首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 512 毫秒
1.
Photosynthesis Research - Effects of pH, Ca2+, and Cl− ions on the extraction of Mn cations from oxygen-evolving complex (OEC) in Ca-depleted photosystem II (PSII(-Ca)) by exogenous...  相似文献   

2.
We found that sulfite incubation of photosystem II submembrane fractions can induce selective depletion of the 18, 23 and 33 kDa polypeptides of the PSII oxygen evolving complex. When the sulfite treatment was done at pH 8.0, the 18 and 23 kDa proteins were removed efficiently from the PSII oxygen evolving complex. Under the same conditions, the 33 kDa subunit remained bound (even when 2 M sodium sulfite was used). However, in more alkaline conditions (pH 9.8), we show extensive removal of the 33 kDa in the presence of a low sulfite concentration (50 mM). The different extraction affinity for the 18, 23 and 33 kDa of the photosystem II complex was interpreted to mean that the 33 kDa polypeptides are bound to photosystem II by both electrostatic and hydrogen bonding forces.  相似文献   

3.
The supramolecular organization of photosystem II (PSII) was characterized in distinct domains of the thylakoid membrane, the grana core, the grana margins, the stroma lamellae, and the so-called Y100 fraction. PSII supercomplexes, PSII core dimers, PSII core monomers, PSII core monomers lacking the CP43 subunit, and PSII reaction centers were resolved and quantified by blue native PAGE, SDS-PAGE for the second dimension, and immunoanalysis of the D1 protein. Dimeric PSII (PSII supercomplexes and PSII core dimers) dominate in the core part of the thylakoid granum, whereas the monomeric PSII prevails in the stroma lamellae. Considerable amounts of PSII monomers lacking the CP43 protein and PSII reaction centers (D1-D2-cytochrome b559 complex) were found in the stroma lamellae. Our quantitative picture of the supramolecular composition of PSII, which is totally different between different domains of the thylakoid membrane, is discussed with respect to the function of PSII in each fraction. Steady state electron transfer, flash-induced fluorescence decay, and EPR analysis revealed that nearly all of the dimeric forms represent oxygen-evolving PSII centers. PSII core monomers were heterogeneous, and a large fraction did not evolve oxygen. PSII monomers without the CP43 protein and PSII reaction centers showed no oxygen-evolving activity.  相似文献   

4.
Photosystem II (PSII) complexes, which split water into oxygen, protons and electrons in photosynthesis, require light but are also inactivated by it. Recovery of PSII from photoinactivation requires de novo protein synthesis. PSII in capsicum leaf segments were photoinactivated in the absence of chloroplast-encoded protein synthesis. At large photon exposures and despite the absence of repair, a residual fraction of PSII remained functional, being ca 0.08–0.2 depending on the ease of gas exchange in the tissue. This study revealed that the residual functional PSII was photoprotected by both (1) reaction-center quenching of excitation energy by photoinactivated PSII even when little or no PSII activity was permitted, and (2) antenna quenching, which was dependent on a trans-thylakoid pH gradient sustained mainly by linear electron transport and facilitated by the residual functional PSII complexes themselves. Significantly, little or no contribution to photoprotection of PSII was observed from cyclic electron flow around PSI. Further, the small residual functional PSII population was critical for recovery of the photoinactivated PSII complexes. Thus, photoinactivated and residual functional PSII complexes in leaves play a mutually beneficial role in each other's ultimate survival.  相似文献   

5.
We investigated the impact of low pH and aluminum (Al) stress on the growth, nutrients concentration, chlorophyll a fluorescence, photosynthetic pigment contents, proline and carbohydrate accumulation in shoots and plantlets (leaves and roots) of Plantago almogravensis and P. algarbiensis. Both species accumulated considerable and similar amounts of Al in their tissues, mainly in the roots. The presence of Al caused a significant reduction on root elongation in P. algarbiensis. Low pH and Al induced significant changes on nutrient accumulation, but no significant alterations on the maximum efficiency of PSII (F v/F m), quantum yield of PSII photochemistry (?PSII), quantum yield of regulated energy dissipation (?NPQ) and quantum yield of non-regulated energy dissipation (?NO) were detected in both species in response to these stresses. However, Al increased significantly the non-photochemical quenching and the chlorophyll b content and decreased the PSII excitation pressure (1 ? q p) in P. almogravensis leaves. Both stress treatments induced carbohydrate accumulation in the shoots and roots of this species, but not in leaves. In P. algarbiensis, low pH and Al decreased the photosynthetic pigment contents in the shoots, whereas Al stimulated the carbohydrate accumulation in the leaves. Although our data showed that both species are tolerant to Al3+ and H+, P. almogravensis appeared to be more adapted to maintain cellular physiology and growth under those conditions.  相似文献   

6.
The protein assembly and stability of photosystem II (PSII) (sub)complexes were studied in mature leaves of four plastid mutants of tobacco (Nicotiana tabacum L), each having one of the psbEFLJ operon genes inactivated. In the absence of psbL, no PSII core dimers or PSII-light harvesting complex (LHCII) supercomplexes were formed, and the assembly of CP43 into PSII core monomers was extremely labile. The assembly of CP43 into PSII core monomers was found to be necessary for the assembly of PsbO on the lumenal side of PSII. The two other oxygen-evolving complex (OEC) proteins, PsbP and PsbQ, were completely lacking in Delta psbL. In the absence of psbJ, both intact PSII core monomers and PSII core dimers harboring the PsbO protein were formed, whereas the LHCII antenna remained detached from the PSII dimers, as demonstrated by 77 K fluorescence measurements and by the lack of PSII-LHCII supercomplexes. The Delta psbJ mutant was characterized by a deficiency of PsbQ and a complete lack of PsbP. Thus, both the PsbL and PsbJ subunits of PSII are essential for proper assembly of the OEC. The absence of psbE and psbF resulted in a complete absence of all central PSII core and OEC proteins. In contrast, very young, vigorously expanding leaves of all psbEFLJ operon mutants accumulated at least traces of D2, CP43 and the OEC proteins PsbO and PsbQ, implying developmental control of the expression of the PSII core and OEC proteins. Despite severe problems in PSII assembly, the thylakoid membrane complexes other than PSII were present and correctly assembled in all psbEFLJ operon mutants.  相似文献   

7.
We cloned and determined the nucleotide sequence of PSII genes, psbB and psbTc, from the thermophilic cyanobacterium, Thermosynechococcus elongatus strain BP-1. PSII-Tc, encoded by psbTc, is a small membrane-spanning subunit of the PSII core complex of cyanobacteria and plants. However, its role has not been fully elucidated. We generated an insertional disruptant of psbTc and studied the role of the PSII-Tc protein in cyanobacterial PSII. The following observations were made: (i) The psbTc disruptant could grow photoautotrophically at a rate similar to that of wild-type T. elongatus under a wide range of light conditions. (ii) Thylakoids and oxygen-evolving PSII complexes were successfully isolated from the psbTc disruptant as well as the wild type. There was no significant difference in the oxygen evolution activities of cells, thylakoids or PSII complexes between the psbTc disruptant and the wild type. This is in contrast to the lower activities in the other PSII mutants of T. elongatus. (iii) Chromatographic separation of monomeric and dimeric PSII revealed that recovery of dimeric PSII was dramatically reduced in the psbTc disruptant. (iv) SDS-urea-PAGE showed a complete loss of the 4.7-kDa band in the mutant PSII. Since this band in wild-type PSII consists of PSII-M and PSII-Tc, we assume that PSII-Tc is critical for the binding of PSII-M in the PSII complex and is involved directly and indirectly in the dimerization of PSII. These results appear to be in good agreement with the recent structural model of the dimeric PSII complex.  相似文献   

8.
PsbT is a small chloroplast-encoded hydrophobic polypeptide associated with the D1/D2 heterodimer of the photosystem II (PSII) reaction center and is required for the efficient post-translational repair of photodamaged PSII. Here we addressed that role in detail in Chlamydomonas reinhardtii wild type and DeltapsbT cells by analyzing the activities of PSII, the assembly of PSII proteins, and the redox components of PSII during photoinhibition and repair. Strong illumination of cells for 15 min decreased the activities of electron transfer through PSII and Q(A) photoreduction by 50%, and it reduced the amount of atomic manganese by 20%, but it did not affect the steady-state level of PSII proteins, photoreduction of pheophytin (pheo(D1)), and the amount of bound plastoquinone (Q(A)), indicating that the decrease in PSII activity resulted mainly from inhibition of the electron transfer from pheo(D1) to Q(A). In wild type cells, we observed parallel recovery of electron transfer activity through PSII and Q(A) photoreduction, suggesting that the recovery of Q(A) activity is one of the rate-limiting steps of PSII repair. In DeltapsbT cells, the repairs of electron transfer activity through PSII and of Q(A) photoreduction activity were both impaired, but PSII protein turnover was unaffected. Moreover, about half the Q(A) was lost from the PSII core complex during purification. Since PsbT is intimately associated with the Q(A)-binding region on D2, we propose that this polypeptide enhances the efficient recovery of Q(A) photoreduction by stabilizing the structure of the Q(A)-binding region.  相似文献   

9.
AtCYP38 is a thylakoid lumen protein comprising the immunophilin domain and the phosphatase inhibitor module. Here we show the association of AtCYP38 with the photosystem II (PSII) monomer complex and address its functional role using AtCYP38-deficient mutants. The dynamic greening process of etiolated leaves failed in the absence of AtCYP38, due to specific problems in the biogenesis of PSII complexes. Also the development of leaves under short-day conditions was severely disturbed. Detailed biophysical and biochemical analysis of mature AtCYP38-deficient plants from favorable growth conditions (long photoperiod) revealed: (i) intrinsic malfunction of PSII, which (ii) occurred on the donor side of PSII and (iii) was dependent on growing light intensity. AtCYP38 mutant plants also showed decreased accumulation of PSII, which was shown not to originate from impaired D1 synthesis or assembly of PSII monomers, dimers and supercomplexes as such but rather from the incorrect fine-tuning of the oxygen-evolving side of PSII. This, in turn, rendered PSII centers extremely susceptible to photoinhibition. AtCYP38 deficiency also drastically decreased the in vivo phosphorylation of PSII core proteins, probably related to the absence of the AtCYP38 phosphatase inhibitor domain. It is proposed that during PSII assembly AtCYP38 protein guides the proper folding of D1 (and CP43) into PSII, thereby enabling the correct assembly of the water-splitting Mn4–Ca cluster even with high turnover of PSII.  相似文献   

10.
Chromatic regulation of photosystem stoichiometry in cyanophytes, green algae and probably vascular plants is achieved by regulation of the abundance of PSI in response to thylakoid electron transport state at least under our experimental conditions [cf. Fujita (1997) Photosyn. Res. 53: 83]. However, variation of not only PSI but also PSII, in reverse of each other, is characteristic of the stoichiometry regulation in red algae and some of marine cyanophytes. Our previous study with the red alga Porphyridium cruentum has revealed that PSII is inactivated by 50% upon a light shift from the light absorbed by Chl a, PSI light, to that mainly absorbed by phycobilisomes (PBS), PSII light [Fujita (1999) Plant Cell Physiol. 40: 924]. To evaluate the contribution of the photoinactivation to the chromatic variation of PSII, variation of the abundance of PSI, PSII and PBS, together with the fluorescence parameter and the activity of PSII, was followed after a light shift from PSI light to PSII light. Upon a light shift to PSII light, PSII, determined as Cyt b(559) per PBS, decreased rapidly, following the photoinactivation, down to the level a half of that before the light shift, and remained constant. Since the increase in PBS was not significant during this period, a rapid decrease of PSII/PBS led us to tentatively conclude that the degradation of PSII is a main cause for variation of the abundance of PSII. Photoinactivation of PSII, and also decrease in Cyt b(559), was accelerated, but only slightly, by the addition of chloramphenicol (CAP) at a moderate concentration while CAP at the same concentration significantly suppressed the increment of PSI determined as P700. A selective effect of CAP supports the above conclusion.  相似文献   

11.
Lu Y  Hall DA  Last RL 《The Plant cell》2011,23(5):1861-1875
This work identifies LOW QUANTUM YIELD OF PHOTOSYSTEM II1 (LQY1), a Zn finger protein that shows disulfide isomerase activity, interacts with the photosystem II (PSII) core complex, and may act in repair of photodamaged PSII complexes. Two mutants of an unannotated small Zn finger containing a thylakoid membrane protein of Arabidopsis thaliana (At1g75690; LQY1) were found to have a lower quantum yield of PSII photochemistry and reduced PSII electron transport rate following high-light treatment. The mutants dissipate more excess excitation energy via nonphotochemical pathways than wild type, and they also display elevated accumulation of reactive oxygen species under high light. After high-light treatment, the mutants have less PSII-light-harvesting complex II supercomplex than wild-type plants. Analysis of thylakoid membrane protein complexes showed that wild-type LQY1 protein comigrates with the PSII core monomer and the CP43-less PSII monomer (a marker for ongoing PSII repair and reassembly). PSII repair and reassembly involve the breakage and formation of disulfide bonds among PSII proteins. Interestingly, the recombinant LQY1 protein demonstrates a protein disulfide isomerase activity. LQY1 is more abundant in stroma-exposed thylakoids, where key steps of PSII repair and reassembly take place. The absence of the LQY1 protein accelerates turnover and synthesis of PSII reaction center protein D1. These results suggest that the LQY1 protein may be involved in maintaining PSII activity under high light by regulating repair and reassembly of PSII complexes.  相似文献   

12.
Cyanobacteria contain several genes coding for small one-helix proteins called SCPs or HLIPs with significant sequence similarity to chlorophyll a/b-binding proteins. To localize one of these proteins, ScpD, in the cells of the cyanobacterium Synechocystis sp. PCC 6803, we constructed several mutants in which ScpD was expressed as a His-tagged protein (ScpDHis). Using two-dimensional native-SDS electrophoresis of thylakoid membranes or isolated Photosystem II (PSII), we determined that after high-light treatment most of the ScpDHis protein in a cell is associated with PSII. The ScpDHis protein was present in both monomeric and dimeric PSII core complexes and also in the core subcomplex lacking CP43. However, the association with PSII was abolished in the mutant lacking the PSII subunit PsbH. In a PSII mutant lacking cytochrome b(559), which does not accumulate PSII, ScpDHis is associated with CP47. The interaction of ScpDHis with PsbH and CP47 was further confirmed by electron microscopy of PSII labeled with Ni-NTA Nanogold. Single particle image analysis identified the location of the labeled ScpDHis at the periphery of the PSII core complex in the vicinity of the PsbH and CP47. Because of the fact that ScpDHis did not form any large structures bound to PSII and because of its accumulation in PSII subcomplexes containing CP47 and PsbH we suggest that ScpD is involved in a process of PSII assembly/repair during the turnover of pigment-binding proteins, particularly CP47.  相似文献   

13.
A decrease in photosynthetic efficiency may indicate the toxic effects of environmental pollutants on higher plants. Measurement of chlorophyll (Chl) a fluorescence to assess the performance of photosystem II (PSII) was used as an bioindicator of toxicity of the polycyclic aromatic hydrocarbon (PAH) anthracene (ANT) in soybean plants. The results revealed that ANT treatment caused a reduction in quantum yield of PSII, damage to the oxygen evolving complex, as well as a significant reduction in performance index of PSII. However, change in performance index was more prominent, and it seems that the performance index is a more sensitive parameter to environmental contaminants. Moreover, a change in heterogeneity of PSII was also observed. The number of active reaction centres decreased with increasing concentration of ANT, as secondary plastoquinone reducing centres were converted into non‐reducing centres, and PSIIα centres were converted into PSIIβ and PSIIγ centres. The influence of ANT on PSII heterogeneity could be an important reason for reductions in the PSII performance.  相似文献   

14.
The effects of osmotic dehydration in wheat leaves ( Triticum aestivum L. cv. Longchun No. 10) on the photochemical function and protein metabolism of PSII were studied with isolated thylakoid and PSII membranes. The results indicated that PSII was rather resistant to water stress as mild water deficit in leaves did nut significantly affect its activity. However, extreme stress conditions such as 40% decrease in relative water content (RWC) or 1.8 MPa in water potential (Ψ) caused ca 50% reduction in O2 evolution and ca 25% inhibition of DCIP (2.6-dichlorophenol indophenol) photoreduction of PSII. In addition, it was found that the inhibited DCIP photoreduction of PSII could not be reversed by DPC (2.2-diphenylcarbazide), a typical electron donor to PSII, suggesting that water stress did not affect electron donation to PSII. Urea-SDS-PAGE and western blot analysis showed that the steady slate levels of major PSII proteins, including the D1 and D2 proteins in the PSII reaction center, declined on a chlorophyll basis with increasing water stress, possibly as a result of increased degradation. In vitro translation experiments and quantitative analysis of chloroplast RNAs indicated that the potential synthesis of chloroplast proteins from their mRNAs was impaired by water stress. From the results it is concluded that the effects of water stress on PSII protein metabolism, especially on the reaction center proteins, may account for the damage to PSII photochemistry.  相似文献   

15.
Inhibition of the activity of photosystem II (PSII) under strong light is referred to as photoinhibition. This phenomenon is due to the imbalance between the rate of photodamage to PSII and the rate of the repair of damaged PSII. Photodamage is initiated by the direct effects of light on the oxygen-evolving complex and, thus, photodamage to PSII is unavoidable. Studies of the effects of oxidative stress on photodamage and subsequent repair have revealed that reactive oxygen species (ROS) act primarily by inhibiting the repair of photodamaged PSII and not by damaging PSII directly. Thus, strong light has two distinct effects on PSII; it damages PSII directly and it inhibits the repair of PSII via production of ROS. Investigations of the ROS-induced inhibition of repair have demonstrated that ROS suppress the synthesis de novo of proteins and, in particular, of the D1 protein, that are required for the repair of PSII. Moreover, a primary target for inhibition by ROS appears to be the elongation step of translation. Inhibition of the repair of PSII by ROS is accelerated by the deceleration of the Calvin cycle that occurs when the availability of CO2 is limited. In this review, we present a new paradigm for the action of ROS in photoinhibition.  相似文献   

16.
Mikko Tikkanen 《BBA》2008,1777(11):1432-1437
Phosphorylation of photosystem II (PSII) reaction center protein D1 has been hypothesised to function as a signal for the migration of photodamaged PSII core complex from grana membranes to stroma lamellae for concerted degradation and replacement of the photodamaged D1 protein. Here, by using the mutants with impaired capacity (stn8) or complete lack (stn7 stn8) in phosphorylation of PSII core proteins, the role of phosphorylation in PSII photodamage and repair was investigated. We show that the lack of PSII core protein phosphorylation disturbs the disassembly of PSII supercomplexes at high light, which is a prerequisite for efficient migration of damaged PSII complexes from grana to stroma lamellae for repair. This results in accumulation of photodamaged PSII complexes, which in turn results, upon prolonged exposure to high light (HL), in general oxidative damage of photosynthetic proteins in the thylakoid membrane.  相似文献   

17.
PsbT is a small chloroplast-encoded hydrophobic polypeptide associated with the photosystem II (PSII) core complex. A psbT-deficient mutant (Delta psbT) of the green alga Chlamydomonas reinhardtii grows photoautotrophically, whereas its growth is significantly impaired in strong light. To understand the photosensitivity of Delta psbT, we have studied the effect of strong illumination on PSII activity and proteins. It is shown that the level of PSII activity and proteins is reduced in the Delta psbT more significantly than in wild type under strong light. When recovery of the photodamaged PSII is inhibited by a chloroplast protein synthesis inhibitor, the light-induced inactivation and degradation of PSII occur similarly in wild-type and mutant cells. On the contrary, the recovery of PSII activity after partial photoinactivation is remarkably delayed in the Delta psbT cells, suggesting that PsbT is required for efficient recovery of the photodamaged PSII complex. These results therefore present the first evidence for involvement of this small PSII polypeptide in the recovery process. Partial disintegration of the purified PSII core complex and localization of PSII proteins in the resulting PSII subcore complexes have revealed that PsbT is associated with D1/D2 heterodimer. A possible role of PsbT in the recovery process is discussed.  相似文献   

18.
邱念伟  邓樱 《植物学报》2007,24(4):484-489
以菠菜(Spinacia oleracea)叶片的PSII颗粒为材料, 利用高温(30°C和40°C)和高盐(400 mmol.L-1 和800 mmol.L-1 NaCl)处理, 研究外源蔗糖在盐、热胁迫下对PSII的保护作用。实验结果表明: 盐、热胁迫均对PSII造成伤害, 使PSII的最大光化学效率(Fv/Fm)显著下降, 盐、热胁迫同时存在时对PSII伤害更为严重。在PSII的保存液中加入不同浓度的蔗糖(100-800 mmol.L-1)后, 能显著缓解盐和热及盐热胁迫共同作用对菠菜PSII颗粒的伤害, 并且在一定浓度范围内, 随蔗糖浓度的提高, 保护作用越明显。说明一定浓度的外源蔗糖可以显著缓解盐、热胁迫对PSII的伤害。  相似文献   

19.
Plant photosystem II (PSII) is organized into large supercomplexes with variable levels of membrane‐bound light‐harvesting proteins (LHCIIs). The largest stable form of the PSII supercomplex involves four LHCII trimers, which are specifically connected to the PSII core dimer via monomeric antenna proteins. The PSII supercomplexes can further interact in the thylakoid membrane, forming PSII megacomplexes. So far, only megacomplexes consisting of two PSII supercomplexes associated in parallel have been observed. Here we show that the forms of PSII megacomplexes can be much more variable. We performed single particle electron microscopy (EM) analysis of PSII megacomplexes isolated from Arabidopsis thaliana using clear‐native polyacrylamide gel electrophoresis. Extensive image analysis of a large data set revealed that besides the known PSII megacomplexes, there are distinct groups of megacomplexes with non‐parallel association of supercomplexes. In some of them, we have found additional LHCII trimers, which appear to stabilize the non‐parallel assemblies. We also performed EM analysis of the PSII supercomplexes on the level of whole grana membranes and successfully identified several types of megacomplexes, including those with non‐parallel supercomplexes, which strongly supports their natural origin. Our data demonstrate a remarkable ability of plant PSII to form various larger assemblies, which may control photochemical usage of absorbed light energy in plants in a changing environment.  相似文献   

20.
Inhibition of the activity of photosystem II (PSII) under strong light is referred to as photoinhibition. This phenomenon is due to the imbalance between the rate of photodamage to PSII and the rate of the repair of damaged PSII. Photodamage is initiated by the direct effects of light on the oxygen-evolving complex and, thus, photodamage to PSII is unavoidable. Studies of the effects of oxidative stress on photodamage and subsequent repair have revealed that reactive oxygen species (ROS) act primarily by inhibiting the repair of photodamaged PSII and not by damaging PSII directly. Thus, strong light has two distinct effects on PSII; it damages PSII directly and it inhibits the repair of PSII via production of ROS. Investigations of the ROS-induced inhibition of repair have demonstrated that ROS suppress the synthesis de novo of proteins and, in particular, of the D1 protein, that are required for the repair of PSII. Moreover, a primary target for inhibition by ROS appears to be the elongation step of translation. Inhibition of the repair of PSII by ROS is accelerated by the deceleration of the Calvin cycle that occurs when the availability of CO(2) is limited. In this review, we present a new paradigm for the action of ROS in photoinhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号