首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Chemical examination of the cell sap of Nitella showed that the concentrations of all the principal inorganic elements, K, SO4, Ca, Mg, PO4, Cl, and Na, were very much higher than in the water in which the plants were growing. 2. Conductivity measurements and other considerations lead to the conclusion that all or nearly all of the inorganic elements present in the cell sap exist in ionic state. 3. The insoluble or combined elements found in the cell wall or protoplasm included Ca, Mg, S, Si, Fe, and Al. No potassium was present in insoluble form. Calcium was predominant. 4. The hydrogen ion concentration of healthy cells was found to be approximately constant, at pH 5.2. This value was not changed even when the outside solution varied from pH 5.0 to 9.0. 5. The penetration of NO3 ion into the cell sap from dilute solutions was definitely influenced by the hydrogen ion concentration of the solution. Penetration was much more rapid from a slightly acid solution than from an alkaline one. It is possible that the NO3 forms a combination with some constituent of the cell wall or of the protoplasm. 6. The exosmosis of chlorine from Nitella cells was found to be a delicate test for injury or altered permeability. 7. Dilute solutions of ammonium salts caused the reaction of the cell sap to increase its pH value. This change was accompanied by injury and exosmosis of chlorine. 8. Apparently the penetration of ions into the cell may take place from a solution of low concentration into a solution of higher concentration. 9. Various comparisons with higher plants are drawn, with reference to buffer systems, solubility of potassium, removal of nitrate from solution, etc.  相似文献   

2.
When living cells of Nitella are exposed to an acetate buffer solution until the pH value of the sap is decreased and subsequently placed in a solution of brilliant cresyl blue, the rate of penetration of dye into the vacuole is found to decrease in the majority of cases, and increase in other cases, as compared with the control cells which are transferred to the dye solution directly from tap water. This decrease in the rate is not due to the lowering of the pH value of the solution just outside the cell wall, as a result of diffusion of acetic acid from the cell when cells are removed from the buffer solution and placed in the dye solution, because the relative amount of decrease (as compared with the control) is the same whether the external solution is stirred or not. Such a decrease in the rate may be brought about without a change in the pH value of the sap if the cells are placed in the dye solution after exposure to a phosphate buffer solution in which the pH value of the sap remains normal. The rate of penetration of dye is then found to decrease. The extent of this decrease is the greater the lower the pH value of the solution. It is found that hydrochloric acid and boric acid have no effect while phosphoric acid has an inhibiting effect at pH 4.8 on stirring. Experiments with neutral salt solutions indicate that a direct effect on the cell (decreasing penetration) is due to monovalent base cations, while there is no such effect directly on the dye. It is assumed that the effect of the phosphate and acetate buffer solutions on the cell, decreasing the rate of penetration, is due (1) to the penetration of these acids into the protoplasm as undissociated molecules, which dissociate upon entrance and lower the pH value of the protoplasm or to their action on the surface of the protoplasm, (2) to the effect of base cations on the protoplasm (either at the surface or in the interior), and (3) possibly to the effect of certain anions. In this case the action of the buffer solution is not due to its hydrogen ions. In the case of living cells of Valonia under the same experimental conditions as Nitella it is found that the rate of penetration of dye decreases when the pH value of the sap increases in presence of NH3, and also when the pH value of the sap is decreased in the presence of acetic acid. Such a decrease may be brought about even when the cells are previously exposed to sea water containing HCl, in which the pH value of the sap remains normal.  相似文献   

3.
When cells of Nitella are placed in buffer solutions at pH 9, there is a very slow and gradual increase in the pH of the sap from pH 5.6 to 6.4 (when death of the cells takes place). If the living cells are placed in 0.002 per cent dye solutions of brilliant cresyl blue at different pH values (from pH 6.6 to pH 9), it is found that the rate of penetration of the dye, and the final equilibrium attained, increases with increase in pH value, which can be attributed to an increase in the active protein (or other amphoteric electrolyte) in the cell which can combine with the dye.  相似文献   

4.
When uninjured cells of Valonia are placed in methylene blue dissolved in sea water it is found, after 1 to 3 hours, that at pH 5.5 practically no dye penetrates, while at pH 9.5 more enters the vacuole. As the cells become injured more dye enters at pH 5.5, as well as at pH 9.5. No dye in reduced form is found in the sap of uninjured cells exposed from 1 to 3 hours to methylene blue in sea water at both pH values. When uninjured cells are placed in azure B solution, the rate of penetration of dye into the vacuole is found to increase with the rise in the pH value of the external dye solution. The partition coefficient of the dye between chloroform and sea water is higher at pH 9.5 than at pH 5.5 with both methylene blue and azure B. The color of the dye in chloroform absorbed from methylene blue or from azure B in sea water at pH 5.5 is blue, while it is reddish purple when absorbed from methylene blue and azure B at pH 9.5. Dry salt of methylene blue and azure B dissolved in chloroform appears blue. It is shown that chiefly azure B in form of free base is absorbed by chloroform from methylene blue or azure B dissolved in sea water at pH 9.5, but possibly a mixture of methylene blue and azure B in form of salt is absorbed from methylene blue at pH 5.5, and azure B in form of salt is absorbed from azure B in sea water at pH 5.5. Spectrophotometric analysis of the dye shows the following facts. 1. The dye which is absorbed by the cell wall from methylene blue solution is found to be chiefly methylene blue. 2. The dye which has penetrated from methylene blue solution into the vacuole of uninjured cells is found to be azure B or trimethyl thionine, a small amount of which may be present in a solution of methylene blue especially at a high pH value. 3. The dye which has penetrated from methylene blue solution into the vacuole of injured cells is either methylene blue or a mixture of methylene blue and azure B. 4. The dye which is absorbed by chloroform from methylene blue dissolved in sea water is also found to be azure B, when the pH value of the sea water is at 9.5, but it consists of azure B and to a less extent of methylene blue when the pH value is at 5.5. 5. Methylene blue employed for these experiments, when dissolved in sea water, in sap of Valonia, or in artificial sap, gives absorption maxima characteristic of methylene blue. Azure B found in the sap collected from the vacuole cannot be due to the transformation of methylene blue into this dye after methylene blue has penetrated into the vacuole from the external solution because no such transformation detectable by this method is found to take place within 3 hours after dissolving methylene blue in the sap of Valonia. These experiments indicate that the penetration of dye into the vacuole from methylene blue solution represents a diffusion of azure B in the form of free base. This result agrees with the theory that a basic dye penetrates the vacuole of living cells chiefly in the form of free base and only very slightly in the form of salt. But as soon as the cells are injured the methylene blue (in form of salt) enters the vacuole. It is suggested that these experiments do not show that methylene blue does not enter the protoplasm, but they point out the danger of basing any theoretical conclusion as to permeability on oxidation-reduction potential of living cells from experiments made or the penetration of dye from methylene blue solution into the vacuole, without determining the nature of the dye inside and outside the cell.  相似文献   

5.
Experiments on the exit of brilliant cresyl blue from the living cells of Nitella, in solutions of varying external pH values containing no dye, confirm the theory that the relation of the dye in the sap to that in the external solution depends on the fact that the dye exists in two forms, one of which (DB) can pass through the protoplasm while the other (DS) passes only slightly. DB increases (by transformation of DS to DB) with an increase in the pH value, and is soluble in substances like chloroform and benzene. DS increases with decrease in pH value and is insoluble (or nearly so) in chloroform and benzene. The rate of exit of the dye increases as the external pH value decreases. This may be explained on the ground that DB as it comes out of the cell is partly changed to DS, the amount transformed increasing as the pH value decreases. The rate of exit of the dye is increased when the pH value of the sap is increased by penetration of NH3.  相似文献   

6.
1. A method is given for determining the chloride content in a drop (less than 0.03 cc.) of the cell sap of Nitella. 2. Chlorides accumulate in the sap to the extent of 0.128 M; this accumulation can be followed during the growth of the cell. The chloride content does not increase when the cell is placed for 2 days in solutions (at pH 6.2) containing chlorides up to 0.128 M. 3. The exosmosis of chlorides from injured cells can be followed quantitatively. When one end of the cell is cut off a wave of injury progresses toward the other end; this is accompanied by a progressive exosmosis of chlorides.  相似文献   

7.
A rapid intracellular pH (pH(i)) measurement method based on initial rate of increase of fluorescence ratio of 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorescein upon dye addition to a cell suspension in growth medium is reported. A dye transport model that describes dye concentration and fluorescence values in intracellular and extracellular spaces provides the mathematical basis for the approach. Experimental results of ammonium chloride challenge response of the two suspension cells, Spodoptera frugiperda and Chinese hamster ovary (CHO) cells, successfully compared with results obtained using traditional perfusion method. Since the cell suspension does not require any preparation, measurement of pH(i) can be completed in about 1 min minimizing any potential errors due to dye leakage.  相似文献   

8.
Changes in membrane structure resulting from herpes simplex virus 1 (HSV-1) penetration were detected using fluorescence photobleaching recovery methods. The effect could be blocked by inhibitors of viral and cellular processes involved in virus penetration. A rapid mode of HSV-1 strain KOS penetration into VERO cells at 37 degrees C normally occurs after a 5 min lag period and is 90-95% complete within 20-30 min. Rates of cell surface protein diffusion increase 2-3-fold after 5 min and return to normal after 25-30 min, this return correlating temporally with the penetration of the virus. At pH 6.3 the lag period preceeding penetration of HSV is increased to 20 min and penetration proceeds much more slowly than at pH 7.4. Inhibition of virus penetration with cytochalasin B or with the antiherpes drug tromantadine also prevents the HSV-1-induced increase in cell surface protein mobility. Colchicine, which does not block HSV-1 penetration, prevents the recovery of the membrane following virus penetration. Therefore, the changes in membrane structure characterized by increased cell surface protein mobility seem to be caused by virus penetration. Cytoskeletal function and integrity are required for the initiation of, and cell recovery from, virus penetration. A pH-sensitive activity, likely to be a virion fusion glycoprotein, is also required.  相似文献   

9.
1. The rate of exosmosis of water was studied in unfertilized Arbacia eggs, in order to bring out possible differences between the kinetics of exosmosis and endosmosis. 2. Exosmosis, like endosmosis, is found to follow the equation See PDF for Equation, in which a is the total volume of water that will leave the cell before osmotic equilibrium is attained, x is the volume that has already left the cell at time t, and k is the velocity constant. 3. The velocity constants of the two processes are equal, provided the salt concentration of the medium is the same. 4. The temperature characteristic of exosmosis, as of endomosis, is high. 5. It is concluded that the kinetics of exosmosis and endosmosis of water in these cells are identical, the only difference in the processes being in the direction of the driving force of osmotic pressure.  相似文献   

10.
When living cells of Nitella are exposed to a solution of sodium acetate and are then placed in a solution of brilliant cresyl blue made up with a borate buffer mixture at pH 7.85, a decrease in the rate of penetration of dye is found, without any change in the pH value of the sap. It is assumed that this inhibiting effect is caused by the action of sodium on the protoplasm. This effect is not manifest if the dye solution is made up with phosphate buffer mixture at pH 7.85. It is assumed that this is due to the presence of a greater concentration of base cations in the phosphate buffer mixture. In the case of cells previously exposed to solutions of acetic acid the rate of penetration of dye decreases with the lowering of the pH value of the sap. This inhibiting effect is assumed to be due chiefly to the action of acetic acid on the protoplasm, provided the pH value of the external acetic acid is not so low as to involve an inhibiting effect on the protoplasm by hydrogen ions as well. It is assumed that the acetic acid either has a specific effect on the protoplasm or enters as undissociated molecules and by subsequent dissociation lowers the pH value of the protoplasm. With acetate buffer mixture the inhibiting effect is due to the action of sodium and acetic acid on the protoplasm. The inhibiting effect of acetic acid and acetate buffer mixture is manifested whether the dye solution is made up with borate or phosphate buffer mixture at pH 7.85. It is assumed that acetic acid in the vacuole serves as a reservoir so that during the experiment the inhibiting effect still persists.  相似文献   

11.
Grunberg, E. (Hoffman-La Roche, Inc., Nutley, N.J.), and R. Cleeland. Fluorescence and viability of Proteus mirabilis stained directly with fluorescein isothiocyanate. J. Bacteriol. 92:23-27. 1966.-Washed cell suspensions of Proteus mirabilis, under the proper conditions, stained well with fluorescein isothiocyanate with little or no loss of cell viability. The speed and intensity of the reaction was dependent on both the concentration of dye and pH. Within a range of pH 3.0 to 10.0, staining was most rapid at pH 5.0 to 6.0, with a slower and less intense reaction occurring at the other pH values. As the concentration of dye at either pH 5.0 or 9.0 was increased from 10 to 1,000 mug/ml, there was an increase in the rate of staining but a decrease in cell viability. After 24 hr of incubation at 4 C, pH 5.0, and a dye concentration of 10 mug/ml, all cells were stained, the majority exhibiting intense fluorescence with little or no loss of viability noted. In preliminary experiments with Staphylococcus aureus, similar results were obtained. Of various other fluorescent dyes tested, only rhodamine isothiocyanate was found to give satisfactory staining.  相似文献   

12.
When living cells of Nitella are first exposed to (1) phosphate buffer mixture, or (2) phosphoric acid, or (3) hydrochloric acid, or (4) sodium chloride, or (5) sodium borate, and are then placed in a solution of brilliant cresyl blue made up with a borate buffer mixture at pH 7.85, the rate of penetration of the dye into the vacuole is decreased as compared with the rate in the case of cells transferred directly from tap water to the same dye solution. When cells exposed to any one of these solutions are placed in the dye solution made up with phosphate buffer solution at pH 7.85, the rate of penetration of dye into the vacuole is the same as the rate in the case of cells transferred from the tap water to the same dye solution. It is probable that this removal of the inhibiting effect is due primarily to the presence of certain concentration of sodium and potassium ions in the phosphate buffer solution. If a sufficient concentration of sodium ions is added to the dye made up with a borate buffer mixture the inhibiting effect is removed just as it is in the case of the dye made up with the phosphate buffer mixture. The inhibiting effect of some of these substances is found to be removed by the dye containing a sufficient concentration of bivalent cations, or by washing the cells with salts of bivalent cations. The inhibiting effect and its removal are discussed from a theoretical standpoint.  相似文献   

13.
We evaluated the dye 4',5'-dimethyl-5-(and -6-) carboxyfluorescein (Me2CF) for determining the intracellular pH(pHi) of isolated, perfused proximal tubules of the salamander. The intracellular absorbance spectrum, corrected for the intrinsic absorbance of the tubule, was obtained once per second. The dye was incorporated into tubule cells by exposing them to the membrane-permeable precursor 4',5'-dimethyl-5- (and -6-) carboxyfluorescein diacetate. The introduction of the dye had no significant effect on either pHi or cell voltage transients. Compared with dye contained in a cuvette, intracellular dye had a peak absorbance that was red-shifted by approximately 5 nm, and an apparent pK that was increased by approximately 0.3. These differences precluded an accurate calculation of pHi by the comparison of intracellular spectra with in vitro calibration spectra. However, when Me2CF was calibrated intracellularly, using the K-H exchanger nigericin to equalize external pH and pHi, the dye-derived, steady state pHi was within approximately 0.1 of the value obtained with pH-sensitive microelectrodes. Furthermore, when pHi was simultaneously measured with dye and microelectrodes during rapid pHi transients, the pHi time courses measured by the two methods were very similar. We conclude that the intracellular absorbance spectrum of Me2CF can be used to measure steady state pHi and rapid pHi transients reliably, provided the dye is calibrated intracellularly.  相似文献   

14.
The rate of dimethyladipimidate penetration into gelatin gels is influenced primarily by the fixative concentration, pH, temperature and type of buffer. Buffer penetration into the same gels is more rapid than dimethyladipimidate penetration.  相似文献   

15.
The effect of various substances on living cells may be advantageously studied by exposing them to such substances and observing their subsequent behavior in solutions of a basic dye, brilliant cresyl blue. The rate of penetration of the basic dye, brilliant cresyl blue, is decreased when cells are exposed to salts with monovalent cations before they are placed in the dye solution (made up with borate buffer mixture). This inhibiting effect is assumed to be due to the effect of the salts on the protoplasm. This effect is not readily reversible when cells are transferred to distilled water, but it is removed by salts with bivalent or trivalent cations. In some cases it disappears in dye made up with phosphate buffer mixture, or with borate buffer mixture at the pH value in which the borax predominates, and in the case of NaCl it disappears in dye containing NaCl. No inhibiting effect is seen when cells are exposed to NaCl solution containing MgCl2 before they are placed in the dye solution. The rate of penetration of dye is not decreased when cells are previously exposed to salts with bivalent and trivalent cations. The rate is slightly increased when cells are placed in the dye solution containing a salt with monovalent cation and probably with bivalent or trivalent cations. In the case of the bivalent and trivalent salts the increase is so slight that it may be negligible.  相似文献   

16.
We have tested the efficacy of fluorescent probes for the measurement of intracellular pH in Saccharomyces cerevisiae. Of the compounds tested (fluorescein, carboxyseminaphthorhodafluor-1 (C.SNARF-1) and 2',7'bis(carboxyethyl)-5(6')-carboxyfluorescein), C.SNARF-1 was found to be the most useful indicator of internal pH. Fluorescence microscopy showed that in Saccharomyces cerevisiae strain DAUL1, C.SNARF-1 and fluorescein had a heterogeneous distribution, with dye throughout the cytoplasm and concentration of the dye to an area close to the cell membrane. This region was also labeled by quinacrine, which is known to accumulate in acidic regions of the cell. Saccharomyces cerevisiae BJ4932, which carries a defect in vacuolar acidification, did not show the same degree of dye concentration, suggesting that the site of C.SNARF-1 and fluorescein localisation in DAUL1 is the acidic vacuole. Changes in intracellular pH could be monitored by measuring changes in the fluorescence intensity of C.SNARF-1. The addition of glucose caused an initial, rapid decrease in fluorescence intensity, indicating a rise in cellular pH. This was followed by slow acidification. Fluorescence intensity changes were similar in all strains studied, suggesting that the localisation of dye to acidic regions does not affect the measurement of intracellular pH in DAUL1. The changes in intracellular pH on the addition of glucose correlated well with glucose-induced changes in external pH. Preincubation of cells in the presence of the plasma membrane H(+)-ATPase inhibitor diethylstilbestrol reduced extracellular acidification and intracellular alkalinisation on the addition of glucose. Both amiloride and 5-(N-ethyl-N-isopropyl)amiloride also inhibited glucose-induced proton fluxes. Phorbol 12-myristate 13-acetate had no effect on the activity of the plasma membrane ATPase.  相似文献   

17.
A glass electrode apparatus is described with which pH measurements can be made with as small volumes as 2 drops (about 0.14 cc.) of solution. Using this apparatus the change of pH of the vacuolar sap of Nitella, due to the penetration of brilliant cresyl blue, has been readily followed. The sap and the dye have been found to poison the usual type of hydrogen electrode.  相似文献   

18.
Target-specific polymeric micelles loaded with fluorescence dye molecules in their hydrophobic cores were made from block copolymer of poly(caprolactones)23-b-poly(ethylene oxide)45. It was found that the micelles are stable against pH changes from pH 2 to 12 and temperature variation up to 65 degrees C. The dye molecules can be released to the solution on exposing the micelles to organic solvents or ultrasound. A rapid and highly sensitive immunoassay based on the above micelles was developed, and the assay can detect specific target proteins in the femtomolar range from complex biological samples such as serum mimics and cell lysate. For example, less than 0.15 U/ml of ovarian cancer-specific antigen 125, equivalent to 7.5 x 10(-15)M, can be reliably detected in solution. We also demonstrated that the assay can detect a cell surface biomarker, stage-specific embryonic antigen 4, from a single human embryonic stem cell.  相似文献   

19.
A role for silicon (Si) in the amelioration of aluminium (Al) toxicity in gymnosperms is suggested by their codeposition in planta, including within needles. This study was designed to investigate Al/Si interactions at the cellular level using suspension cultures of Norway spruce. Toxic effects of Al were dependent on duration of Al exposure, concentration of Al, and pH. Toxicity was reduced when Si was present, and the effect was enhanced at pH 5.0 compared to pH 4.2. Study of the ultrastructure of Al-treated cells indicated that changes in cell wall thickening, degree of vacuolation, and the degeneration of mitochondria, Golgi bodies, ER and nucleus preceded cell death, and significant amelioration was noted when Si was also present. When the fluorescent dye Morin was employed to localise free Al, cells treated with Al and Si in combination showed less fluorescence than the cells treated with Al alone. Intensity of fluorescence depended on the concentration of Al, duration of treatment and pH. Notably, presence of Si reduced the concentration of free Al in the cell wall in parallel with amelioration of Al toxicity. We therefore propose that formation of aluminosilicate complexes in the wall and apoplasm provide a significant barrier to Al penetration and cell damage in Norway spruce.  相似文献   

20.
Pancreatic beta-cell death induced by oxidative stress plays an important role in the pathogenesis of diabetes mellitus. We studied the relation between rapid intracellular acidification and cell death of pancreatic beta-cell line NIT-1 cells exposed to H2O2 or alloxan. Intracellular pH was measured by a pH-sensitive dye, and cell damage by double staining with Annexin-V and propidium iodide using flow cytometry. H2O2 and alloxan caused a rapid fall in intracellular pH and suppressed Na+/H+ exchanger activity in the NH4Cl prepulse method. H2O2 induced necrotic cell death, which shifted to apoptotic cell death when initial acidification was prevented by pH clamping to 7.4 using nigericin (unclamped cells vs clamped cells, necrosis 43.8 +/- 5.8% vs 21.1 +/- 10.6%, P < 0.05; apoptosis 8.0 +/- 1.9% vs 44.5 +/- 5.0%, P < 0.01). pH-clamped cells showed enhanced caspase 3 activity and proapoptotic Bax expression. On the other hand, NIT-1 cells were resistant to alloxan toxicity, but treatment with alloxan and nigericin strikingly enhanced the cytotoxicity. Antioxidants partly prevented cell death, although intracellular pH remained similarly acidic. The rapid intracellular acidification was not the cause of cell death but a significant determinant of the mode of death of H2O2 -treated beta cells, whereas no link between cell death and acidification was demonstrated in alloxan toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号