首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gardner MP  Fowler K  Barton NH  Partridge L 《Genetics》2005,169(3):1553-1571
The extent of genetic variation in fitness is a crucial issue in evolutionary biology and yet remains largely unresolved. In Drosophila melanogaster, we have devised a method that allows the net effects on fitness of heterozygous wild-type chromosomes to be measured, by competing them against two different "balancer" chromosomes. We have applied the method to a large sample of 40 wild-type third chromosomes and have measured fitnesses of nonlethal chromosomes as well as chromosomes bearing recessive lethals. The measurements were made in the environment to which the population was adapted and did not involve inbreeding. The results show an extraordinary similarity in the behavior of replicates of the same chromosome, indicating consistent genetic effects on total fitness. Some invading chromosomes increased rapidly and some slowly, and some rose to appreciable frequency after several months, but then declined again: in every case, the same pattern was seen in each replicate. We estimated relative fitnesses, rates of change of fitness, and relative viabilities, for each chromosome. There were significant fluctuations around the fitted model, which were also highly replicable. Wild-type chromosomes varied substantially in their effects on heterozygous fitness, and these effects vary through time, most likely as a result of genotype x environment interactions.  相似文献   

2.
We have studied genetic variation for levels of activity of the enzyme superoxide dismutase (SOD) in Drosophila melanogaster. We have constructed 34 lines homozygous for a given second and a given third chromosome derived from eight original lines; all lines were homozygous for the fast (F) allele of Sod. The variation in the relative levels of SOD CRM ranges from 1 to 1.6. The second chromosomes modify the SOD level, even though the structural Sod locus is in the third chromosome, and the specific effect of a given second chromosome depends on the particular third chromosome with which it is combined. This indicates that the variation in SOD content is controlled by polygenic modifiers present in the second (and in the third) chromosome. In addition to these trans-acting modifiers, we have isolated a cis-acting element (Sod CAl ) that reduces SOD CRM levels to 3.5% of a typical F/F homozygote. Sod CAl is either a mutation in a regulatory site closely linked to the structural locus or a change in the coding sequence affecting the rate of degradation of the enzyme.This research was supported by a Fellowship of the Swiss NSF to J.-D.G., and by Contract PA 200-14 Mod #4 with the U.S. Department of Energy.  相似文献   

3.
Genetic variation of Drosophila melanogaster natural populations   总被引:9,自引:0,他引:9  
  相似文献   

4.
5.
Heart rate in pre-pupae of Drosophila melanogaster is shown to vary over a wide range from 2.5 to 3.7 beats per second. Quantitative genetic analysis of a sample of 11 highly inbred lines indicates that approaching one-quarter of the total variance in natural populations can be attributed to genetic differences between flies. A hypomorphic allele of the potassium channel gene ether-a-gogo, which is homologous to a human long-QT syndrome susceptibility gene (HERG), has a heart rate at the low end of the wild-type range, but this effect can be suppressed in certain wild-type genetic backgrounds. This study provides a baseline for investigation of pharmacological and other physiological influences on heart rate in the model organism, and implies that quantitative genetic dissection will provide insight into the molecular basis for variation in normal and arrhythmic heart function.  相似文献   

6.
Genetic variation in the expression of ADH in Drosophila melanogaster   总被引:3,自引:4,他引:3  
Several chromosomes derived from natural populations have been identified that affect the expression of alcohol dehydrogenase (ADH). Second chromosomes, which also carry the structural gene Adh, show a great deal of polymorphism of genetic elements that determine how much enzyme protein accumulates. The level of enzyme was measured in third instar larvae, 6-to-8-day-old males and in larval fat bodies and alimentary canals. In general, activities in the different organs and stages are highly correlated with one another. One line was found, however, in which the ADH level in the fat body is more than twice the level one would expect on the basis of the activity in alimentary canal. We have also found evidence of third-chromosome elements that affect the level of ADH.  相似文献   

7.
We have sampled wild chromosomes from two natural populations of Drosophila melanogaster and obtained flies fully homozygous for the second chromosome, the third chromosome, or both, as well as flies heterozygous for one or both wild chromosomes and balancer chromosomes. Rate of embryogenesis (egg laying to larval hatching) and rate of development from egg to adult are measured, by classifying the individuals into fast, intermediate, and slow developmental classes. The experiments indicate that variation for rate of embryogenesis and for rate of egg-to-adult development is plentiful in the natural populations. Various hypotheses are enunciated to account for the small range of phenotypic variation observed in wild-type individuals with respect to the two parameters (embryogenesis and egg-to-adult development) and for the difficulty in changing the mean rates by artificial selection. Appropriate experiments may decide among the hypotheses, helping us to understand the genetic control of rate of ontogenesis, which is an important fitness component.  相似文献   

8.
Body pigmentation in insects and other organisms is typically variable within and between species and is often associated with fitness. Regulatory variants with large effects at bab1, t and e affect variation in abdominal pigmentation in several populations of Drosophila melanogaster. Recently, we performed a genome wide association (GWA) analysis of variation in abdominal pigmentation using the inbred, sequenced lines of the Drosophila Genetic Reference Panel (DGRP). We confirmed the large effects of regulatory variants in bab1, t and e; identified 81 additional candidate genes; and validated 17 candidate genes (out of 28 tested) using RNAi knockdown of gene expression and mutant alleles. However, these analyses are imperfect proxies for the effects of segregating variants. Here, we describe the results of an extreme quantitative trait locus (xQTL) GWA analysis of female body pigmentation in an outbred population derived from light and dark DGRP lines. We replicated the effects on pigmentation of 28 genes implicated by the DGRP GWA study, including bab1, t and e and 7 genes previously validated by RNAi and/or mutant analyses. We also identified many additional loci. The genetic architecture of Drosophila pigmentation is complex, with a few major genes and many other loci with smaller effects.  相似文献   

9.
10.
11.
Abstract The evolution of fitness is central to evolutionary theory, yet few experimental systems allow us to track its evolution in genetically and environmentally relevant contexts. Reverse evolution experiments allow the study of the evolutionary return to ancestral phenotypic states, including fitness. This in turn permits well‐defined tests for the dependence of adaptation on evolutionary history and environmental conditions. In the experiments described here, 20 populations of heterogeneous evolutionary histories were returned to their common ancestral environment for 50 generations, and were then compared with both their immediate differentiated ancestors and populations which had remained in the ancestral environment. One measure of fitness returned to ancestral levels to a greater extent than other characters did. The phenotypic effects of reverse evolution were also contingent on previous selective history. Moreover, convergence to the ancestral state was highly sensitive to environmental conditions. The phenotypic plasticity of fecundity, a character directly selected for, evolved during the experimental time frame. Reverse evolution appears to force multiple, diverged populations to converge on a common fitness state through different life‐history and genetic changes.  相似文献   

12.
Transposable elements and fitness in Drosophila melanogaster   总被引:4,自引:0,他引:4  
T F Mackay 《Génome》1989,31(1):284-295
Transposable elements constitute a significant fraction of the Drosophila melanogaster genome. The five families of moderately repeated transposable elements identified to date occupy dispersed and variable genomic locations, but have relatively constant copy numbers per individual. What effect to these elements have on the fitness of the individuals harboring them? Experimental evidence relating to this question is reviewed. The relevant data fall into two broad categories. The first involves the determination of the distribution of transposable elements in natural populations, by restriction mapping or in situ hybridization, and the comparison of the observed distribution with different theoretical expectations. The second approach is to study directly the effects of new transposable element-induced mutations on fitness. The P family of transposable elements is a particularly efficient mutagen, and the results of experiments in which initially P-free chromosomes are contaminated with P elements are discussed with regard to P-induced fitness mutations.  相似文献   

13.
Models predict that developmental stability measured by fluctuating asymmetry should be positively correlated with fitness. Although such a correlation has often been suggested by indirect studies, there is still a lack of direct experimental evidence. In this note, I have measured the fluctuating asymmetry of sternopleural bristle counts in 32 lines of Drosophila melanogaster sharing the same genetic background but displaying all combinations of five visible mutations. Fluctuating asymmetry was heterogeneous among lines, suggesting a direct impact of the mutations on developmental stability. Two measures of fitness were made for each line: productivity (a combined measure of fecundity and egg‐to‐adult survivorship) and competitive male mating success. Fluctuating asymmetry was correlated with neither of these two components of fitness. This suggests that generalizations about fluctuating asymmetry must be taken with care.  相似文献   

14.
15.
Three dipeptidases in Drosophila melanogaster are under independent genetic control and their structural genes have been localized, Dip-A to 2R and Dip-B and Dip-C to 3R (Voelker and Langley, 1978; Ohnishi and Voelker, 1981). These enzymes were characterized with respect to their substrate specificities, genetic variability (electrophoretic mobility and quantitative activity level), ontogeny (activity and isozyme pattern), and tissue localization. The dipeptide substrate specificities of DIP-A and DIP-B overlap each other considerably, but do not overlap with DIP-C. In natural populations, DIP-B and DIP-C are essentially monomorphic electrophoretically whereas DIP-A is polymorphic for three allozymes. Both DIP-A and DIP-B show quantitative genetic variation of activity level within an allozyme class. All three enzymes are expressed at all stages in the life cycle, but DIP-A and DIP-B activities vary considerably according to developmental stage and sex of adult. The tissue localizations of DIP-A and DIP-B activities show similar patterns and a nearly ubiquitous occurrence of both enzymes, but with particularly high values in larval and adult midguts and in the adult female reproductive system. These results suggest a general metabolic role for the enzymes, such as regulation of the concentrated pools of amino acids and oligopeptides found in Drosophila tissues.This work was supported by Public Health Service Grant GM 11546.Paper No. 7066 of the Journal Series of the North Carolina Agricultural Research Service, Raleigh.  相似文献   

16.
17.
《Fly》2013,7(2):143-150
Activation of the immune system is beneficial in defending against pathogens, but may also have costly side effects on an organism's fitness. In this study we examine the fitness consequences of immune challenge in female Drosophila melanogaster by examining both direct (within generation) and indirect (between generations) costs and benefits of immune challenge. Though passing immunity to offspring has been studied in mammals for many years, only recently have researchers found evidence for a cross-generational priming response in invertebrates. By examining both potential fitness costs and benefits in the next generation, we were able to determine what effect immune challenge has on fitness. In agreement with other studies, we found a direct cost to infection, where immune challenged females laid fewer eggs than unchallenged females in two of the three lines we examined. In addition, we found some evidence for indirect costs. Offspring from immune challenged mothers had shorter lifespans than those from unchallenged mothers in two of the three lines. Interestingly, we do not see any effect of maternal immune challenge on offspring's ability to overcome an infection, nor do we see an effect on other fitness traits measured, including egg size, egg-adult viability, and offspring resistance to oxidative stress. While previous studies in bumblebees and beetles have demonstrated cross-generation priming, our results suggest that it may not be a general phenomenon, and more work is needed to determine how widespread it is.  相似文献   

18.
19.
Summary An X chromosome in Drosophila melanogaster is described which is mutationally unstable. Mutational events were identified through phenotypic changes associated with a tandem duplication of the X chromosome in which the white locus is present in duplicate. The left segment of the tandem duplication was marked with the mutant w sp, the right segment with mutant w 17G. Some of the phenotypic changes were identified as deletions involving the w 17G marked segment of the duplication. Other phenotypic changes involved the left segment in which phenotypically w sp mutated to w. Experimental evidence is presented which attributes these latter mutations to insertions of foreign DNA into the w locus equivalent to the insertion mutations of E. coli.  相似文献   

20.
Molecular Genetics and Genomics - The RpII215 region of the X chromosome of Drosophila melanogaster was investigated to identify genetic functions and correlate these with the known molecular...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号