首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了解小熊猫(Ailurus fulgens)小脑皮层的结构特征,观察神经丝蛋白抗体RT-97、角质细胞生长因子(KGF)及Bax蛋白在小脑皮层中的表达,利用组织学方法和免疫组织化学方法观察了小熊猫小脑皮层的显微结构,检测了RT-97、KGF和Bax蛋白的表达.结果表明,小脑皮层从外向内依次可分为分子层、Purkinje细胞层、颗粒层3层.RT-97在小熊猫小脑皮层Purkinje细胞层、颗粒层中神经细胞的轴突、分子层中颗粒细胞的轴突及小脑髓质中有阳性表达;KGF在小脑皮层分子层、Purkinje细胞层和颗粒细胞层及髓质中均有阳性表达;Bax蛋白在小脑皮层分子层、Purkinje细胞层和颗粒细胞层中有阳性表达.RT-97、KGF和Bax蛋白在小脑皮层神经结构的构筑中可能发挥着不同的功能.  相似文献   

2.
A comparative study of the distribution of a simple esterase and acetylcholinesterase in the cerebellar cortex of mouse and bat has been made. The Purkinje layer is intensely positive for simple esterase in both species. The granular and molecular layers showed mild to moderate activity in mouse and intense activity in bat. Acetylcholinesterase in cerebellar layers of bat is more intense than in mouse. In bat cerebellum, acetylcholinesterase is observed in the dendrites of Purkinje cells, but not in their cell bodies. Acetylcholinesterase was not found in Purkinje cells of mouse.  相似文献   

3.
Ghrelin is the endogenous ligand for the growth hormone secretagogue receptor. We investigated the distribution and morphological characteristics of ghrelin-immunopositive (ghrelin-ip) cells in the African ostrich adrenal gland. We found that the adrenal gland of the African ostrich consisted of three parts: capsule, inter-renal tissue and chromaffin cells. The inter-renal tissue and chromaffin cells interdigitated irregularly. The inter-renal tissue consisted of a peripheral zone and a central inner zone. The peripheral zone could be divided into an outer subcapsular zone and an inner zone. The subcapsular zone cells were arranged as a bow, while the inner area cells formed cords that were perpendicular to the capsule. The central inner zone exhibited irregular clumps and the cells were morphologically similar to chromaffin cells. Ghrelin-ip cells were located throughout the adrenal gland except the capsule. The majority of ghrelin-ip cells were found among the chromaffin cells. The number of ghrelin-ip cells in the inter-renal tissue decreased gradually from the central inner zone, to the inner zone to the subcapsular zone. The ghrelin-ip cells were oval or irregular in shape and exhibited cytoplasmic staining. Our findings suggest that ghrelin may play a role in regulating adrenal hormone secretion in the African ostrich.  相似文献   

4.
The expression of follicle-stimulating hormone (FSH) and its receptor in extrapituitary and non-HPG axis tissues has been demonstrated and their non-reproductive functions in these tissues have been found. However, there have been no reports concerning the expression and function of FSH and its receptor in the cerebellum. In our study, immunofluorescence staining and in situ hybridization were used to detect the expression of FSH, double-labeled immunofluorescence staining was used to detect co-localization of FSH and its receptor and co-localization of FSH and gonadotropin-releasing hormone (GnRH) receptor in the rat cerebellar cortex. Results showed that some cells of the Purkinje cell layer, granular layer, and molecular layer of the cerebellar cortex showed both FSH immunoreactivity and FSH mRNA positive signals; not only for FSH and FSH receptor, but also for FSH and GnRH receptor co-localized in some cells throughout the Purkinje cell layer, granular layer, and molecular layer of the cerebellar cortex. These suggested that rat cerebellum could express FSH; cerebellum is a target tissue of FSH; FSH may exert certain functions through FSH receptor in a paracrine or autocrine manner; GnRH may regulate FSH positive cells through GnRH receptor in the cerebellum. Our study provides morphological evidence for further functional research on FSH and related hormones in the cerebellum.  相似文献   

5.
Time-of-flight secondary-ion-mass-spectrometry (TOF-SIMS) was utilized to address the issue of co-localization of cholesterol, phosphocholine and galactosylceramide in rat cerebellar cortex. Rat cerebellum was fixed, freeze-protected by sucrose, frozen and sectioned by cryoultramicrotomy and dried at room temperature. The samples were analyzed in an imaging TOF-SIMS instrument equipped with a Bi(1-7)+-source. The cholesterol signal (m/z 369 and 385) was localized in Purkinje cells and in nuclei of granular layer cells. The phosphocholine headgroup of phosphatidylcholine and sphingomyelin was localized by imaging a specific fragment (m/z 86). This signal was localized in the molecular layer of cerebellar cortex, in Purkinje cells and in parts of the granular layer probably representing the synapse-rich glomeruli. The galactosylceramide was localized by imaging the quasi-molecular ions at m/z 835 and 851, showed a clear colocalization with cholesterol, but also a specific localization in dots (diameter 相似文献   

6.
Light and electron microscopic analyses of the cerebellar cortex were carried out in inbred trembler mutants of Barred Plymouth Rock (BPR), crossbred trembler (CBT) and crossbred normal (CBN) chickens 6 and 34 days after hatching. The size of the cerebellum of BPR was markedly reduced, but the pattern of fissures appeared essentially normal. Both the molecular and granular layer in the BPR were much thinner than in the CBT and CBN. Ectopic Purkinje cells were observed in the molecular and granular layers, and even in the medulla. The Purkinje cells were more intensely stained in Nissl preparations than those of CBT and CBN. By 34 days, most of the Purkinje cells, which were reduced in size, contained spherical and swollen mitochondria, an undeveloped Golgi apparatus, and many stacks of rough endoplasmic reticulum (ER). The basket cells were reduced in size and exhibited a decrease in stacks of rough ER and an increase in the area of the Golgi apparatus. They contained the swollen mitochondria that were observed in the Purkinje cells. The granule cells were reduced in size, and showed a decrease in the number of cell organelles. The disorder appeared to be intrinsic to Purkinje cells since many types of degeneration were observed in the BPR Purkinje cells.  相似文献   

7.
宋海燕  刘再群  郑磊 《四川动物》2012,31(2):232-235,239,337
采用普通染色及免疫组化SABC染色法研究皖西白鹅小脑皮质的发育和多巴胺受体1(DRD1)阳性细胞在其发育中的表达.结果表明,小脑皮质在胚龄13 d(E13)由外向内分为外颗粒层(EGL)、浦肯野细胞层(PCL)和内颗粒层(IGL),E19由外向内分为EGL、分子层(ML)、PCL和IGL.随发育天数的增加,EGL的厚度和细胞层次呈先升后降的变化趋势,细胞密度逐渐下降;ML厚度逐渐增大,在E24到E28时增值最大;浦肯野细胞(PC)在E13、E19、E24和E28时随胚龄增大逐渐增大,在E28后趋于稳定,细胞密度随着发育天数的增加逐渐下降,在小脑皮质发育中还发现有一部分PC呈多层排列,且细胞层次逐渐变少;IGL厚度呈先升后降的变化趋势,细胞密度呈上升趋势.外颗粒层和内颗粒层在E13、E19、E24和E28时有DRD1阳性细胞表达,分子层在E24、E28、日龄7 d(P7)和15d(P15)有阳性细胞表达,PC在所检测的6个时段均有阳性表达.研究表明,小脑皮质的发育主要与细胞增殖、迁移和凋亡有关,外颗粒层的逐渐消失是以细胞迁移和凋亡为主,多层PC逐渐退化成单层是与细胞凋亡和正常突触联系的建立有关;DRD1在皖西白鹅小脑皮质发育中对外颗粒层细胞和PC起着重要作用.  相似文献   

8.
The cerebellar cortex of many vertebrates shows a striking parasagittal compartmentation that is thought to play a role in the establishment and maintenance of functional cerebellar connectivity. Here, we demonstrate the existence of multiple parasagittal raphes of cells in the molecular layer of the developing cerebellar cortex of postnatal mouse. The histological appearance and immunostaining profile of the raphe cells suggest that they are migrating granule cells. We therefore conclude that the granule cell raphes previously described in birds also exist in a mammalian species. The raphes in mouse are visible on nuclear stains from around birth to postnatal day 6 and are frequently found at the boundaries of Purkinje cell segments that differentially express cadherins ("early-onset" parasagittal banding pattern). A similar relation between the raphe pattern and various markers for the early-onset banding pattern has been found in the chicken cerebellum. One of the cadherins mapped in the present study (OL-protocadherin) continues to be expressed in specific Purkinje cell segments until at least postnatal day 14. At this stage of development, the borders of the OL-protocadherin-positive Purkinje cell segments coincide with the borders of Purkinje cell segments that express zebrin II, a marker for the "late-onset" parasagittal banding pattern which persists in the adult cerebellum. These findings demonstrate that the early-onset banding pattern, as reflected in the complementary arrangement of raphes/Purkinje cell segments, and the late-onset pattern of zebrin II expression share at least some positional cues during development.  相似文献   

9.
S100在猫小脑中的分布及其表达的年龄相关性变化   总被引:2,自引:1,他引:1  
用免疫组织化学ABC法标记S100免疫阳性(S100-IR)细胞,观察S100蛋白在青年猫和老年猫小脑中的分布,探讨其表达的年龄相关变化及意义。光镜下计数颗粒层和髓质中S100-IR细胞密度及浦肯野细胞(PC)层阳性细胞线密度。结果显示,颗粒层和髓质中S100-IR细胞密度较小、分布均匀,PC层阳性细胞相对密集,分子层未见阳性反应;阳性细胞胞浆深染。与青年猫相比,老年猫小脑颗粒层、髓质和PC层中S100-IR细胞密度显著增加(P<0.01),胞体较大,阳性较强。表明S100-IR细胞在小脑中的分布具区域性差异,呈明显的年龄相关性增生,推测其增生对衰老神经元的丢失起保护作用。  相似文献   

10.
Coupling of CNS receptors to phosphoinositide turnover has previously been found to vary with both age and brain region. To determine whether the metabolism of the second messenger inositol 1,4,5-trisphosphate also displays such variations, activities of inositol 1,4,5-trisphosphate 5'-phosphatase and 3'-kinase were measured in developing rat cerebral cortex and adult rat brain regions. The 5'-phosphatase activity was relatively high at birth (approximately 50% of adult values) and increased to adult levels by 2 weeks postnatal. In contrast, the 3'-kinase activity was low at birth and reached approximately 50% of adult levels by 2 weeks postnatal. In the adult rat, activities of the 3'-kinase were comparable in the cerebral cortex, hippocampus, and cerebellum, whereas much lower activities were found in hypothalamus and pons/medulla. The 5'-phosphatase activities were similar in cerebral cortex, hippocampus, hypothalamus, and pons/medulla, whereas 5- to 10-fold higher activity was present in the cerebellum. The cerebellum is estimated to contain 50-60% of the total inositol 1,4,5-trisphosphate 5'-phosphatase activity present in whole adult rat brain. The localization of the enriched 5'-phosphatase activity within the cerebellum was examined. Application of a histochemical lead-trapping technique for phosphatase indicated a concentration of inositol 1,4,5-trisphosphate 5'-phosphatase activity in the cerebellar molecular layer. Further support for this conclusion was obtained from studies of Purkinje cell-deficient mutant mice, in which a marked decrement of cerebellar 5'-phosphatase was observed. These results suggest that the metabolic fate of inositol 1,4,5-trisphosphate depends on both brain region and stage of development.  相似文献   

11.
ROR alpha is an orphan nuclear receptor. A deletion mutation in the ROR alpha gene leads to severe cerebellar defects, known as the staggerer mutant mouse. Although previous in situ hybridization (ISH) studies have shown that ROR alpha is highly expressed in the cerebellum, especially in Purkinje cells, and in the thalamus, sufficient immunohistochemical (IHC) study has not yet been presented. I demonstrate here the IHC analysis of ROR alpha using a specific anti-ROR alpha antibody, in adult and developing mouse nervous system. ROR alpha immunoreactivity was observed in the Purkinje cell and molecular layers of the cerebellum. The co-localization of ROR alpha with calbindin D(28K) (CaBP) and parvalbumin indicates that ROR alpha-positive cells were Purkinje cells, stellate cells, and basket cells. In addition to the cerebellum, strong to medium ROR alpha immunoreactivity was found in the thalamus, cerebral cortex (mainly in the layer IV), dorsal cochlear nucleus (DCN), suprachiasmatic nucleus (SCN), superior colliculus, spinal trigeminal nucleus, and retina. The immunostaining was restricted in nuclei of neurons. Developmentally, ROR alpha immunoreactivity was observed in the cerebellum and thalamus from embryonal day 16 (E16). The distribution of ROR alpha immunoreactivity and ROR alpha mRNA hybridization signal was almost coincident. However, the intensity of hybridization signal was not always parallel to that of immunoreactivity.  相似文献   

12.
Newborn rats were treated at different stages of their development with low doses of methylazoxymethanol acetate. The postnatal increase of the DNA content of the cerebrum did not differ from that of controls. In the cerebellum, the DNA content was transitorily reduced, but later, the external granular layer became thicker and DNA deposition increased in comparison with controls; finally, the cerebellar DNA returned to a normal value. Morphological abnormalities of the cerebellum, abnormal orientation of migrating cells, scattering of Purkinje cell bodies within the internal granule cells and specially striking abnormalities of the morphology and orientation of Purkinje cell dendrites were noted in rats treated with MAM from birth to day 3. The effects on the Purkinje cell morphogenesis persisted but were much less marked when MAM was given from 4 to 7 or from 8 to 11 days. Neonatal thyroid deficiency, as MAM-treatment between days 0 and 3, leads to an abnormal position of Purkinje cell bodies within the cerebellar cortex; it also leads to morphological abnormalities of their dendritic arborization which closely resemble those observed after MAM-treatment during the second postnatal week. It also alters the cell formation in the cerebellum. Thyroid deficiency probably exerts its effect on cell formation earlier than previous biochemical studies have shown. On another hand, the morphological abnormalities of Purkinje cell arborizations in the thyroid-deficient animals may be partly due to the perturbations of cell formation which persist later in the cerebellum.  相似文献   

13.
14.
Summary The teleostean cerebellar cortex has been studied with respect to its cytoarchitectonic arrangement and intracortical neuronal circuits. Samples of fish cerebellum were fixed either by immersion or vascular perfusion in 5% glutaraldehyde solution and processed for light and scanning electron microscopy. The cerebellar cortex shows four distinct layers: granular; fibrous stratum; Purkinje cell; and molecular layers. In the granular layer, mossy and climbing fiber glomeruli were characterized. The mossy glomerular region appeared as polygonal, round or ovoid clews formed by the convergence of up to 17 dendritic profiles upon a thick mossy fiber branch. The en passant nature of mossy fiber-granule cell dendrite synaptic relationship was clearly appreciated. The climbing fibers showed tendril and glomerular collaterals. The latter form thin, elongated glomeruli. Remnants of a neuroglial envelope were observed in the mossy fiber glomeruli but are apparently absent from the climbing fiber glomeruli. The beaded-shape Golgi cell axonal ramifications were observed participating in the formation of both glomerular types. Velate protoplasmic astrocytes and oligodendrocytes were also identified. The fibrous stratum appeared to be formed by compact bundles of thick and thin myelinated axons, running horizontally beneath the Purkinje cell layer and apparently belonging to ascending climbing fibers and descending Purkinje cell axons. At the Purkinje cell layer a selective removal of Bergmann glial cells was observed allowing the visualization of the pericellular basket and the pinceaux. Climbing fiber stems and their tendril collaterals were seen on their way to the molecular layer ascending parallel to the Purkinje dendritic ramifications. Stellate neuron processes were found passing through the fan-like arborescence of Purkinje cell dendrites.  相似文献   

15.
The major anatomical divisions of the cerebellum of the European eel, i.e., corpus cerebelli, lobus vestibulolateralis, and valvula, were studied morphologically and morphometrically. There were differences in cerebellar cytoarchitecture and gross morphology in two stages of the eel life cycle, the trophic stage (yellow eel), and the reproductive stage (silver eel), which are characterized by different degrees of swimming activity. The principal differences between silver and yellow eels in the cytoarchitecture of the corpus cerebelli and the lobus vestibulolateralis were in distribution of Purkinje or Purkinje-like cells in the molecular layer, which is wider in silver eels, in part because of a decreased thickness of the granular cell layer. In the silver eel, the scattering of Purkinje cells was more evident in the lobus vestibulolateralis where the molecular layer is also thicker. The data indicate the transition from the yellow eel to the silver eel is characterized by a migration of granule cells from the ganglionic cell layer to the internal granular layer and by a further development of molecular layer components, e.g., parallel fibers, Purkinje-cell dendrites, etc. In contrast, the thickness of the granular layer and of the Purkinje cell layer, limited to the lower part of the valvula, decreased. There is also a slight increase of cerebellar volume in the silver eel. The volume of the lobus vestibulolateralis was constant. Hypertrophy of the valvula and eminentiae granulares is observed and is due to the migration of cells from the granular layer of the corpus cerebelli whose volume slightly decreases. Perhaps the lobus vestibulolateralis also contributes to the increased volume of eminentiae granulares. Our findings suggest that the cerebellum continues to develop during the passage from the trophic to the reproductive stage of the eel. The appearance of new afferents from the lateral line which becomes more visible in the silver eel probably completes cerebellar ontogeny.  相似文献   

16.
Nuclear receptors and their coregulators play a critical role in brain development by regulating the spatiotemporal expression of their target genes. The arginine-glutamic acid dipeptide repeats gene (Rere) encodes a nuclear receptor coregulator previously known as Atrophin 2. In the developing cerebellum, RERE is expressed in the molecular layer, the Purkinje cell layer and the granule cell layer but not in granule cell precursors. To study RERE''s role in cerebellar development, we used RERE-deficient embryos bearing a null allele (om) and a hypomorphic allele (eyes3) of Rere (Rere om/eyes3). In contrast to wild-type embryos, formation of the principal fissures in these RERE-deficient embryos was delayed and the proliferative activity of granule cell precursors (GCPs) was reduced at E18.5. This reduction in proliferation was accompanied by a decrease in the expression of sonic hedgehog (SHH), which is secreted from Purkinje cells and is required for normal GCP proliferation. The maturation and migration of Purkinje cells in Rere om/eyes3 embryos was also delayed with decreased numbers of post-migratory Purkinje cells in the cerebellum. During the postnatal period, RERE depletion caused incomplete division of lobules I/II and III due to truncated development of the precentral fissure in the cerebellar vermis, abnormal development of lobule crus I and lobule crus II in the cerebellar hemispheres due to attenuation of the intercrural fissure, and decreased levels of Purkinje cell dendritic branching. We conclude that RERE-deficiency leads to delayed development of the principal fissures and delayed maturation and migration of Purkinje cells during prenatal cerebellar development and abnormal cerebellar foliation and Purkinje cell maturation during postnatal cerebellar development.  相似文献   

17.
THE DEVELOPMENT OF D-AMINO ACID OXIDASE IN RAT CEREBELLUM   总被引:1,自引:0,他引:1  
D-Amino acid oxidase (D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3; D-AAO) activity is biochemically undetected in rat brain stem, cerebellum and forebrain until 14 days after birth. Adult levels are attained by day 30 in the brain stem, and by day 36 in the cerebellum. At adulthood, forebrain D-AAO activity per g wet weight of tissue is less than 2% that of the cerebellum. In contrast to the pattern in the CNS, substantial D-AAO activity is present in both liver and kidney 2 days before birth and adult levels are approached within 2 weeks of birth. Nonetheless, D-AAO activities in rat liver, kidney, brain stem and cerebellum are likely to be due to a single enzyme which has properties very similar to the purified hog D-AAO. The late ontogenesis of D-AAO activity in cerebellum and brain stem relative to that in liver and kidney parallels reported phylogenetic data. Histochemical staining for D-AAO in rat cerebellar cortex is absent until 15 days after birth when activity is first observed in some cells of the external germinal zone and adjacent molecular layer. These cells appear to migrate to a final destination around the Purkinje cell soma and leave processes at the pial surface. By 21 days of age an adult pattern of staining is manifest throughout the cerebellum but it is of weak intensity. The adult pattern includes some staining in the granular layer which seems to be associated with mossy fibers and certain cerebellar glomeruli, and strong staining at the pial surface, in the molecular layer, and in cells surrounding, but not within, the Purkinje cell soma. The data suggest that the biochemical appearance of D-AAO in developing cerebellum derives from two sources: one associated with differentiation of one of the last cell types to form from the external germinal zone, and the other with maturation of mossy fibers and their synapses (cerebellar glomeruli).  相似文献   

18.
Carboxyl-terminal cholecystokinin octapeptide (CCK8) binding sites were studied in the human cerebellar system by autoradiography. High affinity CCK8 binding sites were demonstrated in the main cerebellar afferent nuclei, namely the inferior olivary complex and the pontine nuclei. This localization of CCK8 binding sites was partly correlated with already described CCK containing terminals. In the cerebellar cortex, high affinity CCK8 binding sites were detected with a laminar distribution. Levels were higher in the granular layer (mostly in the superficial part) and lower in the white matter and the Purkinje cell layer. The non-specific binding was homogenous and particularly low (9%) in the cerebellar cortex but a non-specific binding was selectively localized in the deep cerebellar nuclei. Those results illustrate the species variability of CCK binding sites in the cerebellum and are briefly discussed in relation with the low level of CCK immunoreactivity in this structure. The presence of CCK8 binding sites in cerebellar afferent nuclei and cortex suggests a role of CCK in human cerebellar physiology and particularly in the modulation of afferent inputs to the cerebellum.  相似文献   

19.
Abstract— —The gross distribution of LDH and MAO was studied in a caudo-cranial series of 50 μ thick sections through the medulla oblongata and cerebellum. In general, LDH exhibited a stronger reaction in the neuropil and in the perikarya, whereas MAO showed moderate activity in the neurons and mild to moderate activity in the neuropil. The axonal processes and nerve fibres showed comparatively stronger MAO activity. The nuclei gracilis, cuneatus medialis and lateralis, cranial nerve nuclei, olivaris inferior, vestibularis and cochlearis nuclei showed particularly strong LDH and equally weak MAO activities. The lateral part of the formato reticularis myelencephali showed much more MAO than did the medial part, whereas the LDH reaction was uniformly strong. The reticularis lateralis showed uniformly strong LDH and very mild MAO activities.
In the cerebellar cortex, the MAO activity was concentrated in the molecular layer and nerve fibre layer, whereas LDH activity was particularly strong in the Purkinje cells and their processes in the molecular layer. The cerebellar nuclei showed strong LDH and weak MAO in the neutrons and stronger MAO and moderate LDH in the neuropil.  相似文献   

20.
Cerebellar granule neurons migrate from the external granule cell layer (EGL) to the internal granule cell layer (IGL) during postnatal morphogenesis. This migration process through 4 different layers is a complex mechanism which is highly regulated by many secreted proteins. Although chemokines are well-known peptides that trigger cell migration, but with the exception of CXCL12, which is responsible for prenatal EGL formation, their functions have not been thoroughly studied in granule cell migration. In the present study, we examined cerebellar CXCL14 expression in neonatal and adult mice. CXCL14 mRNA was expressed at high levels in adult mouse cerebellum, but the protein was not detected. Nevertheless, Western blotting analysis revealed transient expression of CXCL14 in the cerebellum in early postnatal days (P1, P8), prior to the completion of granule cell migration. Looking at the distribution of CXCL14 by immunohistochemistry revealed a strong immune reactivity at the level of the Purkinje cell layer and molecular layer which was absent in the adult cerebellum. In functional assays, CXCL14 stimulated transwell migration of cultured granule cells and enhanced the spreading rate of neurons from EGL microexplants. Taken together, these results revealed the transient expression of CXCL14 by Purkinje cells in the developing cerebellum and demonstrate the ability of the chemokine to stimulate granule cell migration, suggesting that it must be involved in the postnatal maturation of the cerebellum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号