首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Manganese (Mn) deficiency in wheat under rice (Oryza sativa L.) and wheat (Triticum aestivum L.) rotation is an important problem in most rice-growing areas in China. A field survey, field trials and a soil column experiment were conducted to determine the relationship between Mn leaching and distribution in soil profiles and paddy rice cultivation and the effects of Mn distribution in soil profiles on wheat growth and its response to Mn fertilization. At five field sites surveyed, total Mn and active Mn concentrations in the topsoil layers under rice–wheat rotations were only 42% and 11%, respectively, of those under systems without paddy rice. Both total and available Mn increased with soil depth in soils with rice–wheat rotations, showing significant spatial variability of Mn in the soil profile. Manganese leaching was the main pathway for Mn loss in coarse-textured soil with high pH, while excessive Mn uptake was the main pathway for Mn loss in clay-textured and acid soil. When Mn was deficient in the topsoil, sufficient Mn in the subsoil contributed to better growth and Mn nutrition of wheat but insufficient Mn in the subsoil resulted in Mn deficiency in wheat.  相似文献   

2.
Nannipieri  P.  Falchini  L.  Landi  L.  Benedetti  A.  Canali  S.  Tittarelli  F.  Ferri  D.  Convertini  G.  Badalucco  L.  Grego  S.  Vittori-Antisari  L.  Raglione  M.  Barraclough  D. 《Plant and Soil》1999,208(1):43-56
The N uptake by crops, soil distribution and recovery of 15N labelled urea-N (100 kg N ha-1) were investigated in a sorghum-wheat rotation in two silty clay soils (Foggia and Rieti Casabianca) and one silt loam soil (Rieti Piedifiume) under different mediterranean conditions. Non-exchangeable labelled NH4-N represented an important pool at both Rieti sites with higher values (p<0.05) under sorghum (14.0 and 24.6% of the urea N in the 0-20 cm layer at the end of the cropping season) than wheat whereas it was much less important in the Foggia soil (10.0% in the surface soil under sorghum). This is probably related to the clay minerals composition of the three soils; because vermiculite was present in both Rieti sites but not in the Foggia soil. At harvest from 4.4 to 5.3% of the urea N initially applied was present as microbial biomass N in the surface soil layer with no generally significant differences due to location and type of crops. Both sorghum and wheat N yields were higher in the driest site (Foggia) probably due to better light conditions, higher temperatures and irrigation during summer of the sorghum cropping period. The recovery of plant fertilizer N (about 21% for sorghum and 27% for wheat) and the percentage of N in the plant derived from the fertilizer (NDFF) were the lowest at Rieti-Casabianca probably as the result of the protection of immobilized fertilizer N against microbial mineralization by the swelling clays. The fertilizer N unaccounted for was nil or very low (10.8% at Rieti-Casabianca under wheat and 11.8 and 4.9% at Rieti-Piedifiume under sorghum and wheat, respectively). Urea-N losses occurred when Rieti Piedifiume and Rieti Casabianca soils were kept bare. In this case the urea N unaccounted for ranged from 12 to 56% of the urea N with higher losses in Rieti-Piedifiume than in Rieti-Casabianca. The higher recoveries in the latter soil were probably confirmed by the stabilizing effect of clays on the immobilized urea N. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
In this study, Bt transgenic rice (KMD rice) residue decomposition and the associated microbial community in a rapeseed–rice cropping system were assessed in comparison with its parental non-Bt rice variety (XiuShui 11). Decomposition was measured as mass loss by straw and root decay in litterbags over two consecutive years. Bacterial and fungal community compositions associated with residue decomposition were detected by terminal restriction fragment length polymorphism (T-RFLP) and the additive main effects multiplicative interaction (AMMI) analysis model. Decomposition dynamics and bacterial and fungal communities associated with decomposition were strongly affected by surface and incorporated placements, and by temporal factors. However, no significant differences were observed between Bt and non-Bt rice variety in either decomposition dynamics or in the soil microbial communities associated with residue decay. Our field study indicated that the insertion of the cry1Ab gene into Xiushui 11 rice genome had no significant effect on the residual decay and decomposition-associated microbial community compositions in the rapeseed-rice cropping system.  相似文献   

4.
The effects of organic manure and chemical fertilizer on total soil organic carbon (C T), water-soluble organic C (C WS), microbial biomass C (C MB), labile C (C L), C mineralization, C storage and sequestration, and the role of carbon management index (CMI) in soil quality evaluation were studied under a wheat–maize cropping system in a long-term experiment, which was established in 1989 in the North China Plain. The experiment included seven treatments: (1) OM: application of organic manure; (2) 1/2OMN: application of half organic manure plus chemical fertilizer NPK; (3) NPK: balanced application of chemical fertilizer NPK; (4) NP: application of chemical fertilizer NP; (5) PK: application of chemical fertilizer PK; (6) NK: application of chemical fertilizer NK; and (7) CK: unfertilized control. Application of organic manure (OM and 1/2OMN) was more effective for increasing C T, C WS, C MB, C L, C mineralization, and CMI, as compared with application of chemical fertilizer alone. For the chemical fertilizer treatments, balanced application of NPK (treatment 3) showed higher C T, C WS, C MB, C L, C mineralization, and CMI than the unbalanced use of fertilizers (treatments 4, 5, and 6). The C storage in the OM and 1/2OMN treatments were increased by 58.0% and 26.6%, respectively, over the NPK treatment, which had 5.9–25.4% more C storage than unbalanced use of fertilizers. The contents of C WS, C MB, and C L in organic manure treatments (treatments 1 and 2) were increased by 139.7–260.5%, 136.7–225.7%, and 150.0–240.5%, respectively, as compared to the CK treatment. The CMI was found to be a useful index to assess the changes of soil quality induced by soil management practices due to its significant correlation with soil bulk density and C fractions. The OM and 1/2OMN treatments were not a feasible option for farmers, but a feasible option for sequestering soil carbon, especially for the OM treatment. The NPK treatment was important for increasing crop yields, organic material inputs, and soil C fractions, so it could increase the sustainability of cropping system in the North China Plain.  相似文献   

5.
Soil organic carbon (SOC) pools are important in maintaining soil productivity and influencing the CO2 loading into the atmosphere. An attempt is made here to investigate into the dynamics of pools of SOC viz., total organic carbon (C tot), oxidisable organic carbon (C oc) and its four different fractions such as very labile (C frac 1), labile (C frac 2), less labile (C frac 3) and non-labile (C frac 4), microbial biomass carbon (C mic), mineralizable carbon (C min), and particulate organic carbon (C p) in relation to crop productivity using a 34 year old rice (Oryza sativa L)–wheat (Triticum aestivum L)–jute (Corchorus olitorius L) cropping system with different management strategies (no fertilization, only N, NP, NPK and NPK + FYM) in the hot humid, subtropics of India. A fallow treatment was also included to compare the impact of cultivation vis-à-vis no cultivation. Cultivation over the years caused a net decrease, while balanced fertilization with NPK maintained the SOC pools at par with the fallow. Only 22% of the C applied as FYM was stabilized into SOC, while the rest got lost. Of the analysed pools, C frac 1, C mic, C p and C min were influenced most by the treatments imposed. Most of the labile pools were significantly correlated with each other and with the yield and sustainable yield index (SYI) of the studied system. Of them, C frac1, C min, C mic and C p explained higher per cent variability in the SYI and yield of the crops. Results suggest that because of low cost and ease of estimation and also for upkeeping environmental conditions, C frac1 may be used as a good indicator for assessment of soil as to its crop productivity. Responsible Editor: Hans Lambers.  相似文献   

6.
Based on field measurements in two agriculturalecosystems, soil respiration and long-term response ofsoil organic carbon content (SOC) was modelled. Themodel predicts the influence of temperature increaseas well as the effects of land-use over a period ofthirty years in a northern German glacial morainelandscape. One of the fields carried a maizemonoculture treated with cattle slurry in addition tomineral fertilizer (maize monoculture), the otherwas managed by crop rotation and recieved organicmanure (crop rotation). The soils of both fieldswere classified as cambic Arenosols. The soilrespiration was measured in the fields by means of theopen dynamic inverted-box method and an infrared gasanalyser. The mean annual soil respiration rates were 268 (maizemonoculture) and 287 mg CO2 m-2 h-1(crop rotation). Factors controlling soil respirationwere soil temperature, soil moisture, root respirationand carbon input into the soil. Q10-valuesof soil respiration were generally higher in winterthan in summer. This trend is interpreted as anadaptive response of the soil microbial communities.In the model a novel mathematical approach withvariable Q10-values as a result oftemperature and moisture adjustment is proposed. Withthe calibrated model soil respiration and SOC werecalculated for both fields and simulations over aperiod of thirty years were established. Simulationswere based on (1) local climatic data, 1961 until1990, and (2) a regional climate scenario for northernGermany with an average temperature increase of 2.1 K.Over the thirty years period with present climateconditions, the SOC pool under crop rotation wasnearly stable due to the higher carbon inputs, whereasabout 16 t C ha-1 were lost under maizemonoculture. Under global warming the mean annualsoil respiration for both fields increased and SOCdecreased by ca. 10 t C ha-1 under croprotation and by more than 20 t C ha-1 undermaize monoculture. It was shown that overestimationof carbon losses in long-term prognoses can be avoidedby including a Q10-adjustment in soilrespiration models.  相似文献   

7.

Aims

There are few studies on the interactive effect of salinity and sodicity in soils exposed to drying and wetting cycles. We conducted a study to assess the impact of multiple drying and wetting on microbial respiration, dissolved organic carbon and microbial biomass in saline and saline-sodic soils.

Methods

Different levels of salinity (EC1:5 1.0 or 2.5) and sodicity (SAR?<?3 or 20) were induced by adding NaCl and CaCl2 to a non-saline/non-sodic soil. Finely ground wheat straw residue was added at 20?g?kg?1 as substrate to stimulate microbial activity. The constant moist (CM) treatment was kept at optimum moisture content for the length of the experiment. The drying and rewetting (DW) treatments consisted of 1 to 3 DW cycles; each DW cycle consisted of 1?week drying after which they were rewet to optimum moisture and then maintained moist for 1?week.

Results

Drying reduced respiration more strongly at EC2.5 than with EC1.0. Rewetting of dry soils produced a flush in respiration which was greatest in the soils without salt addition and smallest at high salinity (EC2.5) suggesting better substrate utilisation by microbes in soils without added salts. After three DW events, cumulative respiration was significantly increased by DW compared to CM, being 24% higher at EC1.0 and 16% higher at EC2.5 indicating that high respiration rates after rewetting may compensate for the low respiration rates during the dry phase. The respiration rate per unit MBC was lower at EC2.5 than at EC1.0. Further, the size of the flush in respiration upon rewetting decreased with each ensuing DW cycle being 50–70% lower in the third DW cycle than the first.

Conclusions

Both salinity and sodicity alter the effect of drying and rewetting on soil carbon dynamics compared to non-saline soils.  相似文献   

8.
Li  Hailing  Li  Tingting  Sun  Wenjuan  Zhang  Wen  Zhang  Qing  Yu  Lijun  Qin  Zhangcai  Guo  Bin  Liu  Jia  Zha  Xingchu 《Plant and Soil》2021,467(1-2):253-265
Plant and Soil - Reveal the soil organic carbon (SOC) stock change in the Qinghai-Tibetan Plateau (QTP) alpine wetlands in the past fifty years. The Qinghai-Tibetan Plateau (QTP) has a large area...  相似文献   

9.
The performance of three selected bacterial strains—PR3, PR7 and PR10 (Providencia sp., Brevundimonas sp., Ochrobacterium sp.) and three cyanobacterial strains CR1, CR2 and CR3 (Anabaena sp., Calothrix sp., Anabaena sp.), and their combinations was evaluated in a pot experiment with rice variety Pusa-1460, comprising 51 treatments along with recommended fertilizer controls. Highest yield enhancement of 19.02% was recorded in T12 (CR2), over control, while significant enhancement in nitrogen fixing potential was recorded in treatments involving combination of bacterial-cyanobacterial strains—T37 (PR3 + CR1 + CR3) and T21 (PR7 + CR1). Organic carbon was significantly increased in all microbe-inoculated treatments, which could be correlated with microbial biomass carbon values and activities of all the enzymes tested in our study. Also, panicle weight and plant biomass were highly correlated with soil microbial carbon. Comparative evaluation revealed the superior performance of strains CR2, CR1 (both Anabaena sp.) and PR10 (Ochrobacterium sp.) in increasing the growth and grain yield of rice and improving soil health, besides N (nitrogen) savings of 40–80 kg ha−1. The study for the first time illustrated the positive effects of co-inoculation of bacterial and cyanobacterial strains for integrated nutrient management of rice crop.  相似文献   

10.
Soil salinization is detrimental to plant growth and yield in agroecosystems worldwide. Epichloë endophytes, a class of clavicipitaceous fungi, enhance the resistance of host plants to saline-alkali stress. This study explored the effects of the systemic fungal endophyte Epichloë coenophiala on the root microbial community and growth performance of tall fescue (Lolium arundinaceum) growing under different saline-alkali stress conditions. Structural equation modeling (SEM) was conducted to analyze the direct and indirect effects (mediated by root microbial community diversity and soil properties) of the endophyte on the growth of tall fescue under saline-alkali stress. The endophyte-infected plants produced higher shoot and root biomass compared to endophyte-free plants under saline-alkali stress (200 and 400 mM). Endophyte infection increased the fungal community diversity and altered its composition in the roots, decreasing the relative abundance of Ascomycota and increasing that of Glomeromycota. Furthermore, endophyte infection decreased the bacterial community diversity and the relative abundance of dominant Proteobacteria. SEM showed that endophyte infection increased the shoot and root biomass under saline-alkali stress (200 and 400 mM) by increasing the arbuscular mycorrhizal fungal diversity in the roots, and soil total nitrogen and phosphorus concentrations. Therefore, it is important to examine aboveground microbes as factors influencing plant growth in saline-alkali stress by affecting belowground microbes and soil chemical properties.  相似文献   

11.

Aim

To assess whether vegetation composition and soil chemistry explain the same or different parts of the variation in the soil microbial community (SMC).

Method

The above and below-ground communities and soil chemical properties were studied along a successional gradient from moorland to deciduous woodland. The SMC was assessed using PLFAs and M-TRFLPs. Using variance partitioning, Co-Correspondence Analysis (CoCA) and Canonical Correspondence Analysis (CCA), the variation (total inertia) in the SMC was partitioned into variation which was uniquely explained by either plant composition or soil chemistry, variation explained by both soil chemistry and plant composition, and unexplained variation.

Results

Plant community composition uniquely explained 30, 13, 16 and 20% of the inertia and soil chemistry uniquely explained 5, 18, 9 and 9% of the inertia in the archaeal TRFLPs, bacterial TRFLPs, fungal TRFLPs and all PLFAs, respectively.

Conclusion

For the first time, variance partitioning was used to include data from a CoCA; although the current limits of such an approach are shown, this study illustrates the potential of such analyses and shows that soil chemistry and plant composition are, in substantial amounts, explaining different parts of the variation within the SMC. This marks an important step in furthering our understanding of the relative importance of different drivers of change in the SMC.  相似文献   

12.
Liao  Dan  Zhang  Chaochun  Lambers  Hans  Zhang  Fusuo 《Plant and Soil》2021,463(1-2):589-600
Plant and Soil - Understanding how soil phosphorus (P) fractions change is critical to achieve more efficient soil P use in a highly P-sorbing calcareous soil. The fields were managed without or...  相似文献   

13.
Aims Our objectives were to study the spatial distribution of soil organic carbon (SOC) density and its influencing factors in the main forest ecosystems in Guangxi. Methods A total of 345 sample plots were established in Guangxi, and the size of each plot was 50 m × 20 m. Based on the forest resource inventory data and field investigation, the SOC storage of the main forests in Guangxi was estimated. Geostatistics was applied to analyze the spatial pattern of SOC density and the main influencing factors on SOC density were also explored by principal component analysis and stepwise regression. Important findings The total SOC storage in the main forests in Guangxi was 1 686.88 Tg, and the mean SOC density was 124.70 Mg•hm2, which is lower than that of China. The best fitted semivariogram model of SOC density was exponential model, and the spatial autocorrelation was medium. The contour map based on Kriging indicated that northeastern Guangxi had high SOC density and northwestern Guangxi had low SOC density, which corresponded to high SOC density in non-karst region and low SOC density in karst region. The SOC density followed the sequence of bamboo forest > deciduous broadleaf forest > warm coniferous forest > mixed evergreen and deciduous broadleaf forest > evergreen broadleaf forest, and yellow soil > red soil >lateritic red soil > limestone soil. The dominant environment factors affecting SOC density included soil depth, longitude, latitude, and altitude. Soil depth was the most influential factor, which was mainly attributed to the karst landscape.  相似文献   

14.
Soil solution chemistry, soil acidity andcomposition of adsorbed cations were determinedin two soil profiles developed under a mixedspruce (Picea abies and Piceasitchensis) stand and in one soil profiledeveloped under an oak (Quercus robur)stand. Soils under spruce were classified asSpodosols and soils under oak were classifiedas Inceptisols. All profiles were developed inthe same parent material; a Saahlian sandy tillcontaining less than 2% clay. In the mineralsoil, the contribution from mineral surfaces tothe total cation-exchange capacity (CECt)was estimated to be less than 3%. Soilsolution pH and the percent base saturation ofCECt [%BS = 100 (2Ca + 2Mg + Na + K)CECt –1] were substantially lower inthe upper 35–40 cm of the two Spodosols, ascompared to the Inceptisol. The total amount ofsoil adsorbed base cations (BC) did not differamong the three profiles on an area basis downto 1 m soil depth. Thus, soil acidification ofCECt due to net losses of BC could notexplain differences in soil pH and %BS amongthe soil profiles. A weak acid analogue, takingthe pH-effect of metal complexation intoconsideration, combined with soil solutionionic strength as a covariate, could describeboth the pH variation by depth within soilprofiles and pH differences between theInceptisol and the two Spodosol profiles. Ourresults confirm and extend earlier findingsfrom O and E horizons of Spodosols that theextent to which organic acid groups react withAl minerals to form Al-SOM complexes is a majorpH-buffering process in acidic forest soils. Wesuggest that an increasing Al-saturation of SOMis the major reason for the widely observed pHincrease by depth in acidic forest soils with apH less than approximately 4.5. Our resultsstrongly imply that changes in mass of SOM, theionic strength in soil solution and therelative composition of soil adsorbed Al and Hneed to be considered when the causality behindchanges in pH and base saturation isinvestigated.  相似文献   

15.
The role of nitrification-denitrification in the loss of nitrogen from urea applied to puddled soils planted to rice and subjected to continuous and intermittent flooding was evaluated in three greenhouse pot studies. The loss of N via denitrification was estimated indirectly using the15N balance, after either first accounting for NH3 volatilization or by analyzing the15N balance immediately before and after the soil was dried and reflooded. When urea was broadcast and incorporated the loss of15N from the soil-plant systems depended on the soil, being about 20%–25% for the silt loams and only 10%–12% for the clay. Ammonia volatilization accounted for an average 20% of the N applied in the silt loam. Denitrification losses could not account for more than 10% of the applied N in any of the continuously flooded soil-plant systems under study and were most likely less than 5%. Intermittent flooding of soil planted to rice did not increase the loss of N. Denitrification appeared to be an important loss mechanism in continuously flooded fallow soils, accounting for the loss of approximately 40% of the applied15N. Loss of15N was not appreciably enhanced in fallow soils undergoing intermittent flooding. Apparently, nitrate formed in oxidized zones in the soil was readily denitrified in the absence of plant roots. Extensive loss (66%) of15N-labeled nitrate was obtained when 100 mg/pot of nitrate-N was applied to the surface of nonflooded soil prior to reflooding. This result suggests that rice plants may not compete effectively with denitrifiers if large quantities of nitrate were to accumulate during intermittent dry periods.  相似文献   

16.

Previous studies have shown that enhanced biological phosphorus removal (EBPR) performance under continuous aerobic conditions always eventually deteriorates; however, the speed at which this happens depends on the carbon source supplied. The published data suggest that propionate is a better carbon source than acetate is for maintaining operational stability, although it is not clear why. A lab-scale sequencing batch reactor was run initially under conventional anaerobic/aerobic conditions with either acetate or propionate as the carbon source. Chemical and microbiological analyses revealed that both sources performed as expected for such systems. When continuous aerobic conditions were imposed on both these established communities, marked shifts of the “Candidatus Accumulibacter” clades were recorded for both carbon sources. Here, we discuss whether this shift could explain the prolonged EBPR stability observed with propionate.

  相似文献   

17.
Xiao  Mouliang  Zang  Huadong  Liu  Shoulong  Ye  Rongzhong  Zhu  Zhenke  Su  Yirong  Wu  Jinshui  Ge  Tida 《Plant and Soil》2019,438(1-2):101-126
Plant and Soil - Traits of the plant root system architecture (RSA) play a key role in crop performance. Therefore, architectural root traits are becoming increasingly important in plant...  相似文献   

18.
For decades, arid desert ecosystems in northwest China, covering one-fourth the country’s land surface, have experienced a rapid decline in plant species diversity, productivity and soil carbon stock owing to degradation by overgrazing. In this study, plant community composition, diversity and productivity, as well as soil carbon (C) and nitrogen (N) stocks, were monitored over 26 years from 1981 to 2006 in a severely degraded Haloxylon ammodendron-dominated shrubland where livestock densities were reduced from 4–5 to 1–2 dry sheep equivalent ha-1. The objective was to assess long-term grazing effects on vegetation and soil C and N accumulation dynamics. Results showed that the reduction of grazing pressure significantly increased vegetation cover, plant diversity and productivity, resulting primarily from an increase in livestock-preferred species. Controlled grazing also led to marked increases in soil C and N stocks in the top 30 cm of soil. This increase was strongly associated with increased plant species richness, vegetation cover and biomass production. Averaged over 26 years, soil C and N accumulated at rates of 89.9 g?C and 8.4 g?N m-2?year-1, respectively, but rates of C and N accumulation varied greatly at different time periods. The greatest species regeneration occurred in the first 8 years, but the largest C and N accumulation took place during years 9–18, with a time-lag in response to changes in vegetation. Our results provide insights into the long-term recovery patterns of different ecosystem components from the influence of prolonged overgrazing disturbance that cannot be inferred from a short-term study. The findings are important for assessing the resilience of these livestock-disturbed desert ecosystems and developing a more effective strategy for the management of this important biome from a long-term perspective.  相似文献   

19.
Recent trends of increasing woody vegetation in arid and semiarid ecosystems may contribute substantially to the North American C sink. There is considerable uncertainty, however, in the extent to which woody encroachment alters dryland soil organic carbon (SOC) and total nitrogen (TN) pools. To date, studies assessing SOC and TN response to woody plant proliferation have not explicitly assessed the variability caused by shrub age or size and subcanopy spatial gradients. These factors were quantified via spatially intensive soil sampling around Prosopis velutina shrubs in a semidesert grassland, using shrub size as a proxy for age. We found that bulk density increased with distance from the bole (P < 0.005) and decreased with increasing shrub size (P= 0.056), while both SOC and TN increased with shrub size and decreased with distance from the bole (P < 0.001 for both). Significant (and predictable) spatial variation in bulk density suggests that use of generic values would generate unreliable estimates of SOC and TN mass, and subcanopy SOC pools could be overestimated by nearly 30% if intercanopy bulk density values were applied to subcanopy sites. Predictive models based on field-documented spatial patterns were used to generate integrated estimates of under-shrub SOC and TN pools, and these were compared with results obtained by typical area-weighting protocols based on point samples obtained next to the bole or at a specified distance from the bole. Values obtained using traditional area-weighting approaches generally overestimated SOC pools relative to those obtained using the spatially integrated approach, the discrepancy increasing with increasing shrub size and proximity of the point sample to the bole. These discrepancies were observed at the individual plant scale and for landscapes populated by various shrub size classes. Results suggest that sampling aimed at quantifying shrub encroachment impacts on SOC and TN pools will require area-weighting algorithms that simultaneously account for shrub size (age) and subcanopy spatial patterns.  相似文献   

20.

Background and Aims

Previous studies have clearly shown substantial increases of soil organic carbon (SOC) in agricultural soils of Yellow River reaches. Those soils did not receive organic fertilizer input, but did receive chemical fertilizer inputs. Thus, to investigate the hypothesis that the observed SOC increases were driven by chemical fertilizer additions, a maize pot experiment was conducted using a Fluvisol that developed under C3 vegetation in the Yellow River reaches.

Methods

Using the natural 13C abundance method we calculated the SOC renewal ratio (C renewal), and separated total soil organic carbon (TOC) into maize-derived soil organic carbon (SOCmaize) and original soil organic carbon (SOCoriginal). Carbon dioxide fluxes and microbial biomass carbon (MBC) were determined by closed chamber method and fumigation-extraction method, respectively. The experiment included five treatments: (1) NPK: application of chemical fertilizer NPK; (2) NP, application of chemical fertilizer NP; (3) PK: application of chemical fertilizer PK; (4) NK, application of chemical fertilizer NK; and (5) CK: unfertilized control.

Results

Fertilization increased maize biomass (including grain, straw and root), TOC, C renewal, SOCmaize, maize-derived carbon (MDC: including SOCmaize, and root and stubble biomass carbon) and MBC, and these values among the treatments ranked NPK>NP>PK>NK>CK. The C renewal was 5.54–8.50% across the treatments. Fertilization also increased soil CO2 emission (including root respiration and SOCoriginal decomposition), while the SOCoriginal decomposition during the maize growing season only amounted to 74.0–93.4 and 33.5–46.1% of SOCmaize and MDC among the treatments, respectively. Thus input was larger than export, and led to SOC increase. Maize grain and straw biomass were positively and significantly correlated with soil δ13C, TOC, C renewal, SOCmaize, MDC and MBC.

Conclusions

The study suggests that chemical fertilizer application could increase C renewal by increasing crop-derived C and accelerating original SOC decomposition, and that as long as a certain level of crop yield or aboveground biomass can be achieved, application of chemical fertilizer alone can maintain or increase SOC level in Fluvisol in the Yellow River reaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号