首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is suggested that K enters chiefly as KOH, whose thermodynamic potential (proportional to the ionic activity product (a K) (a OH)) is greater outside than within. As this difference is maintained by the production of acid in the cell K continues to enter, and reaches a greater concentration inside than outside. KOH combines with a weak organic acid which is exchanged for HCl entering from the sea water (or its anion is exchanged for Cl-), so that KCl accumulates in the sap. Na enters more slowly and its internal concentration remains below that of K. The facts indicate that penetration is chiefly in molecular form. As the system is not in equilibrium the suggestion is not susceptible of thermodynamic proof but it is useful in predicting the behavior of K, Na, and NH4.  相似文献   

2.
When 0.001 M NH4Cl is added to sea water containing Valonia macrophysa there seems to be a rapid penetration of undissociated NH3 (or NH4OH) which raises the pH value of the sap so that the thermodynamic potential of KOH becomes greater inside than outside and in consequence K leaves the cell: NaOH continues to go in because its thermodynamic potential is greater outside than inside. NH4Cl accumulates, reaching a much higher concentration inside than outside. This might be explained on the ground that NH3, after entering, combines with a weak organic acid produced in the cell whose anion is exchanged for the Cl- of the sea water, or (more probably) the organic acid is exchanged for HCl.  相似文献   

3.
The experiments with the NH4Cl are similar to, and corroborate micro injection experiments performed in connection with some work on mustard gas in which the writer collaborated. Eggs immersed in sea water containing decomposed mustard gas, at a certain low concentration are not affected. If, however, the solution be injected, the egg quickly cytolyzes owing to the free HCl present. A similar impermeability of the protoplasmic surface film to certain substances was also encountered in injection work on Amœba. Amœbœ immersed in an aqueous solution of eosin will not take the stain till after death. On the other hand, the eosin, when injected into the Amœba, quickly permeates the protoplasm, to be arrested only at the surface. The semipermeability of a living cell appears primarily to be a function of its surface film. It is immaterial whether this film be that of the original cortex of the cell, a film newly formed over a cut surface, or a film that surrounds an artificially induced vacuole within the cell. As long as such a surface film exists neither the acid group of the NH4Cl nor the alkaline group of the NaHCO3 can, within certain concentration limits, penetrate the protoplasm. These solutions, if injected beneath the surface film, however, will produce their characteristic effects upon the protoplasm.  相似文献   

4.
5.
The conversion of red cells of patients with sickle cell anemia (S-S) from biconcave disk to sickle shape by removal of oxygen was found to increase the fraction of medium trapped in cells packed by centrifugation from 0.036 (S.E. 0.003) to 0.106 (S.E. 0.004). The fraction of water in the cells (corrected for trapped medium) was not affected by this shape transformation. Cation transport, however, was changed profoundly. S-S cells incubated in N2 rather than O2 showed net K loss with acceleration of both influx and outflux. That this change in K transport was due to the process of sickling was indicated by (1) the persistence of the effect in the absence of plasma, (2) the absence of the effect in hypoxic S-S cells in which sickling was inhibited by alkali or carbon monoxide, (3) the reversal of the effect when sickling was reversed by exposure to O2, and (4) the independence of the effect from such potentially important factors as age of the cell population. The acceleration of K transport by sickling is probably mediated by modification of the cell surface rather than the cell interior since concentrated sickle hemoglobin solutions in O2 or N2 did not show selective affinity for K. In molecular terms, the effect of sickling on K transport can be explained by presuming that the shape change (1) opens pathways for the free diffusion of K, and (2) accelerates K transport by a non-diffusion carrier process. The evidence for the former mechanism included (a) dependence of K influx into sickled cells on the concentration of K in the medium, and (b) increase in the total cation content of sickled cells with increasing pH. Observations suggestive of a carrier process included (a) the failure of sickled cell K concentration to become equal to external K concentration even after 48 hours, (b) the deviation of the flux ratio from that characteristic of diffusion, and (c) the dependence of K influx on glycolysis.  相似文献   

6.
1. The ions of Ca and K condition general luminescence, and are therefore necessary to the conduction of the impulse. 2. In van''t Hoff''s solution from which Mg is omitted, Berœ shows hyperirritability with respect to luminescence. This is the result of the action of Ca and K ions unantagonized by Mg. 3. The luminescent material spread on filter paper does not show luminescence in sea water, NaCl, MgCl2, or saccharose solutions isotonic with sea water. In solutions of CaCl2, SrCl2, BaCl2, KCl, and K2SO4 the indicator paper glows with a bright luminescence. 4. In dark adapted Berœ, luminescence is inhibited by a certain quantity of light. This quantity has an average value of 57,285 meter-candle-minutes, which is twelve times the value given by Mnemiopsis.  相似文献   

7.
1. Gradients of hydrogen ion concentration across Fucus eggs growing in sea water determine the developmental polarity of the embryo. 2. Gradients may determine polarity even if removed before the morphological response begins. 3. The rhizoid forms on the acid side of the egg unless this is too acid, in which case it develops on the basic side of the egg. 4. Since gradients of hydrogen ion concentration in sea water produce gradients of CO2 tension, as a result of chemical action on the carbonate buffer system, it is not proven whether the physiological effects are due to the hydrogen ions, or to the CO2 which they produce in the medium. 5. The developmental response of the eggs to gradients of hydrogen ion (or CO2) concentration provides an adequate but not an exclusive explanation of the group effect in Fucus. 6. Hydrogen ions may exert their effect by activating growth substance. Hydrogen ions or CO2 probably also affect the underlying rhizoid forming processes in other ways as well.  相似文献   

8.
9.
The addition of a hypertonic bathing medium to duck erythrocytes results in an initial instantaneous phase of osmotic shrinkage and, when the [K]o of the hypertonic solution is larger than "normal," in a second, more prolonged phase, the volume regulatory phase. During the latter, which also requires extracellular Na, the cells swell until they approach their initial isotonic volume. The increase in cell volume during the volume regulatory phase is accomplished by a gain in the cell content of K, Cl, and H2O. There is also a smaller increase in the Na content of the cell. Potassium is accumulated against an electrochemical gradient and is therefore actively transported into the cell. This accumulation is associated with an increase, although dissimilar, in both K influx and efflux. Changes in cell size during the volume regulatory phase are not altered by 10-4 M ouabain, although this concentration of ouabain does change the cellular cation content. The response is independent of any effect of norepinephrine. The changes in cell size during the volume regulatory phase are discussed as the product of a volume controlling mechanism identical in principle to the one reported in the previous paper which controls cell volume in hypotonic media. Similarly, this mechanism can regulate cell size, when the Na-K exchange, ouabain-inhibitable pump mechanism is blocked.  相似文献   

10.
1. Fundulus heteroclitus was found to be a reliable experimental animal for studies on chemical stimulation in either fresh or sea water. 2. The response of Fundulus to hydrochloric, acetic, propionic, butyric, valeric, and caproic acids was determined in fresh water, while the same acids plus sulfuric and nitric, as well as the sodium salts of the mineral acids, were tested in sea water. 3. Stimulation of Fundulus by hydrochloric acid in fresh water is correlated with the effective hydrogen ion concentration. Stimulation by the n-aliphatic acids in the same environment is correlated with two factors, the effective hydrogen ion concentration and the potential of the non-polar group in the molecule. However, as the number of CH2 groups increases the stimulating effect increases by smaller and smaller amounts, approaching a maximum value. 4. Stimulation of Fundulus by hydrochloric, sulfuric, and nitric acids in sea water is correlated with the forces of primary valence which in turn are correlated with the change in hydrogen ion concentration of the sea water. The n-aliphatic acids increase in stimulating efficiency in sea water as the length of the carbon chain increases, but a limiting value is not reached as soon as in fresh water. 5. Only a slight difference in stimulation by hydrochloric acid is found in sea water and in fresh water. However, there is a significant difference in stimulation by the fatty acids in fresh and in sea water, which is partly explained by the different buffering capacities of the two media. It is to be noted that in the same environment two different fish, Fundulus and Eupomotis, give different results, while the same fish (Fundulus) in two different environments responds similarly to mineral acids but differently to fatty acids. These results illustrate that stimulation is a function of the interaction between environment and receptors, and that each is important in determining the response. 6. Stimulation by sodium chloride, nitrate, and sulfate is correlated with equivalent concentrations of the salts added to sea water, or with the forces of primary valence. Although the threshold for stimulation by the salts is considerably higher than for the acids, the efficiency of stimulation by the salts is greater.  相似文献   

11.
When 0.005 M NH4Cl is added to sea water containing cells of Valonia macrophysa ammonia soon appears in the sap and may reach a concentration inside over 40 times as great as outside. It appears to enter as undissociated NH3 (or NH4OH) and tends to reach a pseudoequilibrium in which the activity of undissociated NH3 (or NH4OH) is the same inside and outside. When ammonia first enters, the pH value of the sap rapidly rises but it soon reaches a maximum and subsequently falls off. At the same time there is an increase of halide in the sap which, however, does not run a parallel course to the ammonia accumulation, but it comes to a new equilibrium value and remains constant. The increase in NH3 in the sap is accompanied by a decrease in the concentration of K. As NH3 enters the specific gravity of the sap decreases and the cells rise to the surface and continue to grow as floating organisms. The growth of the cells is increased.  相似文献   

12.
The cells of cat right ventricular papillary muscles were depleted of K and caused to accumulate Na and water by preincubation at 2–3°C. The time courses of changes in cellular ion content and volume and of the resting membrane potential (Vm) were then followed after abrupt rewarming to 27–28°C. At physiological external K concentration ([K]o = 5.32 mM) recovery of cellular ion and water contents was complete within 30 minutes, the maximal observable rates of K uptake and Na extrusion (Δmmol cell ion/(kg dry weight) (min.)) being 3.4 and 3.6, respectively. The recovery rate was markedly slowed at [K]o = 1.0 mM. Rewarming caused Vm measured in cells at the muscle surface to recover within from <1 to 9 minutes, but only slight restoration of cellular ion contents (measured in whole muscles) had occurred after 10 minutes. Studies of recovery in NaCl-free sucrose Ringer''s solution made it possible to separate the ouabain-insensitive outward diffusion of Na as a salt from a simultaneous ouabain-sensitive Na extrusion which is associated with a net cellular K uptake. A hypothesis consistent with these observations is that rewarming may activate a ouabain-sensitive "electrogenic" mechanism, most probably the net active transport of Na out of the cell, from which net K uptake may then follow passively.  相似文献   

13.
The nature and origin of the large "protoplasmic" potential in Halicystis must be studied by altering conditions, not only in external solutions, but in the sap and the protoplasm itself. Such interior alteration caused by the penetration of ammonia is described. Concentrations of NH4Cl in the sea water were varied from 0.00001 M to above 0.01 M. At pH 8.1 there is little effect below 0.0005 M NH4Cl. At about 0.001 M a sudden reversal of the potential difference across the protoplasm occurs, from about 68 mv. outside positive to 30 to 40 mv. outside negative. At this threshold value the time curve is characteristically S-shaped, with a slow beginning, a rapid reversal, and then an irregularly wavering negative value. There are characteristic cusps at the first application of the NH4Cl, also immediately after the reversal. The application of higher NH4Cl concentrations causes a more rapid reversal, and also a somewhat higher negative value. Conversely the reduction of NH4Cl concentrations causes recovery of the normal positive potential, but the threshold for recovery is at a lower concentration than for the original reversal. A temporary overshooting or increase of the positive potential usually occurs on recovery. The reversals may be repeated many times on the same cell without injury. The plot of P.D. against the log of ammonium ion concentration is not the straight line characteristic of ionic concentration effects, but has a break of 100 mv. or more at the threshold value. Further evidence that the potential is not greatly influenced by ammonium ions is obtained by altering the pH of the sea water. At pH 5, no reversal occurs with 0.1 M NH4Cl, while at pH 10.3, the NH4Cl threshold is 0.0001 M or less. This indicates that the reversal is due to undissociated ammonia. The penetration of NH3 into the cells increases both the internal ammonia and the pH. The actual concentration of ammonium salt in the sap is again shown to have little effect on the P.D. The pH is therefore the governing factor. But assuming that NH3 enters the cells until it is in equilibrium between sap and sea water, no sudden break of pH should occur, pH being instead directly proportional to log NH3 for any constant (NH4) concentration. Experimentally, a linear relation is found between the pH of the sap and the log NH3 in sea water. The sudden change of P.D. must therefore be ascribed to some system in the cell upon which the pH change operates. The pH value of the sap at the NH3 threshold is between 6.0 and 6.5 which corresponds well with the pH value found to cause reversal of P.D. by direct perfusion of solutions in the vacuole.  相似文献   

14.
1. Ca and K condition the irritability of Pelagia both in regard to rhythmical contractions and general luminescence. If either ion is omitted from the solution conduction of stimuli for pulsations and luminescence does not occur, although local responses still persist. 2. When Mg is omitted from the solution, Pelagia shows hyper-irritability with respect to rhythmical contraction and general luminescence. This is referable to the unantagonized action of K and Ca ions. 3. Exposure to the carbon arc suppresses general luminescence, the effect depending upon the quantity of light i.e. intensity x time of exposure. 4. The luminescent material secreted by Pelagia is inactive in sea water, but when put into salt solutions is activated by some of them. The efficiency of the salts, measured by brightness of light, is in the following order: MgSO4, K2SO4, Na3 citrate, KCl, BaCl2, SrCl2, CaCl2, and LiCl while NaCl and MgCl2 act as inhibitors. 5. Acidity inhibits the reaction, alkalinity promotes it. NH4OH in concentrations 0.27 N to 0.9 N causes luminescence for 10 minutes at 20°. 6. The average temperature coefficient for the reaction of the luminescent substance when activated by ammonia or MgSO4 is 2.18 for a temperature interval of 10°C. 7. The luminescence reaction cannot be the result of cytolysis, because (a) raising the temperature of sea water in which luminous material is immersed does not cause luminescence, although sufficient to produce cytolysis. (b) The salt solutions used in our experiments to cause luminescence, do not act cytolytically on cells in general.  相似文献   

15.
The changes in the intracellular pH (pHi) of sea urchin sperm associated with motility initiation and acrosome reaction were investigated using uptake of two different probes; 9-aminoacridine and methylamine, as a qualitative index. Sperm suspended in Na+-free sea water were immotile and able to concentrate these amines 20-fold or greater indicating that pHi is more acidic than the external medium (pHo = 7.7). This uptake ratio was essentially constant over a wide range of probe and sperm concentrations. Discharge of the pH gradient with specific ionophores (nigericin, monensin, and tetrachlorosalicylanilide) or nonspecifically using low concentration of detergents (Triton X-100 and lysolecithin) all resulted in the release of the probes indicating they are indeed sensing the pH gradient across the sperm membrane. Addition of Na+ to sperm suspended in Na+-free sea water resulted in activation of motility with concomitant efflux of the probes indicating the alkalinization of pHi by 0.4–0.5 pH units. That this pHi change is the causal trigger of motility was suggested by experiments using NH4Cl and nigericin, which increased the pHi and resulted in activation of motility in the absence of Na+. When sperm were directly diluted into artificial sea water (motility activated), a slow reacidification of pHi was observed in one species of sea urchin (L. pictus) but not in the other (S. purpuratus). This acidification could be blocked by mitochondrial inhibitors, verapamil, or the removal of external calcium suggesting that the increase in metabolic activity stimulated by the influx of Ca2+ is responsible for the reacidification. Induction of acrosome reaction further alkalinized the pHi by about 0.16 pH units and was also followed by prolonged reacidification which correlated with the observed increase in Ca2+ uptake. Either mitochondrial agents or the removal of external Ca2+ could also block this pHi change suggesting a similar mechanism is involved.  相似文献   

16.
The inositol pyrophosphate, diphosphoinositol pentakisphosphate (IP7), is thought to negatively regulate the critical insulin signaling protein Akt/PKB. Knockdown of the IP7-generating inositol hexakisphosphate kinase 1 (IP6K1) results in a concomitant increase in signaling through Akt/PKB in most cell types so far examined. Total in vivo knockout of IP6K1 is associated with a phenotype resistant to high-fat diet, due to enhanced Akt/PKB signaling in classic insulin regulated tissues, counteracting insulin resistance. In contrast, we have shown an important positive role for IP6K1 in insulin exocytosis in the pancreatic β-cell. These cells also possess functional insulin receptors and the feedback loop following insulin secretion is a key aspect of their normal function. Thus we examined the effect of silencing IP6K1 on the activation of Akt/PKB in β-cells. Silencing reduced the glucose-stimulated increase in Akt/PKB phosphorylation on T308 and S473. These effects were reproduced with the selective pan-IP6K inhibitor TNP. The likely explanation for IP7 reduction decreasing rather than increasing Akt/PKB phosphorylation is that IP7 is responsible for generating the insulin signal, which is the main source of Akt/PKB activation. In agreement, insulin receptor activation was compromised in TNP treated cells. To test whether the mechanism of IP7 inhibition of Akt/PKB still exists in β-cells, we treated them at basal glucose with an insulin concentration equivalent to that reached during glucose stimulation. TNP potentiated the Akt/PKB phosphorylation of T308 induced by exogenous insulin. Thus, the IP7 regulation of β-cell Akt/PKB is determined by two opposing forces, direct inhibition of Akt/PKB versus indirect stimulation via secreted insulin. The latter mechanism is dominant, masking the inhibitory effect. Consequently, pharmacological strategies to knock down IP6K activity might not have the same positive output in the β-cell as in other insulin regulated tissues.  相似文献   

17.
The effects of light upon the potential difference across the protoplasm of impaled Halicystis cells are described. These effects are very slight upon the normal P.D., increasing it 3 or 4 per cent, or at most 10 per cent, with a characteristic cusped time course, and a corresponding decrease on darkening. Light effects become much greater when the P.D. has been decreased by low O2 content of the sea water; light restores the P.D. in much the same time course as aeration, and doubtless acts by the photosynthetic production of O2. There are in both cases anomalous cusps which decrease the P.D. before it rises. Short light exposures may give only this anomaly. Over part of the potential range the light effects are dependent upon intensity. Increased CO2 content of the sea water likewise depresses the P.D. in the dark, and light overcomes this depression if it is not carried too far. Recovery is probably due to photosynthetic consumption of CO2, unless there is too much present. Again there are anomalous cusps during the first moments of illumination, and these may be the only effect if the P.D. is too low. The presence of ammonium salts in the sea water markedly sensitizes the cells to light. Subthreshold NH4 concentrations in the dark become effective in the light, and the P.D. reverses to a negative sign on illumination, recovering again in the dark. This is due to increase of pH outside the cell as CO2 is photosynthetically reduced, with increase of undissociated NH3 which penetrates the cell. Anomalous cusps which first carry the P.D. in the opposite direction to the later drift are very marked in the presence of ammonia, and may represent an increased acidity which precedes the alkaline drift of photosynthesis. This acid gush seems to be primarily within the protoplasm, persisting when the sea water is buffered. Glass electrode measurements also indicate anomalies in the pH drift. There are contrary cusps on darkening which suggest temporarily increased alkalinity. Even more complex time courses are given by combining low O2 and NH4 exposures with light; these may have three or more cusps, with reversal, recovery, and new reversal. The ultimate cause of the light effects is to be found in an alteration of the surface properties by the treatments, which is overcome (low O2, high CO2), or aided (NH4) by light. This alteration causes the surface to lose much of its ionic discrimination, and increases its electrical resistance. Tests with various anion substitutions indicate this, with recovery of normal response in the light. A theory of the P.D. in Halicystis is proposed, based on low mobility of the organic anions of the protoplasm, with differences in the two surfaces with respect to these, and the more mobile Na and K. ions.  相似文献   

18.

Background

CEL-III is a hemolytic lectin isolated from the sea cucumber Cucumaria echinata that shows Ca2 +-dependent Gal/GalNAc-binding specificity. This lectin is composed of two carbohydrate-recognition domains (domains 1 and 2) and an oligomerization domain (domain 3) that facilitates CEL-III assembly in the target cell membrane to form ion-permeable pores.

Methods

Several amino acid residues in domain 3 were replaced by alanine, and hemolytic activity of the mutants was examined.

Results

K344A, K351A, K405A, K420A and K425A showed marked increases in activity. In particular, K405A had activity that was 360-fold higher than the wild-type recombinant CEL-III and 3.6-fold higher than the native protein purified from sea cucumber. Since these residues appear to play roles in the stabilization of domain 3 through ionic and hydrogen bonding interactions with other residues, the mutations of these residues presumably lead to destabilization of domain 3, which consequently induces the oligomerization of the protein through association of domain 3 in the membrane. In contrast, K338A, R378A and R408A mutants exhibited a marked decrease in hemolytic activity. Since these residues are located on the surface of domain 3 without significant interactions with other residue, they may be involved in the interaction with components of the target cell membrane.

Conclusions

Several amino acid residues, especially basic residues, are found to be involved in the hemolytic activity as well as the oligomerization ability of CEL-III.

General significance

The results provide important clues to the membrane pore-forming mechanism of CEL-III, which is also related to that of bacterial pore-forming toxins.  相似文献   

19.
The mechanism by which seal-packaging individual fruit in high density polyethylene film delays deterioration was investigated with lemon (Citrus limon [L.] Burm. f. cv Eureka) and bell pepper (Capsicum annuum L. cv Maor) fruits. Seal-packaging effects were due to the water-saturated atmosphere in the sealed enclosure around the fruit. Softening of fruit was highly correlated with declining water potential of fruit. Sealing drastically inhibited softening as well as changes in cell wall pectins. Sealing also delayed disintegration of membrane as shown by the inhibited leakage of amino acids, in particular, and electrolytes in general. All these effects of sealing were prevented or reduced by including hygroscopic CaCl2 in the sealed enclosure which reduced the ambient humidity. Furthermore, some of these effects of sealing could be achieved also by maintaining nonsealed fruit in water-saturated atmosphere. Sealing effects could not be related to a possible `modified atmosphere' mechanism in O2, CO2, or ethylene. This work supports the hypothesis that the mode of action of sealing in the polyethylene relates to the alleviation of water stress which exists in harvested fruit.  相似文献   

20.
The effect of ACTH and adrenal steroids on K transport in human erythrocytes has been studied. A new method of calculation has revealed that in normal human erythrocytes the K transport is not independent of external K concentration as had previously been thought. The equation describing the relationship is, K influx (m.eq./liter cells hour) = [K]pi/(0.697 + 0.329 [K]pi) in which [K]pi refers to the plasma K concentration at the beginning of the experiment. At the physiological plasma K concentration of 4.65 m.eq./liter, K influx is 2.09 m.eq./liter cells hour; K efflux is 1.95 m.eq./liter cells hour and is independent of plasma K concentration. The effect of the infusion of ACTH and adrenal steroids on the K content of the erythrocytes was also studied. Infusions of ACTH or cortisone do not cause the expected loss in erythrocyte K content and may well cause a gain. Infusions of ACTH and cortisone decrease the rate of K influx and efflux slightly at all stages of the infusion, as measured in vitro in blood samples drawn at various times during and following the infusion. However, the erythrocytes incubated in vitro do not exhibit the same changes in K content as are found in vivo. Hydrocortisone added to normal cells in vitro also decreases both influx and efflux of K, without affecting the K content of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号