expressed individually at different phases of the EBV/KSHV life cycle and employ various mechanisms to manipulate the host cell membrane. In recent decades, much effort has been made to address how these membrane-based signals contribute to viral tumorigenesis. In this review, we summarize and highlight the recent understanding of how EBV and KSHV similarly manipulate host cell membrane signals, particularly how remodeling of the cell membrane allows EBV and KSHV to avoid host antiviral immune responses and favors their latent and lytic infection. 相似文献
14.
We compared the production of pseudoparasitization by Microplitis rufiventris females in most (third) and less (fourth) preferred instars of Spodoptera littoralis larvae at 20+/-1 and 27+/-1 degrees C. The parasitized hosts were classified into hosts producing parasitoids (type A hosts) and hosts producing no parasitoids, i.e., pseudoparasitized hosts (type B hosts). The latter were further classified into: (a) pseudoparasitized hosts with "well" arrested development (type B1 hosts); (b) pseudoparasitized hosts with partially arrested development (type B2 hosts); and (c) pseudoparasitized hosts that successfully pupated to apparently normal host pupae (type B3 hosts). The present series of experiments showed that parasitization by M. rufiventris was clearly affected by host instar, age within an instar and rearing temperature. Production of type B hosts was less when third instar S. littoralis larvae were exposed to the wasp females than when the host larvae were in fourth instar. The production of type A hosts was much greater when early or mid ages of an instar was stung by the wasp females comparing with stung late age of the same instar. Production of type B hosts may be due to one or overall of the following: (a) dosage dilution of M. rufiventris female's factors in the different age classes of the instar; (b) endocrine system (physiological state) at parasitization time, i.e., early vs late age of the instar; (c) growth rate of host larvae. The lowest production of type B hosts was at highest growth rate; and (d) temperature, larger proportions of type B hosts were produced at 27+/-1 than at 20+/-1degrees C. The three types host development (B1, B2 and B3) are possibly representing three levels of host resistance (host control) resulting in partial or complete failure of parasitoid control. Type A hosts represent complete success of parasitoid control. The results suggest that the impact of parasitoid factor(s) on developmental arrest is affected by host age at the time of parasitism and/or by temperature. 相似文献
15.
There are many recorded cases of parasites that are capable of altering the behaviour of their host to enhance their transmission efficiency. However, not all of these cases are necessarily the results of the parasites actively manipulating host behaviour; they may rather be the 'by-products' of pathology caused by the parasite's presence. This study investigates the effect of the microphallid trematode Maritrema novaezealandensis on the behaviour of one of its crustacean intermediate hosts, the amphipod Paracalliope novizealandiae. Uninfected amphipods were experimentally infected by exposure to M. novaezealandensis cercariae. The activity level and vertical position of experimentally infected amphipods were compared with uninfected amphipods at 2 weeks and 6 weeks post-infection, i.e. both before and after the parasite achieved infectivity to its definitive host. Infected amphipods were found to exhibit significantly lower levels of activity and to occur significantly lower in the water column than uninfected controls during both periods. Based on the timing of the change in behaviour exhibited by infected amphipods, the results suggest that the altered behaviour exhibited by P. novizealandiae infected with M. novaezealandensis is most likely due to pathology caused by the parasite rather than a case of active, and adaptive, behavioural manipulation. 相似文献
16.
The construction of a storm-surge barrier in the mouth of the Oosterschelde caused important hydrodynamical and morphological changes that could influence the macrobenthic populations. This paper is one in a series of five all dealing with the effects of the storm-surge barrier on macrozoobenthos and analyses the spatial and temporal distribution of macrozoobenthos in the Oosterschelde and its relationship with some environmental parameters, based on two large scale sampling campaigns, one before and one after the completion of the barrier.The sediment of the sampling stations was fine, well sorted sand, with an average mud content of about 2.5 %. Only in the Krabbenkreek the sediment was coarser in 1989. The tidal elevation of the sampling sites decreased significantly in 1989.The density of macrozoobenthos was significantly lower, the biomass higher in 1989. The density was dominated by deposit feeders, the biomass by filter feeders. The difference in biomass between both years was mainly due to a substantial increase of the biomass of filter feeders in 1989. The number of species per station was significantly smaller in 1989 than in 1985. Between 1985 and 1989, frequency of occurrence decreased in 34 versus 13 which increased, density increased in 13 species and decreased in 34 species, biomass increased in 18 species and decreased in 29 species.Based on TWINSPAN several clusters of stations, each with a different faunal composition, were identified. These clusters did not form distinct zones on the tidal flats but were dispersed widely.The relationship between density and biomass of different trophic groups and the mud content of the sediment and the depth was analysed. This relationship sometimes differed clearly between years. The correlation coefficient of a multiple regression between density and biomass of individual species and environmental factors, although significant in most cases, was very low, indicating that only a small proportion of the species variability was explained. The relationship between benthos and environmental factors was further analysed by canonical correlation analysis and multivariate discriminant analysis that gave different results for the 1985 and 1989 data. This is probably due to the broad tolerance of the species to the range of the environmental variables found in our study area. From a TWINSPAN of the density data of 1985 and 1989 together we could conclude that, although the environmental parameters in a group of stations, showing a large faunal similarity in one year, did not change, the faunal composition did. This indicates that faunal changes are not necessarily linked to changes in the measured environmental parameters.In the discussion the different factors affecting macrobenthic populations are situated and it is suggested that the macrobenthic populations are probably more towards the nonequilibrium end of the continuum between nonequilibrium and equilibrium communities as defined by Wiens (1984).Although the impact of the construction of the barrier on the macrobenthic community seems at present to be rather small this does not mean that on the long-term there will be no effect. 相似文献
17.
Odonates,gregarines and water mites: why are the same host species infected by both parasites? 下载免费PDF全文
1. Damselflies and dragonflies are widely parasitised insects and numerous studies have tried to understand this host–parasite relationship. However, most of these studies have concentrated on a single host species, neglecting the larger pattern within the Odonata order. 2. The aim of this paper was to examine different damselfly and dragonfly species for common endo‐ and ectoparasites and whether a general infection pattern can be found. Additionally, the goal was to investigate whether the phylogeny of the host species could explain these possible infection patterns. To this end, a dataset from the existing literature was compiled and the prevalence of endoparasitic gregarines and ectoparasitic water mites was analysed for 46 different odonate species. 3. Three distinct patterns were found: (i) most of the odonate host species had both gregarines and water mites, rather than only either one or neither; (ii) there appears to be a positive association between gregarine and water mite prevalences across host species; (iii) a weak phylogenetic signal was detected in gregarine prevalence and a strong one in water mite prevalence. 4. It is hypothesised that, due to the infection and transmission mechanisms by which water mites and gregarines infect different odonate host species, parasitism is aggregated to common, high‐density species. However, much research is needed in order to fully understand this relationship between odonates and their parasites, especially within the same host populations and host species assemblages. 相似文献
18.
Over the past decade or so, pore-forming proteins (PFPs) have been isolated from various immune cells and nonpathogenic bacteria. It is now becoming apparent that PFPs may also be produced by a number of parasites. Although far from definitive, the evidence currently available for the role of PFPs in the survival and pathogenesis by parasites in briefly presented by David Ojcius and John Ding-E Young. 相似文献
19.
Historically, the role of parasites in ecosystem functioning has been considered trivial because a cursory examination reveals that their relative biomass is low compared with that of other trophic groups. However there is increasing evidence that parasite-mediated effects could be significant: they shape host population dynamics, alter interspecific competition, influence energy flow and appear to be important drivers of biodiversity. Indeed they influence a range of ecosystem functions and have a major effect on the structure of some food webs. Here, we consider the bottom-up and top-down processes of how parasitism influences ecosystem functioning and show that there is evidence that parasites are important for biodiversity and production; thus, we consider a healthy system to be one that is rich in parasite species. 相似文献
20.