首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The amount of immune body required to agglutinate a suspension of Bacillus typhosus increases in direct proportion to the concentration of the suspension. 2. The amount of immune body combined with the organisms is constant from pH 9 to pH 3.7. Below the latter value the amount in combination is decreased. 3. The addition of immune serum to a suspension of Bacillus typhosus at a pH of 2,5 increases the positive charge of the organisms. These results are contradictory to the idea that the combination is caused by a difference in the sign of the charge carried by the immune body and the organism. They agree with the assumption that the immune body forms a film on the surface of the organism and that the effect on the charge is the result of this film.  相似文献   

2.
1. The addition of proteins or serum to suspensions of bacteria, (Bacillus typhosus or rabbit septicemia) at different pH widens the acid agglutination zone and shifts the isoelectric point to that of the added substance. 2. The amount of serum required to agglutinate is much less near the acid agglutination point of the organisms. 3. The addition of immune serum prevents the salt from decreasing the cohesive force between the organisms, and agglutination therefore is determined solely by the potential, provided excess immune body is present. Whenever the potential is decreased below 15 millivolts the suspension agglutinates.  相似文献   

3.
1. The strain of Bacterium coli used in these experiments multiplies in distilled water at pH 6.0 and pH 8.0 and in Ringer-Locke solution at pH 6.0. Under all the other conditions studied the numbers decrease with the passage of time. 2. The electrophoretic charge of the cells is highest in distilled water at pH 6.0 and pH 8.0. Under all other conditions studied the velocity of migration is decreased, but the decrease is immediate and is not affected by more prolonged exposure. 3. A strongly acid solution (pH 2.0) causes a rapid death of the cells and a sharp decrease in electrophoretic charge, sometimes leading to complete reversal. 4. A strongly alkaline solution (pH 11.0) is almost as toxic as a strongly acid one, although in distilled water the organisms survive fairly well at this reaction. Electrophoretic charge, on the other hand, is only slightly reduced in such an alkaline medium. 5. In distilled water, reactions near the neutral point are about equally favorable to both viability and electrophoretic charge, pH 8.0 showing slightly greater multiplication and a slightly higher charge than pH 11.0. In the presence of salts, however, pH 8.0 is much less favorable to viability and somewhat more favorable to electrophoretic charge than is pH 6.0. 6. Sodium chloride solutions, in the concentrations studied, all proved somewhat toxic and all tended to depress electrophoretic charge. Very marked toxicity was, however, exhibited only in a concentration of .725 M strength or over and at pH 8.0, while electrophoretic migration velocity was only slightly decreased at a concentration of .0145 M strength. 7. Calcium chloride was more toxic than NaCl, showing very marked effects in .145 M strength at pH 8.0 and in 1.45 M strength at pH 6.0. It greatly depressed electrophoretic charge even in .0145 M concentration. 8. Ringer-Locke solution proved markedly stimulating to the growth of the bacteria at pH 6.0 while at pH 8.0 it was somewhat toxic, though less so than the solutions of pure salts. It depressed migration velocity at all pH values, being more effective than NaCl in this respect, but less effective than CaCl2. 9. It would appear from these experiments that a balanced salt solution (Ringer-Locke''s) may be distinctly favorable to bacterial viability in water at an optimum reaction while distinctly unfavorable in a slightly more alkaline solution. 10. Finally, while there is a certain parallelism between the influence of electrolytes upon viability and upon electrophoretic charge, the parallelism is not a close one and the two effects seem on the whole to follow entirely different laws.  相似文献   

4.
1. Rabbits were immunized with Bact. typhosum 0 901 S and 0 901 R, over a long period. Homologous and heterologous strains were sensitized with sera obtained from weekly bleedings. Agglutination titer was recorded, and the isoelectric points of the bacteria maximally sensitized were determined. 2. 0 901 S maximally sensitized with homologous immune serum had isoelectric points which became more alkaline as immunization progressed, covering a range of pH 4.8 to 5.5. 3. Strain 0 901 R maximally sensitized with homologous immune serum had isoelectric points which became more alkaline as immunization progressed, covering the range of pH 5.0 to 5.9. 4. Both 0 901 S and 0 901 R maximally sensitized with heterologous serum had isoelectric points lower than when sensitized with homologous serum. 5. The isoelectric points of both forms sensitized with increasing concentrations of homologous immune serum were determined. Increasing concentrations of homologous immune serum shifted the isoelectric point of 0 901 R from less than 2.2 for the unsensitized bacteria progressively to the alkaline side until the maximum values previously mentioned were reached. Increasing concentrations of homologous immune serum conferred upon 0 901 S isoelectric points which became only slightly more alkaline in maximal sensitization. 6. The electrophoretic mobilities of 0 901 S and 0 901 R, in each case maximally sensitized with homologous hyperimmune serum, were found to differ significantly over the whole range of pH studied.  相似文献   

5.
1. Sensitization confers upon the red cell the property of adsorbing complement from solution. The submicroscopic film of immune serum protein deposited upon the cell surface during sensitization, and completely analogous to the precipitate formed in a soluble antigen-antibody reaction (e.g., sheep serum vs. rabbit anti-sheep serum) acts as absorbent, the degree of sensitization (size of the film) determining the amount of complement "fixed" (adsorbed). 2. This adsorption of complement by the sensitized cell is an essential preliminary to hemolysis, and when inhibited, even large quantities of demonstrably active complement have no hemolytic action. The marked influence of electrolytes and of the hydrogen ion concentration upon hemolysis is due primarily to corresponding effects upon the fixation of complement by the sensitized cell. In the case of salts with monovalent cations, complement fixation (and hemolysis) is completely inhibited at any concentration < 0.02 M or > 0.35 M. Electrolytes with bivalent cations are much more inhibitory, and in low as concentration 0.07 M completely prevent fixation (and hemolysis). The optimal reaction for complement fixation (and hemolysis) is pH 6.5 to 8.0. In slightly more acid range both are inhibited. But at a reaction pH 5.3, and in the alkaline range, there is an irreversible inactivation of complement, complete at pH 4.8 and 8.8 respectively. It is perhaps more than a coincidence that complement fixation, and therefore, hemolysis, are prevented by just those factors which suppress the ionization of serum proteins, and lead to an increased aggregation state. Between a suspension of macroscopically visible particles of euglobulin in distilled water, and a solution is physiological saline, there is certainly a gradual transition, manifested at low electrolyte concentrations by the opacity of the solution. At pH 7.4, globulin would ionize as a Na-salt, an ionization inhibited as the isoelectric point (5.3) is approached, with a coincident greater tendency of the globulin to separate from solution. And the cataphoretic velocity of particles of globulin, as well as all the other properties which are a function of its ionization (viscosity, osmotic pressure, etc.), are suppressed by electrolytes, the degree of suppression being determined by the concentration and valence of the cation (on the alkaline side of the isoelectric point). The analogy with complement fixation is too complete to be dismissed as fortuitous. 3. The fact that the degree of complement "fixation" increases with the degree of sensitization explains one of the most puzzling phenomena in hemolysis,—that immune serum and complement are, to a certain extent, interchangeable, a decrease in either factor being compensated by an increase in the other (8), (20), (22). The explanation is evident from Figs. 1,2, and 3. The exact quantitative relationships involved will be developed in a later paper. With increasing sensitization there is an enormously more complete and more rapid fixation of complement, and correspondingly more rapid hemolysis, exactly the effect produced by increasing the quantity of complement instead of amboceptor (Fig. 3). All other variables being constant, the velocity of hemolysis is determined by the amount of complement adsorbed. With more amboceptor, a greater proportion is "fixed" by the cell; with more complement, a smaller proportion, but a larger absolute amount. The result is the same: more complement adsorbed, and a corresponding acceleration of hemolysis. If this mobilization of complement is the sole function of immuneserum (and there is as yet no reason to assume any other), then the accepted terminology, in which amboceptor, immune body, and hemolysin are used synonymously, is erroneous. The immune body would function only as an "amboceptor," mobilizing the effective hemolysin, complement, upon the surface of the cell. Nothing has been said of the multiple components into which complement may be split. A priori, it would be expected that the adsorption demonstrated is of the so called midpiece fraction.  相似文献   

6.
1. The movement of normal and sensitized red blood cells in the electric field is a function of the hydrogen ion concentration. The isoelectric point, at which no movement occurs, corresponds with pH 4.6. 2. On the alkaline side of the isoelectric point the charge carried is negative and increases with the alkalinity. On the acid side the charge is positive and increases with the acidity. 3. On the alkaline side at least the charge carried by sensitized cells is smaller and increases less rapidly with the alkalinity than the charge of normal cells. 4. Both normal and sensitized cells combine chemically with inorganic ions, and the isoelectric point is a turning point for this chemical behavior. On the acid side the cells combine with the hydrogen and chlorine ions, and in much larger amount than on the alkaline side; on the alkaline side the cells combine with a cation (Ba), and in larger amount than on the acid side. This behavior corresponds with that found by Loeb for gelatin. 5. The optimum for agglutination of normal cells is at pH 4.75, so that at this point the cells exist most nearly pure, or least combined with anion and cation. 6. The optimum for agglutination of sensitized cells is at pH 5.3. This point is probably connected with the optimum for flocculation of the immune serum body.  相似文献   

7.
In this paper it is shown that if the dry seeds of the cantaloupe (Cucumis melo) are soaked for 3 hours in solutions of ethyl alcohol of concentration ranging from 2 to 16 per cent by volume, and then germinated and grown in distilled water in the dark, the total growth attained is greater by amounts ranging from 9 to 35 per cent than is that made by seeds treated in every way identically except that they are initially soaked in distilled water instead of alcohol. It is shown that this result is not due simply to differences in osmotic pressure in the different alcohol solutions. It is probably due to a simple selective action of the alcohol which eliminates the constitutionally weak and defective seeds.  相似文献   

8.
When uninjured cells of Valonia are placed in methylene blue dissolved in sea water it is found, after 1 to 3 hours, that at pH 5.5 practically no dye penetrates, while at pH 9.5 more enters the vacuole. As the cells become injured more dye enters at pH 5.5, as well as at pH 9.5. No dye in reduced form is found in the sap of uninjured cells exposed from 1 to 3 hours to methylene blue in sea water at both pH values. When uninjured cells are placed in azure B solution, the rate of penetration of dye into the vacuole is found to increase with the rise in the pH value of the external dye solution. The partition coefficient of the dye between chloroform and sea water is higher at pH 9.5 than at pH 5.5 with both methylene blue and azure B. The color of the dye in chloroform absorbed from methylene blue or from azure B in sea water at pH 5.5 is blue, while it is reddish purple when absorbed from methylene blue and azure B at pH 9.5. Dry salt of methylene blue and azure B dissolved in chloroform appears blue. It is shown that chiefly azure B in form of free base is absorbed by chloroform from methylene blue or azure B dissolved in sea water at pH 9.5, but possibly a mixture of methylene blue and azure B in form of salt is absorbed from methylene blue at pH 5.5, and azure B in form of salt is absorbed from azure B in sea water at pH 5.5. Spectrophotometric analysis of the dye shows the following facts. 1. The dye which is absorbed by the cell wall from methylene blue solution is found to be chiefly methylene blue. 2. The dye which has penetrated from methylene blue solution into the vacuole of uninjured cells is found to be azure B or trimethyl thionine, a small amount of which may be present in a solution of methylene blue especially at a high pH value. 3. The dye which has penetrated from methylene blue solution into the vacuole of injured cells is either methylene blue or a mixture of methylene blue and azure B. 4. The dye which is absorbed by chloroform from methylene blue dissolved in sea water is also found to be azure B, when the pH value of the sea water is at 9.5, but it consists of azure B and to a less extent of methylene blue when the pH value is at 5.5. 5. Methylene blue employed for these experiments, when dissolved in sea water, in sap of Valonia, or in artificial sap, gives absorption maxima characteristic of methylene blue. Azure B found in the sap collected from the vacuole cannot be due to the transformation of methylene blue into this dye after methylene blue has penetrated into the vacuole from the external solution because no such transformation detectable by this method is found to take place within 3 hours after dissolving methylene blue in the sap of Valonia. These experiments indicate that the penetration of dye into the vacuole from methylene blue solution represents a diffusion of azure B in the form of free base. This result agrees with the theory that a basic dye penetrates the vacuole of living cells chiefly in the form of free base and only very slightly in the form of salt. But as soon as the cells are injured the methylene blue (in form of salt) enters the vacuole. It is suggested that these experiments do not show that methylene blue does not enter the protoplasm, but they point out the danger of basing any theoretical conclusion as to permeability on oxidation-reduction potential of living cells from experiments made or the penetration of dye from methylene blue solution into the vacuole, without determining the nature of the dye inside and outside the cell.  相似文献   

9.
1. When a 1 per cent solution of a metal gelatinate, e.g. Na gelatinate, of pH = 8.4 is separated from distilled water by a collodion membrane, water will diffuse into the solution with a certain rate which can be measured by the rise of the level of the liquid in a manometer. When to such a solution alkali or neutral salt is added the initial rate with which water will diffuse into the solution is diminished and the more so the more alkali or salt is added. This depressing effect of the addition of alkali and neutral salt is greater when the cation of the electrolyte added is bivalent than when it is monovalent. This seems to indicate that the depressing effect is due to the cation of the electrolyte added. 2. When a neutral M/256 solution of a salt with monovalent cation (e.g. Na2SO4 or K4Fe(CN)6, etc.) is separated from distilled water by a collodion membrane, water will diffuse into the solution with a certain initial rate. When to such a solution alkali or neutral salt is added, the initial rate with which water will diffuse into the solution is diminished and the more so the more alkali or salt is added. The depressing effect of the addition of alkali or neutral salt is greater when the cation of the electrolyte added is bivalent than when it is monovalent. This seems to indicate that the depressing effect is due to the cation of the electrolyte added. The membranes used in these experiments were not treated with gelatin. 3. It can be shown that water diffuses through the collodion membrane in the form of positively charged particles under the conditions mentioned in (1) and (2). In the case of diffusion of water into a neutral solution of a salt with monovalent or bivalent cation the effect of the addition of electrolyte on the rate of diffusion can be explained on the basis of the influence of the ions on the electrification and the rate of diffusion of electrified particles of water. Since the influence of the addition of electrolyte seems to be the same in the case of solutions of metal gelatinate, the question arises whether this influence of the addition of electrolyte cannot also be explained in the same way, and, if this be true, the further question can be raised whether this depressing effect necessarily depends upon the colloidal character of the gelatin solution, or whether we are not dealing in both cases with the same property of matter; namely, the influence of ions on the electrification and rate of diffusion of water through a membrane. 4. It can be shown that the curve representing the influence of the concentration of electrolyte on the initial rate of diffusion of water from solvent into the solution through the membrane is similar to the curve representing the permanent osmotic pressure of the gelatin solution. The question which has been raised in (3) should then apply also to the influence of the concentration of ions upon the osmotic pressure and perhaps other physical properties of gelatin which depend in a similar way upon the concentration of electrolyte added; e.g., swelling. 5. When a 1 per cent solution of a gelatin-acid salt, e.g. gelatin chloride, of pH 3.4 is separated from distilled water by a collodion membrane, water will diffuse into the solution with a certain rate. When to such a solution acid or neutral salt is added—taking care in the latter case that the pH is not altered—the initial rate with which water will diffuse into the solution is diminished and the more so the more acid or salt is added. Water diffuses into a gelatin chloride solution through a collodion membrane in the form of negatively charged particles. 6. When we replace the gelatin-acid salt by a crystalloidal salt, which causes the water to diffuse through the collodion membrane in the form of negatively charged particles, e.g. M/512 Al2Cl6, we find that the addition of acid or of neutral salt will diminish the initial rate with which water diffuses into the M/512 solution of Al2Cl6, in a similar way as it does in the case of a solution of a gelatin-acid salt.  相似文献   

10.
Treatment of Nitella with distilled water apparently removes from the cell something which is responsible for the normal irritability and the potassium effect, (i.e. the large P.D. between a spot in contact with 0.01 M KCl and one in contact with 0.01 M NaCl). Presumably this substance (called R) is partially removed from the protoplasm by the distilled water. When this has happened a pinch which forces sap out into the protoplasm can restore its normal behavior. The treatment with distilled water which removes the potassium effect from the outer protoplasmic surface does not seem to affect the inner protoplasmic surface in the same way since the latter retains the outwardly directed potential which is apparently due to the potassium in the sap. But the inner surface appears to be affected in such fashion as to prevent the increase in its permeability which is necessary for the production of an action current. The pinch restores its normal behavior, presumably by forcing R from the sap into the protoplasm.  相似文献   

11.
Treatment with distilled water removes from Nitella the ability to give the large potential difference between 0.01 M KCl and 0.01 M NaCl which is known as the potassium effect. The potassium effect may be restored by action currents. This might be explained by saying that distilled water removes from the surface a substance, R, which is responsible for the potassium effect and which moves into the surface during the action current and thereby restores the potassium effect.  相似文献   

12.
Measurements have been made of the solubility at 25°C. of tyrosine in hydrochloric acid and in sodium hydroxide solutions varying from 0.001 to 0.05 M, and also in distilled water. The pH of the saturated solutions was measured with the hydrogen electrode. The following values for the ionization constants of tyrosine have been obtained from the measurements: kb = 1.57 x 10–12, ka1 = 7.8 x 10–10, ka2 = 8.5 x 10–11. The changes in solubility with pH can be satisfactorily explained by the use of these ionization constants.  相似文献   

13.
1. The writer had previously published the observation that if a salt solution made up in an acid solution (e.g. HCl) of a definite pH (e.g. 3.0) is separated by a collodion membrane from pure water containing the same acid of the same pH, acid is at first driven from the salt solution into the water, so that the pH of the latter becomes at first lower than that of the solution. 2. It is shown in this paper that this paradoxical phenomenon is not due to any peculiarity of the membrane but is a consequence of the well known fact that the diffusion constant of an acid is increased by a salt.  相似文献   

14.
1. Photosynthetic bacteria in water suspension break open when treated with supersonic vibration thus liberating the cell contents, including a water soluble protein to which is attached the otherwise water insoluble pigments, bacteriochlorophyll and carotinoids. Both types of pigments appear to be combined with the same protein. 2. The protein pigment compound is insoluble in the region of pH 3.0 to 4.5 and in neutral solution can be completely precipitated by 0.5 saturated (NH4)2SO4. It is soluble in distilled water and adsorbable on fullers'' earth. 3. Supersonic extracts of photosynthetic bacteria do not have the ability to carry on photosynthesis, but will act as a photocatalyst for the oxidation of ascorbic acid with visible or infrared radiation. The rate of the photochemical oxidation is proportional to the light intensity.  相似文献   

15.
By means of micro-dissection and injection Amœba proteus was treated with the chlorides of Na, K, Ca, and Mg alone, in combination, and with variations of pH. I. The Plasmalemma. 1. NaCl weakens and disrupts the surface membrane of the ameba. Tearing the membrane accelerates the disruption which spreads rapidly from the site of the tear. KCl has no disruptive effect on the membrane but renders it adhesive. 2. MgCl2 and CaCl2 have no appreciable effect on the integrity of the surface membrane of the ameba when applied on the outside. No spread of disruption occurs when the membrane is torn in these salts. When these salts are introduced into the ameba they render the pellicle of the involved region rigid. II. The Internal Protoplasm. 3. Injected water either diffuses through the protoplasm or becomes localized in a hyaline blister. Large amounts when rapidly injected produce a "rushing effect". 4. HCl at pH 1.8 solidifies the internal protoplasm and at pH 2.2 causes solidification only after several successive injections. The effect of the subsequent injections may be due to the neutralization of the cell-buffers by the first injection. 5. NaCl and KCl increase the fluidity of the internal protoplasm and induce quiescence. 6. CaCl2 and MgCl2 to a lesser extent solidify the internal protoplasm. With CaCl2 the solidification tends to be localized. With MgCl2 it tends to spread. The injection of CaCl2 accelerates movement in the regions not solidified whereas the injection of MgCl2 induces quiescence. III. Pinching-Off Reaction. 7. A hyaline blister produced by the injection of water may be pinched off. The pinched-off blister is a liquid sphere surrounded by a pellicle. 8. Pinching off always takes place with injections of HCl when the injected region is solidified. 9. The injection of CaCl2 usually results in the pinching off of the portion solidified. The rate of pinching off varies with the concentration of the salt. The injection of MgCl2 does not cause pinching off. IV. Reparability of Torn Surfaces. 10. The repair of a torn surface takes place readily in distilled water. In the different salt solutions, reparability varies specifically with each salt, with the concentration of the salt, and with the extent of the tear. In NaCl and in KCl repair occurs less readily than in water. In MgCl2 repair takes place with great difficulty. In CaCl2 a proper estimate of the process of repair is complicated by the pinching-off phenomenon. However, CaCl2 is the only salt found to increase the mobility of the plasmalemma, and this presumably enhances its reparability. 11. The repair of the surface is probably a function of the internal protoplasm and depends upon an interaction of the protoplasm with the surrounding medium. V. Permeability. 12. NaCl and KCl readily penetrate the ameba from the exterior. CaCl2 and MgCl2 do not. 13. All four salts when injected into an ameba readily diffuse through the internal protoplasm. In the case of CaCl2 the diffusion may be arrested by the pinching-off process. VI. Toxicity. 14. NaCl and KCl are more toxic to the exterior of the cell than to the interior, and the reverse is true for CaCl2 and MgCl2. 15. The relative non-toxicity of injected NaCl to the interior of the ameba is not necessarily due to its diffusion outward from the cell. 16. HCl is much more toxic to the exterior of a cell than to the interior; at pH 5.5 it is toxic to the surface whereas at pH 2.5 it is not toxic to the interior. NaOH to pH 9.8 is not toxic either to the surface or to the interior. VII. Antagonism. 17. The toxic effects of NaCl and of KCl on the exterior of the cell can be antagonized by CaCl2 and this antagonism occurs at the surface. Although the lethal effect of NaCl is thus antagonized, NaCl still penetrates but at a slower rate than if the ameba were immersed in a solution of this salt alone. 18. NaCl and HCl are mutually antagonistic in the interior of the ameba. No antagonism between the salts and HCl was found on the exterior of the ameba. No antagonism between the salts and NaOH was found on the interior or exterior of the ameba. 19. The pinching-off phenomenon can be antagonized by NaCl or by KCl, and the rate of the retardation of the pinching-off process varies with the concentration of the antagonizing salt. 20. The prevention of repair of a torn membrane by toxic solutions of NaCl or KCl can be antagonized by CaCl2. These experiments show directly the marked difference between the interior and the exterior of the cell in their behavior toward the chlorides of Na, K, Ca, and Mg.  相似文献   

16.
The accumulation of ammonia takes place more rapidly in light than in darkness. The accumulation appears to go on until a steady state is attained. The steady state concentration of ammonia in the sap is about twice as great in light as in darkness. Both effects are possibly due to the fact that the external pH (and hence the concentration of undissociated ammonia) outside is raised by photosynthesis. Certain "permeability constants" have been calculated. These indicate that the rate is proportional to the concentration gradient across the protoplasm of NH4 X which is formed by the interaction of NH3 or NH4OH and HX, an acid elaborated in the protoplasm. The results are interpreted to mean that HX is produced only at the sap-protoplasm interface and that on the average its concentration there is about 7 times as great as at the sea water-protoplasm interface. This ratio of HX at the two surfaces also explains why the concentration of undissociated ammonia in the steady state is about 7 times as great in the sea water as in the sap. The permeability constant P'''''' appears to be greater in the dark. This is possibly associated with an increase in the concentration of HX at both interfaces, the ratio at the two surfaces, however, remaining about the same. The pH of sap has been determined by a new method which avoids the loss of gas (CO2), an important source of error. The results indicate that the pH rises during accumulation but the extent of this rise is smaller than has hitherto been supposed. As in previous experiments, the entering ammonia displaced a practically equivalent amount of potassium from the sap and the sodium concentration remained fairly constant. It seems probable that the pH increase is due to the entrance of small amounts of NH3 or NH4OH in excess of the potassium lost as a base.  相似文献   

17.
1. The eggs of Fucus furcatus develop perfectly in sea water acidified to pH 6.0. They are retarded at pH 5.5. At pH 5.0 they do not develop, nor do they cytolize. 2. In normal sea water in the dark at 15°C., eggs develop rhizoids on the sides in the resultant direction of a mass of neighboring eggs. The polarity and the whole developmental pattern of the embryo is thereby induced. This inductive effect does not operate, however, unless the directing mass is an appreciable aggregation of cells (10 or more), or unless there are numerous other eggs in the dish. A group of five eggs alone in a dish do not carry out mutual inductions. Two eggs alone in a dish do not develop rhizoids toward each other. 3. When the sea water is acidified to pH 6.0 all sizes of aggregations carry out mutual inductions. Two eggs alone in a dish now develop rhizoids on the sides toward each other, provided they are not more than about 4 egg diameters apart. 4. Increased hydrogen ion concentration thus augments or intensifies the mutual inductive effect. 5. This may explain why only larger masses of eggs show inductions in normal sea water, since presumably the larger masses considerably increase the hydrogen ion concentration locally. 6. The nature of the inductive action is discussed. 7. In acidified sea water at pH 6.0, compared with normal sea water at pH 7.8–8.0, the rhizoids originate and extend with a strongly increased downward component. The substrate then forces further extension or growth of the rhizoid to be in the plane of the substrate.  相似文献   

18.
A survey of the published electrophoretic mobilities of certain mammalian red cells reveals that the isoelectric points accorded to these cells are the result of equilibria incidental to red cell destruction. The electrophoretic mobilities of normal washed sheep and human cells have now been studied in 0.85 per cent NaCl solutions from about pH 3.6 to 7.4. All measurements were made within 2 minutes of the preparation of the suspension of red cells. In no case was reversal of sign of charge observed under these conditions. Reversal of sign of charge occurred only after sufficient time had elapsed to permit sufficient adsorption of the products of red cell destruction. There is little change in mobility as the pH of the medium is decreased. Reversal of sign of charge does occur in the presence of normal and immune (anti-sheep) rabbit sera. The isoelectric point determined under these conditions does not appear to be connected specifically with the immune body but is perhaps associated with phenomena incidental to red cell destruction and the presence of serum. The characteristic lowering of mobility by amboceptor occurs, however, from pH 4.0 to pH 7.4. The curves of mobility plotted against pH for normal and for immune sera support the viewpoint that the identity of the isoelectric points for normal and sensitized sheep cells is not primarily concerned with the immune reaction. It is most unlikely that an "albumin" or a "globulin" surface covers red cells with a complete protein film. Although serum protein reacts with red cells in acid solutions, this is not demonstrable for gelatin. The lowering of mobility usually ascribed to anti-sheep rabbit serum may also occur, but to a lesser degree, in normal rabbit serum. This diminution of mobility is not, in the first place, associated with sensitization to hemolysis induced by complement. This supports the view that only a very small part of the red cell surface need be changed in order to obtain complete hemolysis in the presence of complement.  相似文献   

19.
When 0.005 M NH4Cl is added to sea water containing cells of Valonia macrophysa ammonia soon appears in the sap and may reach a concentration inside over 40 times as great as outside. It appears to enter as undissociated NH3 (or NH4OH) and tends to reach a pseudoequilibrium in which the activity of undissociated NH3 (or NH4OH) is the same inside and outside. When ammonia first enters, the pH value of the sap rapidly rises but it soon reaches a maximum and subsequently falls off. At the same time there is an increase of halide in the sap which, however, does not run a parallel course to the ammonia accumulation, but it comes to a new equilibrium value and remains constant. The increase in NH3 in the sap is accompanied by a decrease in the concentration of K. As NH3 enters the specific gravity of the sap decreases and the cells rise to the surface and continue to grow as floating organisms. The growth of the cells is increased.  相似文献   

20.
1. The ability of marine fishes to absorb oxygen at low tension from the sea water is more or less dependent upon the hydrogen ion concentration of the water. 2. The ability of fishes to withstand wide variations in the range of hydrogen ion concentration of the sea water can be correlated with their habitats. The fishes that are most resistant to a wide variation in the hydrogen ion concentration are most cosmopolitan in their habitat. Those that are least resistant to a variation in the hydrogen ion concentration are the most restricted in their range of habitat. 3. There is a close correlation between the optimum condition of the sea water for the absorption of oxygen at low tension by the herring (Clupea pallasii), the condition of the sea water to which they react positive and that in which they are found most abundantly. 4. It is suggested that the variation in the ability to absorb oxygen at low tension at a given pH of individuals of a species is dependent upon the alkaline reserve of the blood of the individual fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号