首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The warming associated with changes in snow cover in northern high-latitude terrestrial regions represents an important energy feedback to the climate system. Here, we simulate snow cover-climate feedbacks (i.e. changes in snow cover on atmospheric heating) across the Pan-arctic over two distinct warming periods during the 20th century, 1910–1940 and 1970–2000. We offer evidence that increases in snow cover–climate feedbacks during 1970–2000 were nearly three times larger than during 1910–1940 because the recent snow-cover change occurred in spring, when radiation load is highest, rather than in autumn. Based on linear regression analysis, we also detected a greater sensitivity of snow cover–climate feedbacks to temperature trends during the more recent time period. Pan-arctic vegetation types differed substantially in snow cover–climate feedbacks. Those with a high seasonal contrast in albedo, such as tundra, showed much larger changes in atmospheric heating than did those with a low seasonal contrast in albedo, such as forests, even if the changes in snow-cover duration were similar across the vegetation types. These changes in energy exchange warrant careful consideration in studies of climate change, particularly with respect to associated shifts in vegetation between forests, grasslands, and tundra.  相似文献   

2.
The Northern Hemisphere's boreal forests, particularly the Siberian boreal forest, may have a strong effect on Earth's climate through changes in dominant vegetation and associated regional surface albedo. We show that warmer climate will likely convert Siberia's deciduous larch (Larix spp.) to evergreen conifer forests, and thus decrease regional surface albedo. The dynamic vegetation model, FAREAST, simulates Russian boreal forest composition and was used to explore the feedback between climate change and forest composition at continental, regional, and local scales. FAREAST was used to simulate the impact of changes in temperature and precipitation on total and genus‐level biomass at sites across Siberia and the Russian Far East (RFE), and for six high‐ and low‐diversity regions. Model runs with and without European Larch (Larix decidua) included in the available species pool were compared to assess the potential for this species, which is adapted to warmer climate conditions, to mitigate the effects of climate change, especially the shift to evergreen dominance. At the continental scale, when temperature is increased, larch‐dominated sites become vulnerable to early replacement by evergreen conifers. At the regional and local scales, the diverse Amur region of the RFE does not show a strong response to climate change, but the low‐diversity regions in central and southern Siberia have an abrupt vegetation shift from larch‐dominated forest to evergreen‐conifer forest in response to increased temperatures. The introduction of L. decidua prevents the collapse of larch in these low‐diversity areas and thus mitigates the response to warming. Using contemporary MODIS albedo measurements, we determined that a conversion from larch to evergreen stands in low‐diversity regions of southern Siberia would generate a local positive radiative forcing of 5.1±2.6 W m?2. This radiative heating would reinforce the warming projected to occur in the area under climate change.  相似文献   

3.
Expanding high‐elevation and high‐latitude forest has contrasting climate feedbacks through carbon sequestration (cooling) and reduced surface reflectance (warming), which are yet poorly quantified. Here, we present an empirically based projection of mountain birch forest expansion in south‐central Norway under climate change and absence of land use. Climate effects of carbon sequestration and albedo change are compared using four emission metrics. Forest expansion was modeled for a projected 2.6 °C increase in summer temperature in 2100, with associated reduced snow cover. We find that the current (year 2000) forest line of the region is circa 100 m lower than its climatic potential due to land‐use history. In the future scenarios, forest cover increased from 12% to 27% between 2000 and 2100, resulting in a 59% increase in biomass carbon storage and an albedo change from 0.46 to 0.30. Forest expansion in 2100 was behind its climatic potential, forest migration rates being the primary limiting factor. In 2100, the warming caused by lower albedo from expanding forest was 10 to 17 times stronger than the cooling effect from carbon sequestration for all emission metrics considered. Reduced snow cover further exacerbated the net warming feedback. The warming effect is considerably stronger than previously reported for boreal forest cover, because of the typically low biomass density in mountain forests and the large changes in albedo of snow‐covered tundra areas. The positive climate feedback of high‐latitude and high‐elevation expanding forests with seasonal snow cover exceeds those of afforestation at lower elevation, and calls for further attention of both modelers and empiricists. The inclusion and upscaling of these climate feedbacks from mountain forests into global models is warranted to assess the potential global impacts.  相似文献   

4.
In order to investigate the hypothesis that the Earth's climate and vegetation patterns may have more than one basic state, we use the fully coupled GENESIS-IBIS model. GENESIS is an atmospheric general circulation model. IBIS is a dynamic global vegetation model that integrates biophysical, physiological, and ecological processes. GENESIS and IBIS are coupled by way of a common land surface interface to allow for the full and transient interaction between changes in the vegetation structure and changes in the general circulation of the atmosphere. We examine two modern climate simulations of the coupled model initialized with two different initial conditions. In one case, we initialize the model vegetation cover with the modern observed distribution of vegetation. In the other case, we initialize the vegetation cover with evergreen boreal forests extending to the Arctic coast, replacing high-latitude tundra. We interpret the coupled model's behaviour using a conceptual model for multistability and demonstrate that in both simulations the climate-vegetation system converges to the same equilibrium state. In the present climate, feedbacks between land, ocean, sea ice, and the atmosphere do not result in the warming required to support an expanded boreal forest.  相似文献   

5.
Royer DL  Pagani M  Beerling DJ 《Geobiology》2012,10(4):298-310
Earth system climate sensitivity (ESS) is the long‐term (>103 year) response of global surface temperature to doubled CO2 that integrates fast and slow climate feedbacks. ESS has energy policy implications because global temperatures are not expected to decline appreciably for at least 103 year, even if anthropogenic greenhouse gas emissions drop to zero. We report provisional ESS estimates of 3 °C or higher for some of the Cretaceous and Cenozoic based on paleo‐reconstructions of CO2 and temperature. These estimates are generally higher than climate sensitivities simulated from global climate models for the same ancient periods (approximately 3 °C). Climate models probably do not capture the full suite of positive climate feedbacks that amplify global temperatures during some globally warm periods, as well as other characteristic features of warm climates such as low meridional temperature gradients. These absent feedbacks may be related to clouds, trace greenhouse gases (GHGs), seasonal snow cover, and/or vegetation, especially in polar regions. Better characterization and quantification of these feedbacks is a priority given the current accumulation of atmospheric GHGs.  相似文献   

6.
Climate change is predicted to result in warmer and drier Neotropical forests relative to current conditions. Negative density‐dependent feedbacks, mediated by natural enemies, are key to maintaining the high diversity of tree species found in the tropics, yet we have little understanding of how projected changes in climate are likely to affect these critical controls. Over 3 years, we evaluated the effects of a natural drought and in situ experimental warming on density‐dependent feedbacks on seedling demography in a wet tropical forest in Puerto Rico. In the +4°C warming treatment, we found that seedling survival increased with increasing density of the same species (conspecific). These positive density‐dependent feedbacks were not associated with a decrease in aboveground natural enemy pressure. If positive density‐dependent feedbacks are not transient, the diversity of tropical wet forests, which may rely on negative density dependence to drive diversity, could decline in a future warmer, drier world.  相似文献   

7.
The snow‐masking effect of vegetation exerts strong control on albedo in northern high latitude ecosystems. Large‐scale changes in the distribution and stature of vegetation in this region will thus have important feedbacks to climate. The snow‐albedo feedback is controlled largely by the contrast between snow‐covered and snow‐free albedo (Δα), which influences predictions of future warming in coupled climate models, despite being poorly constrained at seasonal and century time scales. Here, we compare satellite observations and coupled climate model representations of albedo and tree cover for the boreal and Arctic region. Our analyses reveal consistent declines in albedo with increasing tree cover, occurring south of latitudinal tree line, that are poorly represented in coupled climate models. Observed relationships between albedo and tree cover differ substantially between snow‐covered and snow‐free periods, and among plant functional type. Tree cover in models varies widely but surprisingly does not correlate well with model albedo. Furthermore, our results demonstrate a relationship between tree cover and snow‐albedo feedback that may be used to accurately constrain high latitude albedo feedbacks in coupled climate models under current and future vegetation distributions.  相似文献   

8.
Warmer climates have affected animal distribution ranges, but how they may interact with vegetation patterns to affect habitat use, an important consideration for future wildlife management, has received little attention. Here, we use a biophysical model to investigate the potential thermal impact of vegetation pattern on the habitat quality of a high-elevation grassland lizard, Takydromus hsuehshanensis, and to predict the thermal suitability of vegetation for this species in a future warmer climate (assuming 3 °C air temperature increase). We assess the thermal quality of vegetation types in our study area (Taroko National Park in areas >1,800 m) using three ecologically relevant estimates of reptiles: body temperature (T b), maximum active time, and maximum digestive time. The results show that increasing forest canopy gradually cools the microclimates, hence decreasing these estimates. In the current landscape, sunny mountain-top grasslands are predicted to serve as high quality thermal habitat, whereas the dense forests that are dominant as a result of forest protection are too cold to provide suitable habitat. In simulated warmer climates, the thermal quality of dense forests increases slightly but remains inferior to that of grasslands. We note that the impact of warmer climates on this reptile will be greatly affected by future vegetation patterns, and we suggest that the current trend of upslope forest movement found in many other mountain systems could cause disadvantages to some heliothermic lizard species.  相似文献   

9.
Changes in soil carbon, the largest terrestrial carbon pool, are critical for the global carbon cycle, atmospheric CO2 levels and climate. Climate warming is predicted to be most pronounced in the northern regions and therefore the large soil carbon pool residing in boreal forests will be subject to larger global warming impact than soil carbon pools in the temperate or the tropical forest. A major uncertainty in current estimates of the terrestrial carbon balance is related to decomposition of soil organic matter (SOM). We hypothesized that when soils are exposed to warmer climate the structure of the ground vegetation will change much more rapidly than the dominant tree species. This change will alter the quality and amount of litter input to the soil and induce changes in microbial communities, thus possibly altering the temperature sensitivity of SOM decomposition. We transferred organic surface soil sections from the northern borders of the boreal forest zone to corresponding forest sites in the southern borders of the boreal forest zone and studied the effects of warmer climate after an adaptation period of 2 years. The results showed that initially ground vegetation and soil microbial community structure and community functions were different in northern and southern forest sites and that 2 years of exposure to warmer climate was long enough to cause changes in these ecological indicators. The rate of SOM decomposition was approximately equally sensitive to temperature irrespective of changes in vegetation or microbial communities in the studied forest sites. However, as temperature sensitivity of the decomposition increases with decreasing temperature regime, the proportional increase in the decomposition rate in northern latitudes could lead to significant carbon losses from the soils.  相似文献   

10.
As rapid climate warming creates a mismatch between forest trees and their home environment, the ability of trees to cope with warming depends on their capacity to physiologically adjust to higher temperatures. In widespread species, individual trees in cooler home climates are hypothesized to more successfully acclimate to warming than their counterparts in warmer climates that may approach thermal limits. We tested this prediction with a climate‐shift experiment in widely distributed Eucalyptus tereticornis and E. grandis using provenances originating along a ~2500 km latitudinal transect (15.5–38.0°S) in eastern Australia. We grew 21 provenances in conditions approximating summer temperatures at seed origin and warmed temperatures (+3.5 °C) using a series of climate‐controlled glasshouse bays. The effects of +3.5 °C warming strongly depended on home climate. Cool‐origin provenances responded to warming through an increase in photosynthetic capacity and total leaf area, leading to enhanced growth of 20–60%. Warm‐origin provenances, however, responded to warming through a reduction in photosynthetic capacity and total leaf area, leading to reduced growth of approximately 10%. These results suggest that there is predictable intraspecific variation in the capacity of trees to respond to warming; cool‐origin taxa are likely to benefit from warming, while warm‐origin taxa may be negatively affected.  相似文献   

11.
Warmer climates have been associated with reduced bioreactivity of soil organic matter (SOM) typically attributed to increased diagenesis; the combined biological and physiochemical transformation of SOM. In addition, cross‐site studies have indicated that ecosystem regime shifts, associated with long‐term climate warming, can affect SOM properties through changes in vegetation and plant litter production thereby altering the composition of soil inputs. The relative importance of these two controls, diagenesis and inputs, on SOM properties as ecosystems experience climate warming, however, remains poorly understood. To address this issue we characterized the elemental, chemical (nuclear magnetic resonance spectroscopy and total hydrolysable amino acids analysis), and isotopic composition of plant litter and SOM across a well‐constrained mesic boreal forest latitudinal transect in Atlantic Canada. Results across forest sites within each of three climate regions indicated that (1) climate history and diagenesis affect distinct parameters of SOM chemistry, (2) increases in SOM bioreactivity with latitude were associated with elevated proportions of carbohydrates relative to plant waxes and lignin, and (3) despite the common forest type across regions, differences in SOM chemistry by climate region were associated with chemically distinct litter inputs and not different degrees of diagenesis. The observed climate effects on vascular plant litter chemistry, however, explained only part of the regional differences in SOM chemistry, most notably the higher protein content of SOM from warmer regions. Greater proportions of lignin and aliphatic compounds and smaller proportions of carbohydrates in warmer sites' soils were explained by the higher proportion of vascular plant relative to moss litter in the warmer relative to cooler forests. These results indicate that climate change induced decreases in the proportion of moss inputs not only impacts SOM chemistry but also increases the resistance of SOM to decomposition, thus significantly altering SOM cycling in these boreal forest soils.  相似文献   

12.
Northern temperate ecosystems are experiencing warmer and more variable winters, trends that are expected to continue into the foreseeable future. Despite this, most studies have focused on climate change impacts during the growing season, particularly when comparing responses across different vegetation cover types. Here we examined how a perennial grassland and adjacent mixed forest ecosystem in New Hampshire, United States, responded to a period of highly variable winters from 2014 through 2017 that included the warmest winter on record to date. In the grassland, record‐breaking temperatures in the winter of 2015/2016 led to a February onset of plant growth and the ecosystem became a sustained carbon sink well before winter ended, taking up roughly 90 g/m2 more carbon during the winter to spring transition than in other recorded years. The forest was an unusually large carbon source during the same period. While forest photosynthesis was restricted by leaf‐out phenology, warm winter temperatures caused large pulses of ecosystem respiration that released nearly 230 g C/m2 from February through April, more than double the carbon losses during that period in cooler years. These findings suggest that, as winters continue to warm, increases in ecosystem respiration outside the growing season could outpace increases in carbon uptake during a longer growing season, particularly in forests that depend on leaf‐out timing to initiate carbon uptake. In ecosystems with a perennial leaf habit, warming winter temperatures are more likely to increase ecosystem carbon uptake through extension of the active growing season. Our results highlight the importance of understanding relationships among antecedent winter conditions and carbon exchange across land‐cover types to understand how landscape carbon exchange will change under projected climate warming.  相似文献   

13.
The stress–size hypothesis predicts that smaller organisms will be less sensitive to stress. Consequently, climate warming is expected to favour smaller taxa from lower trophic levels and smaller individuals within populations. To test these hypotheses, we surveyed zooplankton communities in 20 boreal lakes in Killarney Provincial Park, Canada during 2005 (an anomalously warm summer) and 2006 (a normal summer). Higher trophic levels had larger responses to warm temperatures supporting the stress–size hypothesis; however, rather than imposing negative effects, higher density and biomass were observed under warmer temperatures. As a result, larger taxa from higher trophic levels were disproportionately favoured with warming, precluding an expected shift towards smaller species. Proportionately greater increases in metabolic rates of larger organisms or altered biotic interactions (e.g. predation and competition) are possible explanations for shifts in biomass distribution. Warmer temperatures also favoured smaller individuals of the two most common species, in agreement with the stress–size hypothesis. Despite this, these populations had higher biomass in the warm summer. Therefore, reduced adult survivorship may have triggered these species to invest in reproduction over growth. Hence, warmer epilimnions, higher zooplankton biomass and smaller individuals within zooplankton populations may function as sensitive indicators of climate warming in boreal lakes.  相似文献   

14.
Climate warming and drying are modifying the fire dynamics of many boreal forests, moving them towards a regime with a higher frequency of extreme fire years characterized by large burns of high severity. Plot‐scale studies indicate that increased burn severity favors the recruitment of deciduous trees in the initial years following fire. Consequently, a set of biophysical effects of burn severity on postfire boreal successional trajectories at decadal timescales have been hypothesized. Prominent among these are a greater cover of deciduous tree species in intermediately aged stands after more severe burning, with associated implications for carbon and energy balances. Here we investigate whether the current vegetation composition of interior Alaska supports this hypothesis. A chronosequence of six decades of vegetation regrowth following fire was created using a database of burn scars, an existing forest biomass map, and maps of albedo and the deciduous fraction of vegetation that we derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite imagery. The deciduous fraction map depicted the proportion of aboveground biomass in deciduous vegetation, derived using a RandomForest algorithm trained with field data sets (n=69, 71% variance explained). Analysis of the difference Normalized Burn Ratio, a remotely sensed index commonly used as an indicator of burn severity, indicated that burn size and ignition date can provide a proxy of burn severity for historical fires. LIDAR remote sensing and a bioclimatic model of evergreen forest distribution were used to further refine the stratification of the current landscape by burn severity. Our results show that since the 1950s, more severely burned areas in interior Alaska have produced a vegetation cohort that is characterized by greater deciduous biomass. We discuss the importance of this shift in vegetation composition due to climate‐induced changes in fire severity for carbon sequestration in forest biomass and surface reflectance (albedo), among other feedbacks to climate.  相似文献   

15.
Land‐use/cover change (LUCC) is an important driver of environmental change, occurring at the same time as, and often interacting with, global climate change. Reforestation and deforestation have been critical aspects of LUCC over the past two centuries and are widely studied for their potential to perturb the global carbon cycle. More recently, there has been keen interest in understanding the extent to which reforestation affects terrestrial energy cycling and thus surface temperature directly by altering surface physical properties (e.g., albedo and emissivity) and land–atmosphere energy exchange. The impacts of reforestation on land surface temperature and their mechanisms are relatively well understood in tropical and boreal climates, but the effects of reforestation on warming and/or cooling in temperate zones are less certain. This study is designed to elucidate the biophysical mechanisms that link land cover and surface temperature in temperate ecosystems. To achieve this goal, we used data from six paired eddy‐covariance towers over co‐located forests and grasslands in the temperate eastern United States, where radiation components, latent and sensible heat fluxes, and meteorological conditions were measured. The results show that, at the annual time scale, the surface of the forests is 1–2°C cooler than grasslands, indicating a substantial cooling effect of reforestation. The enhanced latent and sensible heat fluxes of forests have an average cooling effect of ?2.5°C, which offsets the net warming effect (+1.5°C) of albedo warming (+2.3°C) and emissivity cooling effect (?0.8°C) associated with surface properties. Additional daytime cooling over forests is driven by local feedbacks to incoming radiation. We further show that the forest cooling effect is most pronounced when land surface temperature is higher, often exceeding ?5°C. Our results contribute important observational evidence that reforestation in the temperate zone offers opportunities for local climate mitigation and adaptation.  相似文献   

16.
Modelling simulations of palaeoclimate and past vegetation form and function can contribute to global change research by constraining predictions of potential earth system responses to future warming, and by providing useful insights into the ecophysiological tolerances and threshold responses of plants to varying degrees of atmospheric change. We contrasted HadCM3LC simulations of Amazonian forest at the last glacial maximum (LGM; 21 kyr ago) and a Younger Dryas-like period (13-12 kyr ago) with predicted responses of future warming to provide estimates of the climatic limits under which the Amazon forest remains relatively stable. Our simulations indicate that despite lower atmospheric CO2 concentrations and increased aridity during the LGM, Amazonia remains mostly forested, and that the cooling climate of the Younger Dryas-like period in fact causes a trend toward increased above-ground carbon balance relative to today. The vegetation feedbacks responsible for maintaining forest integrity in past climates (i.e. decreased evapotranspiration and reduced plant respiration) cannot be maintained into the future. Although elevated atmospheric CO2 contributes to a positive enhancement of plant carbon and water balance, decreased stomatal conductance and increased plant and soil respiration cause a positive feedback that amplifies localized drying and climate warming. We speculate that the Amazonian forest is currently near its critical resiliency threshold, and that even minor climate warming may be sufficient to promote deleterious feedbacks on forest integrity.  相似文献   

17.
Boreal forests are sensitive to climatic warming, because low temperatures hold back ecosystem processes, such as the mobilization of nitrogen in soils. A greening of the boreal landscape has been observed using remote sensing, and the seasonal amplitude of CO2 in the northern hemisphere has increased, indicating warming effects on ecosystem productivity. However, field observations on responses of ecosystem productivity have been lacking on a large sub-biome scale. Here we report a significant increase in the annual growth of boreal forests in Finland in response to climatic warming, especially since 1990. This finding is obtained by linking meteorological records and forest inventory data on an area between 60° and 70° northern latitude. An additional increase in growth has occurred in response to changes in other drivers, such as forest management, nitrogen deposition and/or CO2 concentration. A similar warming impact can be expected in the entire boreal zone, where warming takes place. Given the large size of the boreal biome – more than ten million km2– important climate feedbacks are at stake, such as the future carbon balance, transpiration and albedo.  相似文献   

18.
Increases in the atmospheric concentration of carbon dioxide and associated changes in climate may exert large impacts on plant physiology and the density of vegetation cover. These may in turn provide feedbacks on climate through a modification of surface‐atmosphere fluxes of energy and moisture. This paper uses asynchronously coupled models of global vegetation and climate to examine the responses of potential vegetation to different aspects of a doubled‐CO2 environmental change, and compares the feedbacks on near‐surface temperature arising from physiological and structural components of the vegetation response. Stomatal conductance reduces in response to the higher CO2 concentration, but rising temperatures and a redistribution of precipitation also exert significant impacts on this property as well as leading to major changes in potential vegetation structure. Overall, physiological responses act to enhance the warming near the surface, but in many areas this is offset by increases in leaf area resulting from greater precipitation and higher temperatures. Interactions with seasonal snow cover result in a positive feedback on winter warming in the boreal forest regions.  相似文献   

19.
抚仙湖是云贵高原著名的断陷深水湖,其沉积物蕴藏着流域地质历史时期丰富的环境信息。对钻取自该湖的900cm 湖泊沉积物岩芯进行花粉/炭屑分析及花粉数据的主成分分析表明,抚仙湖流域的植被、气候与火灾在过去的13 300年经历了5个阶段的变化:(1)13 300—10 400cal.a BP,植被以松林为主,伴有山地暗针叶林和常绿阔叶林,表明该时期气候较为冷湿,森林火灾多发,在后期随着温度和湿度的降低,森林火灾愈加频繁。(2)10 400—5 700cal.a BP,松林收缩,常绿阔叶林扩张,出现一定数量的落叶阔叶林,显示该时期气候偏暖偏干;此阶段早期随着气候变暖变干森林火灾的发生延续上阶段高发的状态,直到9 500cal.a BP后随着湿度的增加森林火灾明显减少。(3)5 700—1 800cal.a BP,松林变化较小,常绿/落叶阔叶林比重增大,首次出现了暖热性的枫香林,显示该时期暖湿的气候特征,火灾发生频率低。(4)1 800—500cal.a BP,松林扩张,阔叶林收缩,本阶段后期草本植被比重开始增加,显示该时期气候相对冷干,森林火灾发生频率较高。(5)500cal.a BP至今,松林收缩,落叶阔叶树种增多,草本植物花粉明显增多,显示该时期气候温凉偏干,森林火灾发生频率降低。  相似文献   

20.
The lithostratigraphy, calcareous nannofossil biostratigraphy, carbon‐ and oxygen‐isotope stratigraphy and gamma‐ray profile are presented for the Skælskør‐1 core, eastern Denmark. The correlation of carbon isotopes to Gubbio (Italy) and ODP Site 762C (Indian Ocean) provides the chronostratigrahical framework of the core through a tie to magnetostratigraphy. Two new carbon‐isotope excursions are defined for the uppermost Maastrichtian of the core and prove useful for long‐distance correlation. Twenty stratigraphic tie‐points are used for correlation of the upper Campanian–Maastrichtian interval by combining carbon‐isotope and gamma‐ray variations. Significant dissimilarities in the gamma‐ray profiles of the Danish Basin cores preclude the sole use of this tool for basin‐scale correlations. Bulk oxygen‐isotopes and semi‐quantitative abundance changes in the warm‐water calcareous nannofossil Watznaueria barnesiae and the cool‐water Kamptnerius magnificus highlight the following past changes in sea‐surface temperatures (SSTs): relatively warm late Campanian SSTs, cooling across the Campanian–Maastrichtian boundary and through the early Maastrichtian, warming across the early–late Maastrichtian transition, cooling in the late Maastrichtian, intense warming in the latest Maastrichtian chron C29r, followed by a very short episode of cooling immediately before the Cretaceous–Palaeogene boundary. The late Campanian–Maastrichtian evolution in sea water temperatures inferred from the Danish Basin is similar to that delineated at tropical latitude oceanic sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号