首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the pond snail Lymnaea stagnalis octopamine-containing (OC) interneurons trigger and reconfigure the feeding pattern in isolated CNS by excitation of the central pattern generator. In semi-intact (lip–mouth—CNS) preparations, this central pattern generator is activated by chemosensory inputs. We now test if sucrose application to the lips activates the OC neurons independently of the rest of the feeding central pattern generator, or if the OC interneuron is activated by inputs from the feeding network. In 66% of experiments, sucrose stimulated feeding rhythms and OC interneurons received regular synaptic inputs. Only rarely (14%) did the OC interneuron fire action potentials, proving that firing of OC interneurons is not necessary for the sucrose-induced feeding. Prestimulation of OC neurons increased the intensity and duration of the feeding rhythm evoked by subsequent sucrose presentations. One micromolar octopamine in the CNS bath mimicked the effect of OC interneuron stimulation, enhancing the feeding response when sucrose is applied to the lips. We conclude that the modulatory OC neurons are not independently excited by chemosensory inputs to the lips, but rather from the buccal central pattern generator network. However, when OC neurons fire, they release modulatory octopamine, which provides a positive feedback to the network to enhance the sucrose-activated central pattern generator rhythm.  相似文献   

2.
The pond snailLymnaea stagnalis is a useful model system for studying the neural basis of behaviour but the mechanosensory inputs that impact on behaviours such as respiration, locomotion, reproduction and feeding are not known. InAplysia, the peptide sensorin-A appears to be specific to a class of central mechanosensory neurons. We show that in theLymnaea central nervous system sensorin-A immunocytochemistry reveals a discrete pattern of staining involving well over 100 neurons. Identifiable sensorin positive clusters of neurons are located in the buccal and cerebral ganglia, and a single large neuron is immunopositive in each pedal ganglion. These putative mechanosensory neurons are not in the same locations as previously identified motoneurons, interneurons or neurosecretory cells. As would be expected for a mechanoafferent, sensorin positive fibres were found in nerve tracts innervating the body wall. This study lays the foundation for future electrophysiological and behavioural analysis of these putative mechanosensory neurons.  相似文献   

3.
In the pond snail, Lymnaea stagnalis, the paired buccal ganglia contain 3 octopamine-immunoreactive neurons, which have previously been shown to be part of the feeding network. All 3 OC cells are electrically coupled together and interact with all the known buccal feeding motoneurons, as well as with all the modulatory and central pattern generating interneurons in the buccal ganglia. N1 (protraction) phase neurons: Motoneurons firing in this phase of the feeding cycle receive either single excitatory (depolarising) synaptic inputs (B1, B6 neurons) or a biphasic response (hyperpolarisation followed by depolarisation) (B5, B7 motoneurons). Protraction phase feeding interneurons (SO, N1L, NIM) also receive this biphasic synaptic input after OC stimulation. All of protraction phase interneurons inhibit the OC neurons. N2 (retraction) phase neurons: These motoneurons (B2, B3, B9, B10) and N2 interneurons are hyperpolarised by OC stimulation. N2 interneurons have a variable (probably polysynaptic) effect on the activity of the OC neurons. N3 (swallowing) phase: OC neurons are strongly electrically coupled to both N3 phase (B4, B4cluster, B8) motoneurons and to the N3p interneurons. In case of the interneuronal connection (OC<->N3) the electrical synapse is supplemented by reciprocal chemical inhibition. However, the synaptic connections formed by the OC neurons or N3p interneurons to the other members of the feeding network are not identical. CGC: The cerebral, serotonergic CGC neurons excite the OC cells, but the OC neurons have no effect on the CGC activity. In addition to direct synaptic effects, the OC neurons also evoke long-lasting changes in the activity of feeding neurons. In a silent preparation, OC stimulation may start the feeding pattern, but when fictive feeding is already occurring, OC stimulation decreases the rate of the fictive feeding. Our results suggest that the octopaminergic OC neurons form a sub-population of N3 phase feeding interneurons, different from the previously identified N3p and N3t interneurons. The long-lasting effects of OC neurons suggest that they straddle the boundary between central pattern generator and modulatory neurons.  相似文献   

4.
Octopamine is released by the intrinsic OC interneurons in the paired buccal ganglia and serves both as a neurotransmitter and a neuromodulator in the central feeding network of the pond snail Lymnaea stagnalis. The identified B1 buccal motoneuron receives excitatory inputs from the OC interneurons and is more excitable in the presence of 10 microM octopamine in the bath. This modulatory effect of octopamine on the B1 motoneuron was studied using the two electrode voltage clamp method. In normal physiological saline depolarising voltage steps from the holding potential of -80 mV evoke a transient inward current, presumably carried by Na(+) ions. The peak values of this inward current are increased in the presence of 10 microM octopamine in the bath. In contrast, both the transient (IA) and delayed (IK) outward currents are unaffected by octopamine application. Replacing the normal saline with a Na(+)-free bathing solution containing K(+) channel blockers (50 mM TEACl, 4 mM 4AP) revealed the presence of an additional inward current of the B1 neurons, carried by Ca(2+). Octopamine (10 microM) in the bath decreased the amplitudes of this current. These results suggest that the membrane mechanisms which underlie the modulatory effect of octopamine on the B1 motoneuron include selective changes of the Na(+)- and Ca(2+)-channels.  相似文献   

5.
1. This paper reviews the role of transmitters in identified neurons of gastropod molluscs in generating and modulating fictive feeding. 2. In Lymnaea and Helisoma the 3 phase rhythm is generated by sets of interneurons which use acetylcholine for the N1 (protraction) phase, glutamate for the N2 (rasp) phase interneurons. The N3 interneurons are likely to use several different transmitters, of which one is octopamine. 3. In all the species examined, serotonin (5-HT) is released from giant cerebral cells. Other amines, including dopamine and octopamine, are present in the buccal ganglia and all these amines activate or enhance feeding. 4. Nitric oxide (NO), mostly originating from sensory processes, can also activate fictive feeding, but (at least in Lymnaea) may also be released centrally from buccal (B2) and cerebral neurons (CGC). 5. The central pattern generator for feeding is also modulated by peptides including APGWamide, SCP(B) and FMRFamide. 6. There is increasing evidence that most of these transmitters/modulators act on feeding neurons through second messenger systems--allowing them to act as longer-lasting neuromodulators of the feeding network. 7. Many of the transmitters are used in similar ways by each of the gastropods examined so far, so that their function in the CNS seems to have been conserved through evolution.  相似文献   

6.
We measured the reduction in locomotion of unrestrained pond snails, Lymnaea stagnalis, subsequent to transdermal application of two selective octopamine antagonists, epinastine and phentolamine. After 3 h in fresh standard snail water following treatment with 4 mM epinastine or 3.5 mM phentolamine, the snails’ speed was reduced to 25 and 56% of the controls (P < 0.001 and P = 0.02, respectively). The snails’ speed decreased as the drug concentration increased. In the isolated CNS, 0.5 mM octopamine increased the firing rate of the pedal A cluster motoneurons, which innervate the cilia of the foot. In normal saline the increase was 26% and in a high magnesium/low calcium saline 22% (P < 0.05 and 0.01, respectively). We conclude that octopamine is likely to modulate snail locomotion, partially through effects on pedal motoneurons.  相似文献   

7.
This study examines neurotransmission between identified buccal interneurons in the feeding system of the snailLymnaea stagnalis. We compare the pharmacology of the individual synaptic connections from a hybrid modulatory/pattern generating interneuron (N1L) to a pattern generating interneuron (N1M) with that from a modulatory interneuron (SO) to the same follower cell (N1M). The pharmacological properties of the N1L to N1M and the SO to N1M connections closely resemble each other. Both interneurons produce fast cholinergic EPSPs as judged by the blocking effects of cholinergic antagonists hexamethonium,d-tubocurarine and the cholinergic neurotoxin AF-64A. A slower, more complex but non-cholinergic component of the synaptic response is also present after stimulating either the presynaptic N1L or SO interneurons. This second component of the postsynaptic response is not dopaminergic, on the basis of its persistence in the presence of dopaminergic antagonists ergometrine and fluphenazine and the dopaminergic neurotoxin MPP+. We conclude that, although there has been an evolutionary divergence in function, the modulatory SO and the hybrid modulatory/pattern generating N1L are pharmacologically similar. Neither of them contributes directly to dopaminergic modulation of the feeding activity. These neurons also resemble the N1M protraction phase pattern generating neurons which are cholinergic (Elliott and Kemenes, 1992).  相似文献   

8.
9.
J W Gole  G L Orr  R G Downer 《Life sciences》1983,32(26):2939-2947
Chlordimeform (CDM) and demethylchloridimeform (DCDM) mimic the action of octopamine in elevating adenylate cyclase activity in intact nerve cords of the American cockroach, Periplaneta americana. At a concentration of 1 x 10(-5)M, DCDM (13.5x increase within 20 minutes) is a more potent effector of the response than CDM (3x increase within 20 minutes), but both compounds show less efficacy than octopamine (23.5x increase within 15 minutes). DCDM also mimics the stimulatory effect of octopamine on adenylate cyclase activity in nerve cord homogenates whereas CDM has no demonstrable effect on this preparation. The octopamine- and DCDM-induced responses are competitively inhibited by phentolamine (1 x 10(-6)M) and cyproheptadine (1 x 10(-6)M) but not by propranolol (1 x 10(-6)M). DCDM and CDM inhibit the octopamine-induced activation of adenylate cyclase by 33% and 44% respectively. The results are discussed in light of the proposal that DCDM serves as a partial agonist and CDM as an antagonist of the octopamine receptor.  相似文献   

10.
The distribution and neuroanatomy of Mytilus inhibitory peptides (MIP)-containing neurons in the central nervous system and their innervation pattern in the peripheral nervous system of the pulmonate snail species, Lymnaea stagnalis and Helix pomatia, have been investigated immunocytochemically, by applying an antibody raised to GSPMFVamide. A significant number of immunoreactive neurons occurs in the central nervous system of both species (Lymnaea: ca 600-700, Helix: ca 400-500), but their distribution is different. In Lymnaea, labeled neurons are found in all central ganglia where a number of large and giant neurons, previously identified physiologically, reveal MIP immunoreactivity. In Helix, most of the immunolabeled neurons are small (12-30 microm) and concentrated in the buccal and cerebral ganglia; the parietal ganglia are free of labeled cells. In both species, the ganglionic neuropils, peripheral nerves, connectives, and commissures are richly supplied with immunolabeled fibers. The MIP-immunoreactive innervation pattern in the heart, intestine, buccal mass and radula, and foot is similar in both species, with labeled axonal bundles and terminal-like arborizations (buccal mass, foot) or a network of varicose fibers (heart, intestine). Intrinsic neurons are not present in these tissues. The application of GSPYFVamide inhibits the spontaneous contractions of the esophageal longitudinal musculature in Helix, indicating the bioactivity of the peptide. An outside-out patch-clamp technique has demonstrated that GSPYFVamide opens the K+ channels in central nerve cells of Helix. Injection of GSPYFVamide into the body cavity inhibits the feeding of starved Helix. A wide modulatory role of MIP at central and peripheral levels is suggested in Lymnaea and Helix, including the participation in intercellular signalling processes and remote neurohormonal-like control effects.  相似文献   

11.
The effects of lead (5 or 10 ppm) on the survival of the freshwater snail Lymnaea stagnalis (L.) collected from lead contaminated or uncontaminated environments were evaluated under controlled laboratory conditions. The animals from the contaminated environment had significantly greater survivability than those from the unpolluted environment to subsequent acute (up to 24 days) exposure to lead. Acute (72 h) exposure to lead inhibited several behavioural activities including locomotion, feeding, tentacle extension and emergence from the shell. Lead bioaccumulated in the snail tissues, especially the buccal mass and stomach. The freshwater snail provides a valuable system for studying the bioaccumulation and development of tolerance to environmental lead. Electronic Publication  相似文献   

12.
Hydrogen peroxide at a concentration of 100 μM was found to exert a pronounced modulatory effect on motor (R/L cells in B1–B4 clusters) and modulatory (R/L cerebral giant cells) neurons in the feeding neural network of the mollusc Lymnaea stagnalis as manifested in changes in the firing rate, membrane potential level and spike amplitude in these cells. The observed effects were reversible, transient, and reached their peak values in 1 min since application of the preparation. Injection of hydrogen peroxide into the cavity of the cephalopedal sinus resulted in no statistically significant changes in the parameters of mollusc feeding behavior. Hydrogen peroxide is assumed to act as a rapid neuromodulator towards neurons of the central feeding rhythm generator in Lymnaea stagnalis.  相似文献   

13.
The light yellow neuropeptidergic cell system of the basommatophoran snail Lymnaea stagnalis is homologous to the R3-R14 system of the opisthobranch Aplysia californica, and produces three different neuropeptides. Systems homologous to the light yellow cells of Lymnaea stagnalis have been investigated morphologically in two Basommatophora (Lymnaea ovata, Bulinus truncatus) and three Stylommatophora (Helix aspersa, Cepaea nemoralis, Deroceras reticulatum). To this end, an antibody to synthetic light-yellow-cell peptide-II and oligonucleotides to mRNAs encoding parts of peptide-I and peptide-III, were used. The in situ hybridization probes gave negative results. On the other hand, neuronal cell clusters were observed in the central nervous system of all specias studied by immunocytochemistry. These clusters were located in the ganglia of the visceral complex. The neurons project axons into all nerves of these ganglia, especially into the pallial nerves, into the connective tissue of the central nervous system, and into the neuropile of various ganglia. The morphology of the systems is similar to that of the light-yellow-cell system of Lymnaea stagnalis. In all species, the wall of the aorta was innervated by immunoreactive axons. Peripheral innervation by the light-yellow-cell system was investigated in Helix aspersa and Deroceras reticulatum. Serial and alternate sections of whole snails were studied. Reconstructions were made of the heart-kidney-lung complex of these animals. In both species, the muscular vessels of the pulmonary system at the right side of the body were strongly innervated by immunoreactive axons. Furthermore, immunopositive innervation was observed to muscles in the secondary ureter-pneumostome area. The light-yellow-cell system of pulmonates is thus probably involved in the regulation of blood pressure and urine release.  相似文献   

14.
We describe octopamine responses of 3 large buccal neurons of Lymnaea and test the hypothesis that these are cAMP-dependent. The B1 neuron is excited by octopamine and the depolarisation is significantly enlarged (P < 0.05) by application of the blocker of cAMP breakdown, 3-isobutyl-1-methylxanthine (IBMX). The B1 neuron is also depolarised by forskolin, an activator of adenylyl cyclase. The B2 and B3 neurons are inhibited by octopamine, and the response is not affected by IBMX. Both cells are excited by forskolin. We conclude that the B1 neuron response to octopamine is likely to be mediated by cAMP, while the B2 and B3 responses are cAMP-independent.  相似文献   

15.
3H-Octopamine binds reversibly and with high affinity to sites on adult firefly light organ membranes. The binding is characterized by multiple affinities. Scatchard analysis supported a two site binding model with a tentative Kd value of about 1 nM for the high affinity component. The more abundant lower affinity site had a Kd value of about 60 nM. Guanyl nucleotides (Gpp(NH)p and GTP) greatly reduced the apparent number of octopamine binding sites. Competition studies with known octopaminergic agonists including the formamidine pesticides chlordimeform (CDM) and N-demethyl chlordimeform (DCDM) showed the following rank order of potencies in displacing octopamine: DCDM greater than octopamine = synephrine greater than naphazoline greater than clonidine greater than CDM. It was also observed that phentolamine was much more active than propranolol in antagonizing OA-binding. These relative activities are similar to the abilities of the same compounds to alter adenylate cyclase activity in light organ homogenates. Together with the effect of GTP on binding, these results suggest that the binding sites are functional octopamine receptors of the light organ.  相似文献   

16.
In experiments on mollusc Lymnaea stagnalis, the state of antioxidative protection is studied in central nervous ganglia during a long-term activation (inhibition) of synthesis of nitrogen monoxide (NO) in the body. The effect of the blocker of NO-synthase NG-nitro-L-arginine (L-NNA) at the background of enhancement of pulmonary respiration has been found to be associated with a rise of levels of reduced glutathione and TBK-active products in the nervous tissue at preservation of a relatively high superoxide dismutase activity and a low glutathione peroxidase activity compared with the control group and the animals treated with the metabolic precursor of NO synthesis L-arginine. In spite of the revealed disturbances of balance of the body proand antioxidative system, DNA electrophoresis detected no products of its degradation, which can indicate the absence of massive programmed death of the nervous tissue cells in Lymnaea stagnalis during modulation of activity of the NO-ergic system.  相似文献   

17.
We present evidence that the pond snail Lymnaea stagnalis is capable of aquisition and extensive retention of an appetitively reinforced feeding response after only a single training trial. Food-deprived snails presented with a single pairing of a phagostimulant (a mixture of sucrose and casein digest) and a novel, non-food chemostimulus (amyl acetate) subsequently made feeding responses to the amyl acetate and retained the association for at least 19 days. This demonstration of one-trial, non-aversive classical conditioning enhances the utility of Lymnaea stagnalis as a model system for the detailed analysis of neural mechanisms underlying plasticity.  相似文献   

18.
Chemosensory pheromonal information regulates aggression and reproduction in many species, but how pheromonal signals are transduced to reliably produce behavior is not well understood. Here we demonstrate that the pheromonal signals detected by Gr32a-expressing chemosensory neurons to enhance male aggression are filtered through octopamine (OA, invertebrate equivalent of norepinephrine) neurons. Using behavioral assays, we find males lacking both octopamine and Gr32a gustatory receptors exhibit parallel delays in the onset of aggression and reductions in aggression. Physiological and anatomical experiments identify Gr32a to octopamine neuron synaptic and functional connections in the suboesophageal ganglion. Refining the Gr32a-expressing population indicates that mouth Gr32a neurons promote male aggression and form synaptic contacts with OA neurons. By restricting the monoamine neuron target population, we show that three previously identified OA-FruM neurons involved in behavioral choice are among the Gr32a-OA connections. Our findings demonstrate that octopaminergic neuromodulatory neurons function as early as a second-order step in this chemosensory-driven male social behavior pathway.  相似文献   

19.
Summary the occurrence of insulin-related substances in the central nervous system of pulmonates and Aplysia californica was investigated by means of immunocytochemistry and in situ hybridization. Previous experiments have shown that, in Lymnaea stagnalis, the growth hormone-producing neurons in the cerebral ganglia (the so-called light green cells) express at least 5 genes that are related to the vertebrate insulin genes, i.e., they encode prohormones that are composed of a B- and A-chain and a connecting C peptide. These insulin related molecules also have the amino acids essential for their tertiary structure (viz. cysteines) at identical positions to those of the vertebrate insulins. In the investigated basommatophoran and stylommatophoran snails and slugs, neurons reacted with an antiserum raised against the C peptide of one of the molluscan insulin-related peptides. These neurons can be considered to be, based on morphological and endocrinological criteria, homologous to the light green cells of L. stagnalis. In A. californica, all central ganglia contain immunoreactive neurons. The highest number (about 50) was observed in the abdominal ganglion. The present results indicate that insulin-related substances are generally occurring neuropeptides in the central nervous system of molluscs.  相似文献   

20.
Central nervous system of freshwater pulmonate molluscs Lymnaea stagnalis and Planorbarius corneus was stained using retrograde transport of neurobiotin in the optic tract fibers. In both species, perikarya and fibers of the stained neurons are found in all ganglia except the buccal ones. Afferent fibers of the optic nerve form dense sensory neuropil located in relatively small volume of cerebral ganglia. Typical neuronal groups sending their processes into the optic nerves of ipsilateral and contralateral body halves are described. Among them, neurons of visceral and parietal ganglia innervating both eyes concurrently as well as sending projections into peripheral nerves are revealed. These neurons, supposedly, have a function to integrate sensory signals, which may be a basis for regulation of light sensitivity of retina and functioning of peripheral organs. Bilateral links of the molluscan eye with the pedal ganglia cells and statocysts are found, which is, likely, a structural basis of certain known behavioral patterns related to stimulation of visual inputs in the studied gastropod molluscs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号