首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cadmium is an environmental pollutant closely linked with cardiovascular diseases that seems to involve endothelium dysfunction and reduced nitric oxide (NO) bioavailability. Knowing that NO causes dilatation through the activation of potassium channels and Na+/K+-ATPase, we aimed to determine whether acute cadmium administration (10 μM) alters the participation of K+ channels, voltage-activated calcium channel, and Na+/K+-ATPase activity in vascular function of isolated aortic rings of rats. Cadmium did not modify the acetylcholine-induced relaxation. After L-NAME addition, the relaxation induced by acetylcholine was abolished in presence or absence of cadmium, suggesting that acutely, this metal did not change NO release. However, tetraethylammonium (a nonselective K+ channels blocker) reduced acetylcholine-induced relaxation but this effect was lower in the preparations with cadmium, suggesting a decrease of K+ channels function in acetylcholine response after cadmium incubation. Apamin (a selective blocker of small Ca2+-activated K+ channels—SKCa), iberiotoxin (a selective blocker of large-conductance Ca2+-activated K+ channels—BKCa), and verapamil (a blocker of calcium channel) reduced the endothelium-dependent relaxation only in the absence of cadmium. Finally, cadmium decreases Na+/K+-ATPase activity. Our results provide evidence that the cadmium acute incubation unaffected the calcium-activated potassium channels (SKCa and BKCa) and voltage-calcium channels on the acetylcholine vasodilatation. In addition, acute cadmium incubation seems to reduce the Na+/K+-ATPase activity.  相似文献   

2.
In order to further clarify the role of T-type Ca2+ channels in cell proliferation, we have measured the growth inhibition of human cancer cells by using our potent T-type Ca2+ channel blockers. As a result, KYS05090, a most potent T-type Ca2+ channel blocker, was found to be as potent as doxorubicin against some human cancer cells without acute toxicity. Therefore, this letter provides the biological results that T-type calcium channel is important in regulating the important cellular phenotype transition leading to cell proliferation, and thus novel T-type Ca2+ channel blocker presents new prospects for cancer treatment.  相似文献   

3.
The cellular physiology and biology of human cardiac c‐kit+ progenitor cells has not been extensively characterized and remains an area of active research. This study investigates the functional expression of transient receptor potential vanilloid (TRPV) and possible roles for this ion channel in regulating proliferation and migration of human cardiac c‐kit+ progenitor cells. We found that genes coding for TRPV2 and TRPV4 channels and their proteins are significantly expressed in human c‐kit+ cardiac stem cells. Probenecid, an activator of TRPV2, induced an increase in intracellular Ca2+ (Ca2+i), an effect that may be attenuated or abolished by the TRPV2 blocker ruthenium red. The TRPV4 channel activator 4α‐phorbol 12‐13‐dicaprinate induced Ca2+i oscillations, which can be inhibited by the TRPV4 blocker RN‐1734. The alteration of Ca2+i by probenecid or 4α‐phorbol 12‐13‐dicprinate was dramatically inhibited in cells infected with TRPV2 short hairpin RNA (shRNA) or TRPV4 shRNA. Silencing TRPV2, but not TRPV4, significantly reduced cell proliferation by arresting cells at the G0/G1 boundary of the cell cycle. Cell migration was reduced by silencing TRPV2 or TRPV4. Western blot revealed that silencing TRPV2 decreased expression of cyclin D1, cyclin E, pERK1/2 and pAkt, whereas silencing TRPV4 only reduced pAkt expression. Our results demonstrate for the first time that functional TRPV2 and TRPV4 channels are abundantly expressed in human cardiac c‐kit+ progenitor cells. TRPV2 channels, but not TRPV4 channels, participate in regulating cell cycle progression; moreover, both TRPV2 and TRPV4 are involved in migration of human cardiac c‐kit+ progenitor cells.  相似文献   

4.
It is well recognized that pathologically increased mechanical stretch plays a critical role in vascular remodeling during hypertension. However, how the stretch modulates the functions of ion channels of vascular smooth muscle cells (VSMCs) remains to be elucidated. Here, we demonstrated the effects of mechanical stretch on the activity of large conductance calcium, voltage-activated potassium (BK) and L-type Ca2+ channels. In comparison with 5% stretch (physiological), 15% stretch (pathological) upregulated the current density of L-type Ca2+ and BK channels as well as the frequency and amplitude of calcium oscillation in VSMCs. 15% stretch also increased the open probability and mean open time of the BK channel compared with 5% stretch. BK and L-type Ca2+ channels participated in the mechanical stretch-modulated calcium oscillation. Our results suggested that during hypertension, pathological stretch altered the activity of BK and L-type Ca2+ channels and manipulated the calcium oscillation of VSMCs.  相似文献   

5.
《Cellular signalling》2014,26(5):968-978
Phagocytosis of shed photoreceptor outer segments by the retinal pigment epithelium (RPE) is critical for maintenance of visual function. Because changes in intracellular Ca2 + regulate phagocytosis, we studied in vitro the impact of different ion channels in addition to mice deficient for Cav1.3 L-type Ca2+ channels (Ca1.3−/−) and maxiK Ca2+-dependent K+ channels (BK−/−). The knockdown of Bestrophin-1 protein, a regulator of intracellular Ca2+ homeostasis, affected phagocytosis in porcine RPE cultures. Blockage of voltage-gated L-type channels by (+)BayK8644 inhibitor reduced phagocytosis in vitro, in contrast L-type activation by (−)BayK8644 had no impact. The expression rate of Cav1.3, the predominant L-type Ca2 + channel in RPE cells, varied at different times of day. CaV1.3−/− RPE lacked peak phagocytic activity following morning photoreceptor shedding in wild-type RPE and retained a higher number of phagosomes at a later time of day. The BK-channel blocker paxilline lowered phagocytosis in RPE cultures in a concentration-dependent manner. BK−/− RPE in vivo retained phagocytic capability but this activity, which is normally well synchronized with circadian photoreceptor shedding, shifted out of phase. Retinae of older BK−/− mice showed shortened photoreceptor outer segments and diminished rhodopsin content. Store-operated Ca2 + channels Orai-1 did not affect phagocytosis in cultured RPE. TRPV channel inhibition by ruthenium-red reduced phagocytosis, whereas activation at high concentrations of 2-APB increased phagocytosis. Our data demonstrate essential roles for bestrophin-1, BK, TRPV and L-type channels in regulating retinal phagocytosis. These data indicate further the importance of BK and CaV1.3 for rhythmic phagocytic activity synchronized with photoreceptor shedding.  相似文献   

6.
Rat melanotrophs express several types of voltage-gated and ligand-gated calcium channels, although mechanisms involved in the maintenance of the resting intracellular Ca2+ concentration ([Ca2+]i) remain unknown. We analyzed mechanisms regulating resting [Ca2+]i in dissociated rat melanotrophs by Ca2+-imaging and patch-clamp techniques. Treatment with antagonists of L-type, but not N- or P/Q-type voltage-gated Ca2+ channels (VGCCs) as well as removal of extracellular Ca2+ resulted in a rapid and reversible decrease in [Ca2+]i, indicating constitutive Ca2+ influx through L-type VGCCs. Reduction of extracellular Na+ concentration (replacement with NMDG+) similarly decreased resting [Ca2+]i. When cells were champed at –80 mV, decrease in the extracellular Na+ resulted in a positive shift of the holding current. In cell-attached voltage-clamp and whole-cell current-clamp configurations, the reduction of extracellular Na+ caused hyperpolarisation. The holding current shifted in negative direction when extracellular K+ concentration was increased from 5 mM to 50 mM in the presence of K+ channel blockers, Ba2+ and TEA, indicating cation nature of persistent conductance. RT-PCR analyses of pars intermedia tissues detected mRNAs of TRPV1, TRPV4, TRPC6, and TRPM3-5. The TRPV channel blocker, ruthenium red, shifted the holding current in positive direction, and significantly decreased the resting [Ca2+]i. These results indicate operation of a constitutive cation conductance sensitive to ruthenium red, which regulates resting membrane potential and [Ca2+]i in rat melanotrophs.  相似文献   

7.
1. We have previously reported that atrial natriuretic factor (ANF) decreases neuronal norepinephrine (NE) release. The mechanism that mediates NE release from presynaptic membrane to synaptic cleft is a strongly calcium-dependent process. The modulator effect of ANF may be related to modifications in calcium influx at the presynaptic nerve ending by interaction with voltage-operated calcium channels (VOCCs).2. On this basis we investigated the effects of ANF on K+-induced 45Ca2+ uptake and evoked neuronal NE release in the presence of specific L-, N-, and P/Q-type calcium channel blockers in the rat hypothalamus.3. Results showed that ANF inhibited K+-induced 45Ca2+ uptake in a concentration-dependent fashion. Concentration–response curves to VOCC blockers nifedipine (NFD, L-type channel blocker), -conotoxin GVIA (CTX, N-type channel blocker), and -agatoxin IVA (AGA, P/Q-type channel blocker) showed that all the blockers decreased NE release. Incubation of ANF plus NFD showed an additive effect as compared to NFD or ANF alone. However, when the hypothalamic tissue was incubated in the presence of ANF plus CTX or AGA there were no differences in neuronal NE release as compared to calcium channel blockers or ANF alone.4. These results suggest that ANF decreases NE release by an L-type calcium channel independent mechanism by inhibiting N- and/or P/Q-type calcium channels at the neuronal presynaptic level. Thus, ANF modulates neuronal NE release through different mechanisms involving presynaptic calcium channel inhibition.  相似文献   

8.
Compensated influx and efflux of calcium ions maintain the constancy of Ca2+ concentration in cytoplasm of quiescent cells under variable external conditions. In cell plasma membrane there exist several types of Ca2+ channels with different properties, regulation mechanisms, and pharmacology. Using fluorescent Ca2+-sensitive probes, we have shown here that in T-lymphocytes under resting conditions, Ca2+ influx occurs through special constitutively active Ca2+ channels, permeable to Ni2+ and Mn2+. These channels differ from the receptor-activated SOC channels, from Ca2+ channels activated by arachidonic acid, and from calmidazolium-activated channels. Ca2+ influx rate in quiescent cells increases with a rise in temperature (Q10 =1.9). The strong dependence of the constitutively active channel activity on temperature coincided with the plasma membrane Ca2+-ATPase dependence, indicating that intracellular enzymes regulate the channel activity. To identify the constitutively active channel, we analyzed the effects of L-type Ca2+ channels, SOC channels, Ca2+-independent phospholipase A2, and calmodulin inhibitors. Of all inhibitors listed only dihydropyridine blocker of L-type voltage-dependent Ca2+ channels, isradipin, at a concentration of 1.5 μM completely suppressed calcium influx. However, the channels did not exhibit sensitivity to changes in membrane potential. Our observations testify to the existence of a new nonselective Ca2+ channel in T-lymphocyte plasma membrane and characterize the new channels pharmacologically. The results obtained are important for understanding the regulation mechanisms of Ca2+ channels in plasma membrane of non-excitable cells.  相似文献   

9.
Excessive K+ efflux promotes central neuronal apoptosis; however, the type of potassium channel that mediates K+ efflux in response to different apoptosis-inducing stimuli is still unknown. It is hypothesized that the activation of large-conductance Ca2+-activated K+ channels (BKCa) mediates hypoxia/reoxygenation (H/R)- and ischemia/reperfusion (I/R)-induced neuronal apoptosis. Rat hippocampal neuronal cultures underwent apoptosis after reoxygenation, as assessed by morphologic observation, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and caspase-3 activation. Single-channel recordings revealed upregulation of BKCa channel activity 6 h after reoxygenation, which might be caused by elevated cytosolic Ca2+. The K+ ionophore valinomycin and the BKCa channel opener NS1619 induced neuronal apoptosis. Transfection of the BKCa channel α subunit into Chinese hamster ovary (CHO-K1) cells, which do not express endogenous K+ channels, or into neurons will induce cell apoptosis, indicating that the opening of the BKCa channel serves as a pivotal event in mediating cell apoptosis. The specific BKCa channel blockers charybdotoxin and iberiotoxin and the nonselective K+ channel blocker tetraethylammonium at concentrations more specific to the BKCa channel were neuroprotective. The A-type potassium channel blocker 4-aminopyridine and apamin, a small-conductance Ca2+-activated K+ channel blocker, were not protective. This result suggests the involvement of the BKCa channel in H/R-induced apoptosis. Similarly, specific BKCa channel blockers also showed neuroprotection in neurons subjected to oxygen-glucose deprivation/reoxygenation or animals subjected to forebrain ischemia–reperfusion. These results demonstrate that the over-activity of BKCa channels mediates hippocampal neuronal damage induced by H/R in vitro and I/R in vivo.  相似文献   

10.
K+ channels, membrane voltage, and intracellular free Ca2+ are involved in regulating proliferation in a human melanoma cell line (SK MEL 28). Using patch-clamp techniques, we found an inwardly rectifying K+ channel and a calcium-activated K+ channel. The inwardly rectifying K+ channel was calcium independent, insensitive to charybdotoxin, and carried the major part of the whole-cell current. The K+ channel blockers quinidine, tetraethylammonium chloride and Ba2+ and elevated extracellular K+ caused a dose-dependent membrane depolarization. This depolarization was correlated to an inhibition of cell proliferation. Charybdotoxin affected neither membrane voltage nor proliferation. Basic fibroblast growth factor and fetal calf serum induced a transient peak in intracellular Ca2+ followed by a long-lasting Ca2+ influx. Depolarization by voltage clamp decreased and hyperpolarization increased intracellular Ca2+, illustrating a transmembrane flux of Ca2+ following its electrochemical gradient. We conclude that K+ channel blockers inhibit cell-cycle progression by membrane depolarization. This in turn reduces the driving force for the influx of Ca2+, a messenger in the mitogenic signal cascade of human melanoma cells. Received: 9 May 1995/Revised: 30 January 1996  相似文献   

11.
The effect of high K concentration, insulin and the L-type Ca2– channel blocker PN 200-110 on cytosolic intracellular free calcium ([Ca2+]i) was studied in single ventricular myocytes of 10-day-old embryonic chick heart, 20-week-old human fetus and rabbit aorta (VSM) single cells using the Ca2+-sensitive fluorescent dye, Fura-2 microfluorometry and digital imaging technique. Depolarization of the cell membrane of both heart and VSM cells with continuous superfusion of 30 mM [K+]o induced a rapid transient increase of [Ca2+]i that was followed by a sustained component. The early transient increase of [Ca2+]i by high [+]o was blocked by the L-type calcium channel antagonist nifedipine. However, the sustained component was found to be insensitive to this drug. PN 200-110 another L-type Ca2+ blocker was found to decrease both the early transient and the sustained increase of [Ca2+]i induced by depolarization of the cell membrane with high [K+]o. Insulin at a concentration of 40 to 80 U/ml only produced a sustained increase of [Ca2+]i that was blocked by PN 200-110 or by lowering the extracellular Ca2+ concentration with EGTA. The sustained increase of [Ca2+], induced by high [K+]o or insulin was insensitive to metabolic inhibitors such as KCN and ouabain as well to the fast Na+ channel blocker, tetrodotoxin and to the increase of intracellular concentrations of cyclic nucleotides. Using the patch clamp technique, insulin did not affect the L-type Ca2+ current and the delayed outward K+ current. These results suggest that the early increase of (Ca2+]i during depolarization of the cell membrane of heart and VSM cells with high [K+]o is due to the opening and decay of an L-type Ca 2+ channel. However, the sustained increase of [Ca2+]i during a sustained depolarization is due to the activation of a resting (R) Ca 2+ channel that is insensitive to lowering [ATP]i and sensitive to insulin.  相似文献   

12.
《Life sciences》1993,53(22):PL365-PL370
The effects of Ca2+ channel blockers on the development of physical dependence on diazepam were examined in mice. Co-administration of flunarizine (T-type Ca2+ channel sensitive blocker), but not of either nifedipine or diltiazem (L-type Ca2+ channel sensitive blockers), with diazepam significantly suppressed the hypersensitivity to FG 7142 following chronic treatment with diazepam. The hypersensitivity to FG 7142 may reflect benzodiazepine withdrawal convulsions. These results suggest that flunarizine, but not nifedipine or diltiazem, may suppress the development of physical dependence of diazepam, and that T-type Ca2+ channels in the brain, rather than L-type Ca2+ channels, may be involved in the development of physical dependence on diazepam.  相似文献   

13.
Using fura-2-acetoxymethyl ester (AM) fluorescence imaging and patch clamp techniques, we found that endothelin-1 (ET-1) significantly elevated the intracellular calcium level ([Ca2+]i) in a dose-dependent manner and activated the L-type Ca2+ channel in cardiomyocytes isolated from rats. The effect of ET-1 on [Ca2+]i elevation was abolished in the presence of the ETA receptor blocker BQ123, but was not affected by the ETB receptor blocker BQ788. ET-1-induced an increase in [Ca2+]i, which was inhibited 46.7% by pretreatment with a high concentration of ryanodine (10 μmol/L), a blocker of the ryanodine receptor. The ET-1-induced [Ca2+]i increase was also inhibited by the inhibitors of protein kinase A (PKA), protein kinase C (PKC) and angiotensin type 1 receptor (AT1 receptor). We found that ET-1 induced an enhancement of the amplitude of the whole cell L-type Ca2+ channel current and an increase of open-state probability (NPo) of an L-type single Ca2+ channel. BQ123 completely blocked the ET-1-induced increase in calcium channel open-state probability. In this study we demonstrated that ET-1 regulates calcium overload through a series of mechanisms that include L-type Ca2+ channel activation and Ca2+-induced Ca2+ release (CICR). ETA receptors, PKC, PKA and AT1 receptors may also contribute to this pathway. Supported by the National Natural Science Foundation of China (Grant No. 200830870910).  相似文献   

14.
已有研究表明在脑缺血期间及再灌流后早期,海马CA1锥体神经元细胞内钙浓度明显升高,这一钙超载被认为是缺血性脑损伤的重要机制之一.电压依赖性钙通道是介导正常CA1神经元钙内流的主要途径.实验观察了脑缺血再灌流后早期海马CA1锥体神经元电压依赖性L型钙通道的变化.以改良的四血管闭塞法制作大鼠15 min前脑缺血模型,在急性分离的海马CA1神经元上,采用膜片钳细胞贴附式记录L型电压依赖性钙通道电流.脑缺血后CA1神经元L型钙通道的总体平均电流明显增大,这是由于通道的开放概率增加所致.进一步分析单通道动力学显示,脑缺血后通道的开放时间变长,通道的开放频率增大.研究结果提示L型钙通道功能活动增强可能参与了缺血后海马CA1锥体神经元的细胞内钙浓度升高.  相似文献   

15.
Ion Channels in Cell Proliferation and Apoptotic Cell Death   总被引:14,自引:0,他引:14  
Cell proliferation and apoptosis are paralleled by altered regulation of ion channels that play an active part in the signaling of those fundamental cellular mechanisms. Cell proliferation must - at some time point - increase cell volume and apoptosis is typically paralleled by cell shrinkage. Cell volume changes require the participation of ion transport across the cell membrane, including appropriate activity of Cl and K+ channels. Besides regulating cytosolic Cl activity, osmolyte flux and, thus, cell volume, most Cl channels allow HCO3 exit and cytosolic acidification, which inhibits cell proliferation and favors apoptosis. K+ exit through K+ channels may decrease intracellular K+ concentration, which in turn favors apoptotic cell death. K+ channel activity further maintains the cell membrane potential, a critical determinant of Ca2+ entry through Ca2+ channels. Cytosolic Ca2+ may trigger mechanisms required for cell proliferation and stimulate enzymes executing apoptosis. The switch between cell proliferation and apoptosis apparently depends on the magnitude and temporal organization of Ca2+ entry and on the functional state of the cell. Due to complex interaction with other signaling pathways, a given ion channel may play a dual role in both cell proliferation and apoptosis. Thus, specific ion channel blockers may abrogate both fundamental cellular mechanisms, depending on cell type, regulatory environment and condition of the cell. Clearly, considerable further experimental effort is required to fully understand the complex interplay between ion channels, cell proliferation and apoptosis.  相似文献   

16.
Platelets have been shown to migrate and thus to invade the vascular wall. Platelet migration is stimulated by SDF-1. In other cell types, migration is dependent on Ca2+ entry via Ca2+ channels. Ca2+ influx is sensitive to cell membrane potential which is maintained by K+ channel activity and/or Cl channel activity. The present study explored the role of ion channels in the regulation of SDF-1 induced migration. Platelets were isolated from human volunteers as well as from gene targeted mice lacking the Ca2+ activated K+ channel SK4 (sk4−/−) and their wild type littermates (sk4+/+). According to confocal microscopy human platelets expressed the Ca2+ channel Orai1 and the Ca2+-activated K+ channel KCa3.1 (SK4). SDF-1 (100 ng/ml) stimulated migration in human platelets, an effect blunted by Orai1 inhibitors 2-aminoethoxydiphenyl borate 2-APB (10 μM) and SKF-96365 (10 μM), by unspecific K+ channel inhibitor TEA (30 mM), by SK4 specific K+ channel blocker clotrimazole (10 μM), but not by Cl channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid NPPB (100 μM). Significant stimulation of migration by SDF-1 was further observed in sk4+/+ platelets but was virtually absent in sk4−/− platelets. In conclusion, platelet migration requires activity of the Ca2+ channel Orai1 and of the Ca2+ activated K+ channel SK4, but not of NPPB-sensitive Cl channels.  相似文献   

17.
Characteristics for the up-regulated response in the concentration of intracellular calcium ion ([Ca2+] i ) and in the sodium ion (Na+) current by serotonin (5-HT) were investigated in differentiated neuroblastoma × glioma hybrid NG108-15 (NG) cells. The results for the changes in [Ca2+] i by 5-HT were as follows, (1) The 5-HT-induced Ca2+ response was inhibited by 3 × 10−9 M tropisetron (a 5-HT3 receptor blocker), but not by other types of 5-HT receptor blockers; (2) The 5-HT-induced Ca2+ response was mainly inhibited by calciseptine (a L-type Ca2+ blocker), but not by other types of Ca2+ channel blockers or 10−7 M TTX (a voltage-sensitive Na+ channel blocker); (3) When the extracellular Na+ was removed by exchange with choline chloride or N-methyl-d-glucamine, the 5-HT-induced Ca2+ response was extremely inhibited. The results for the 5-HT-induced Na+ current by the whole cell patch-clamp technique were as follows, (1) The 5-HT-induced Na+ current in differentiated cells was significantly larger than that in undifferentiated cells; (2) The ED50 value for 5-HT-induced Na+ current in undifferentiated and differentiated cells was almost the same, about 4 × 10−6 M each other; (3) The 5-HT-induced Na+ current was completely blocked by 3 × 10−9 M tropisetron, but not by other 5-HT receptor antagonists and 10−7 M TTX. These results suggested that 5-HT-induced Ca2+ response in differentiated NG cells was mainly due to L-type voltage-gated Ca2+ channels allowing extracellular Na+ to enter via 5-HT3 receptors, but not through voltage-gated Na+ channels.  相似文献   

18.
Abstract: The potent nicotinic agonist anatoxin-a elicits mecamylamine-sensitive [3H]dopamine release from striatal synaptosomes, and this action is both Na+ and Ca2+ dependent and is blocked by Cd2+. This suggests that stimulation of presynaptic nicotinic receptors results in Na+ influx and local depolarisation that activates voltage-sensitive Ca2+ channels, which in turn provide the Ca2+ for exocytosis. Here we have investigated the subtypes of Ca2+ channels implicated in this mechanism. [3H]Dopamine release evoked by anatoxin-a (1 µM) was partially blocked by 20 µM nifedipine, whereas KCl-evoked release was insensitive to the dihydropyridine. However, a 86Rb+ efflux assay of nicotinic receptor function suggested that nifedipine has a direct effect on the receptor, discrediting the involvement of L-type channels. The N-type Ca2+ channel blocker ω-conotoxin GVIA (1 µM) blocked anatoxin-a-evoked [3H]dopamine release by 60% but had no significant effect on 86Rb+ efflux; release evoked by both 15 and 25 mM KCl was inhibited by only 30%. The P-type channel blocker ω-agatoxin IVA (90 nM) also inhibited KCl-evoked release by ~30%, whereas anatoxin-a-evoked release was insensitive. The Q-type channel blocker ω-conotoxin MVIIC (1 µM) had no effect on either stimulus. These results suggest that presynaptic nicotinic receptors on striatal nerve terminals promote [3H]dopamine release by activation of N-type Ca2+ channels. In contrast, KCl-evoked [3H]dopamine release appears to involve both N-type and P-type channels.  相似文献   

19.
In rat tail artery (RTA), spinal cord injury (SCI) increases nerve-evoked contractions and the contribution of L-type Ca2+ channels to these responses. In RTAs from unoperated rats, these channels play a minor role in contractions and Bay K8644 (L-type channel agonist) mimics the effects of SCI. Here we investigated the mechanisms underlying the facilitatory actions of SCI and Bay K8644 on nerve-evoked contractions of RTAs and the hypothesis that Ca2+ entering via L-type Ca2+ channels is rapidly sequestered by the sarcoplasmic reticulum (SR) limiting its role in contraction. In situ electrochemical detection of noradrenaline was used to assess if Bay K8644 increased noradrenaline release. Perforated patch recordings were used to assess if SCI changed the Ca2+ current recorded in RTA myocytes. Wire myography was used to assess if SCI modified the effects of Bay K8644 and of interrupting SR Ca2+ uptake on nerve-evoked contractions. Bay K8644 did not change noradrenaline-induced oxidation currents. Neither the size nor gating of Ca2+ currents differed between myocytes from sham-operated (control) and SCI rats. Bay K8644 increased nerve-evoked contractions in RTAs from both control and SCI rats, but the magnitude of this effect was reduced by SCI. By contrast, depleting SR Ca2+ stores with ryanodine or cyclopiazonic acid selectively increased nerve-evoked contractions in control RTAs. Cyclopiazonic acid also selectively increased the blockade of these responses by nifedipine (L-type channel blocker) in control RTAs, whereas ryanodine increased the blockade produced by nifedipine in both groups of RTAs. These findings suggest that Ca2+ entering via L-type channels is normally rapidly sequestered limiting its access to the contractile mechanism. Furthermore, the findings suggest SCI reduces the role of this mechanism.  相似文献   

20.
Whether large conductance Ca2+-activated potassium (BK) channels are present in the substantia nigra pars reticulata (SNr) is a matter of debate. Using the patch-clamp technique, we examined the functional expression of BK channels in neurons of the SNr and showed that the channels were activated or inhibited by internal high-energy phosphates (IHEPs) at positive and negative membrane potentials, respectively. SNr neurons showed membrane potential hyperpolarization under glucose-deprivation conditions which was attenuated by paxilline, a specific BK channel blocker. In addition, Fluo-3 fluorescence recording detected an increase in the level of internal free calcium ([Ca2+]i) during ischemic hyperpolarization. These results confirm that BK channels are present in SNr neurons and indicate that their unique IHEP sensitivity is requisite in neuronal ischemic responses. Bearing in mind that the KATP channel blocker tolbutamide also attenuated the hyperpolarization, we suggest that BK channels may play a protective role in the basal ganglia by modulating the excitability of SNr neurons along with KATP channels under ischemic stresses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号