首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gardner MP  Fowler K  Barton NH  Partridge L 《Genetics》2005,169(3):1553-1571
The extent of genetic variation in fitness is a crucial issue in evolutionary biology and yet remains largely unresolved. In Drosophila melanogaster, we have devised a method that allows the net effects on fitness of heterozygous wild-type chromosomes to be measured, by competing them against two different "balancer" chromosomes. We have applied the method to a large sample of 40 wild-type third chromosomes and have measured fitnesses of nonlethal chromosomes as well as chromosomes bearing recessive lethals. The measurements were made in the environment to which the population was adapted and did not involve inbreeding. The results show an extraordinary similarity in the behavior of replicates of the same chromosome, indicating consistent genetic effects on total fitness. Some invading chromosomes increased rapidly and some slowly, and some rose to appreciable frequency after several months, but then declined again: in every case, the same pattern was seen in each replicate. We estimated relative fitnesses, rates of change of fitness, and relative viabilities, for each chromosome. There were significant fluctuations around the fitted model, which were also highly replicable. Wild-type chromosomes varied substantially in their effects on heterozygous fitness, and these effects vary through time, most likely as a result of genotype x environment interactions.  相似文献   

2.
We present the theoretical background to a new method for measuring genetic variation for total fitness in Drosophila. The method allows heterozygous effects on total fitness of whole wild-type chromosomes to be measured under normal demography with overlapping generations. The wild-type chromosomes are competed against two balancer chromosomes (B1, B2, say), providing a standard genotype B1/B2 against which variation in the fitness effects of the wild-type chromosomes can be assessed. Fitness can be assessed in two ways: (i) at equilibrium of all three chromosomes under heterozygote advantage, and (ii) during displacement of one balancer by the other. Equilibrium with all three chromosomes present will be achieved only if the wild-type homozygote is not too fit, and if the fitnesses of the three heterozygotes are not too unequal. These conditions were not satisfied for any of a sample of 12 lethal-bearing chromosomes isolated from a random-bred laboratory population of Drosophila. At equilibrium, genotypic frequencies show low sensitivity to changes in genotypic fitness. Furthermore, where all four genotypes are viable and fertile, supplementary information from cages with only two chromosomes present and from direct measurements of pre-adult viability are required to estimate fitnesses from frequencies. The invasion method has the advantages of a greater sensitivity and of not requiring further data to estimate fitnesses if the wild-type homozygote is fertile. However, it requires that multiple samples be taken as the invasion progresses. In a discrete generation model, generation time influences fitness estimates from this method and is difficult to estimate accurately from the data. A full age-structured model can also be applied to the data from both types of experiment. For the invasion method, this gives fitness estimates close to those from the discrete generation model.  相似文献   

3.
The extent of genetic variation in fitness and its components and genetic variation's dependence on environmental conditions remain key issues in evolutionary biology. We present measurements of genetic variation in preadult viability in a laboratory-adapted population of Drosophila melanogaster, made at four different densities. By crossing flies heterozygous for a wild-type chromosome and one of two different balancers (TM1, TM2), we measure both heterozygous (TM1/+, TM2/+) and homozygous (+/+) viability relative to a standard genotype (TM1/TM2). Forty wild-type chromosomes were tested, of which 10 were chosen to be homozygous viable. The mean numbers produced varied significantly between chromosome lines, with an estimated between-line variance in log(e) numbers of 0.013. Relative viabilities also varied significantly across chromosome lines, with a variance in log(e) homozygous viability of 1.76 and of log(e) heterozygous viability of 0.165. The between-line variance for numbers emerging increased with density, from 0.009 at lowest density to 0.079 at highest. The genetic variance in relative viability increases with density, but not significantly. Overall, the effects of different chromosomes on relative viability were remarkably consistent across densities and across the two heterozygous genotypes (TM1, TM2). The 10 lines that carried homozygous viable wild-type chromosomes produced significantly more adults than the 30 lethal lines at low density and significantly fewer adults at the highest density. Similarly, there was a positive correlation between heterozygous viability and mean numbers at low density, but a negative correlation at high density.  相似文献   

4.
Simmons MJ  Preston CR  Engels WR 《Genetics》1980,95(2):467-475
The relative viabilities and fitnesses of wild-type second chromosomes in heterozygous condition were determined. Joint analysis of these permitted an estimation of a parameter that relates the viability effect of a mutation to its effect on fitness as a whole. For newly arisen mutations, the estimate was slightly greater than one, indicating that the reductions in viability caused by these mutations are associated with reductions in other components of fitness. For mutations from an equilibrium population, the estimate of the parameter was near zero, implying that the deleterious viability effects of these mutations are compensated by improvements in other aspects of fitness.  相似文献   

5.
The heterozygous effects on fitness of second chromosomes carrying mutants induced with different doses of EMS were ascertained by monitoring changes in chromosome frequencies over time. These changes were observed in populations in which the treated chromosomes, as well as untreated competitors, remained heterozygous in males generation after generation. This situation was achieved by using a translocation which links the second chromosome to the X chromosome; however, only untranslocated second chromosomes were mutagenized. Chromosomes were classified according to their effects on viability in homozygous condition. A preliminary homozygosis identified completely lethal chromosomes; secondary tests distinguished between drastic (viability index < 0.1) and nondrastic chromosomes. Chromosomes that were nondrastic after treatment were found to reduce the fitness of their heterozygous carriers by 3-5%. The data show that flies homozygous for these chromosomes were about 2.7% less viable per treatment with 1 mm EMS than flies homozygous for untreated chromosomes. By comparing the fitness-depressing effects of nondrastic EMS-induced mutants in heterozygous condition with the corresponding viability-depressing effects measured by Temin, it is apparent that the total fitness effects are several times larger than the viability effects alone. Completely lethal chromosomes derived from the most heavily treated material reduced fitness by 11% in heterozygous condition; approximately half of this reduction was due to the lethal mutations themselves.  相似文献   

6.
Joyce A. Mitchell 《Genetics》1977,87(4):763-774
Drosophila melanogaster X chromosomes were mutagenized by feeding males sucrose solutions containing ethyl methanesulfonate (EMS); the concentrations of EMS in the food were 2.5 mM, 5.0 mM, and 10.0 mM. Chromosomes were exposed to the mutagen up to three times by treating males in succeeding generations. After treatment, the effective exposures were 2.5, 5.0, 7.5, 10.0, 15.0, and 30.0 mM EMS. X chromosomes treated in this manner were tested for effects on fitness in both hemizygous and heterozygous conditions, and for effects on viability in hemizygous and homozygous conditions. In addition, untreated X chromosomes were available for study. The viability and heterozygous fitness effects are presented in this paper, and the hemizygous fitness effects are discussed in the accompanying one (MITCHELL and SIMMONS 1977). Hemizygous and homozygous viability effects were measured by segregation tests in vial cultures. For hemizygous males, viability was reduced 0.5 percent per mM EMS treatment; for homozygous females, it was reduced 0.7% per mM treatment. The decline in viability appeared to be a linear function of EMS dose. The viabilities of males and females were strongly correlated. Heterozygous fitness effects were measured by monitoring changes in the frequencies of treated and untreated X chromosomes in discrete generation populations which, through the use of an X-Y translocation, maintained them only in heterozygous condition. Flies that were heterozygous for a treated chromosome were found to be 0.4% less fit per mM EMS than flies heterozygous for an untreated one.  相似文献   

7.
We have sampled wild chromosomes from two natural populations of Drosophila melanogaster and obtained flies fully homozygous for the second chromosome, the third chromosome, or both, as well as flies heterozygous for one or both wild chromosomes and balancer chromosomes. Rate of embryogenesis (egg laying to larval hatching) and rate of development from egg to adult are measured, by classifying the individuals into fast, intermediate, and slow developmental classes. The experiments indicate that variation for rate of embryogenesis and for rate of egg-to-adult development is plentiful in the natural populations. Various hypotheses are enunciated to account for the small range of phenotypic variation observed in wild-type individuals with respect to the two parameters (embryogenesis and egg-to-adult development) and for the difficulty in changing the mean rates by artificial selection. Appropriate experiments may decide among the hypotheses, helping us to understand the genetic control of rate of ontogenesis, which is an important fitness component.  相似文献   

8.
Spontaneous mutations were allowed to accumulate in a second chromosome that was transmitted only through heterozygous males for 40 generations. At 10-generation intervals the chromosomes were assayed for homozygous effects of the accumulated mutants. From the regression of homozygous viability on the number of generations of mutant accumulation and from the increase in genetic variance between replicate chromosomes it is possible to estimate the mutation rate and average effect of the individual mutants. Lethal mutations arose at a rate of 0.0060 per chromosome per generation. The mutants having small effects on viability are estimated to arise with a frequency at least 10 times as high as lethals, more likely 20 times as high, and possibly many more times as high if there is a large class of very nearly neutral mutations.-The dominance of such mutants was measured for chromosomes extracted from a natural population. This was determined from the regression of heterozygous viability on that of the sum of the two constituent homozygotes. The average dominance for minor viability genes in an equilibrium population was estimated to be 0.21. This is lower than the value for new mutants, as expected since those with the greatest heterozygous effect are most quickly eliminated from the population. That these mutants have a disproportionately large heterozygous effect on total fitness (as well as on the viability component thereof) is shown by the low ratio of the genetic load in equilibrium homozygotes to that of new mutant homozygotes.  相似文献   

9.
Rand DM  Clark AG  Kann LM 《Genetics》2001,159(1):173-187
Theoretical and empirical studies have shown that selection cannot maintain a joint nuclear-cytoplasmic polymorphism within a population except under restrictive conditions of frequency-dependent or sex-specific selection. These conclusions are based on fitness interactions between a diploid autosomal locus and a haploid cytoplasmic locus. We develop a model of joint transmission of X chromosomes and cytoplasms and through simulation show that nuclear-cytoplasmic polymorphisms can be maintained by selection on X-cytoplasm interactions. We test aspects of the model with a "diallel" experiment analyzing fitness interactions between pairwise combinations of X chromosomes and cytoplasms from wild strains of Drosophila melanogaster. Contrary to earlier autosomal studies, significant fitness interactions between X chromosomes and cytoplasms are detected among strains from within populations. The experiment further demonstrates significant sex-by-genotype interactions for mtDNA haplotype, cytoplasms, and X chromosomes. These interactions are sexually antagonistic--i.e., the "good" cytoplasms in females are "bad" in males--analogous to crossing reaction norms. The presence or absence of Wolbachia did not alter the significance of the fitness effects involving X chromosomes and cytoplasms but tended to reduce the significance of mtDNA fitness effects. The negative fitness correlations between the sexes demonstrated in our empirical study are consistent with the conditions that maintain cytoplasmic polymorphism in simulations. Our results suggest that fitness interactions with the sex chromosomes may account for some proportion of cytoplasmic variation in natural populations. Sexually antagonistic selection or reciprocally matched fitness effects of nuclear-cytoplasmic genotypes may be important components of cytonuclear fitness variation and have implications for mitochondrial disease phenotypes that differ between the sexes.  相似文献   

10.
X chromosomes mutagenized with EMS were tested for their effects on the fitness of hemizygous carriers. The tests were carried out in populations in which treated and untreated X chromosomes segregated from matings between males and attached-X females; the populations were maintained for several generations, during which time changes in the frequencies of the treated and untreated chromosomes were observed. From the rates at which the frequencies changed, the fitness effects of the treated chromosomes were determined. It was found that flies hemizygous for a mutagenized chromosome were 1.7% less fit per mM EMS treatment than those hemizygous for an untreated chromosome. Since the same flies were only 0.5% per mM less viable than their untreated counterparts, the total fitness effect of an X chromosome carrying EMS-induced mutants is three to four times greater than its viability effect. By comparing the heterozygous effect of a mutagenized X chromosome on fitness with the corresponding hemizygous effect, the dominance value for the chromosome is estimated to be about 0.25.  相似文献   

11.
The origin and maintenance of genetic recombination are unsettled evolutionary issues. Genetic variation affecting recombination frequency appears to be pervasive in nature, suggesting that natural selection must increase recombination frequency under some circumstances. However, theoretical arguments and experimental evidence indicate that the frequency of recombination should be reduced by natural selection.A hypothesis not previously explored is that recombination modifiers may directly affect the fitness of their carriers; rather than only indirectly (through the production of recombinant progeny) as generally assumed. We have tested this hypothesis by examining three fitness components (viability, male fertility, and female fecundity) in Drosophila melanogaster homozygous for second chromosomes isolated from a natural population. Then, we have measured the frequency of recombination in flies heterozygous for each wild second chromosome and a chromosome carrying five recessive alleles.The results indicate that genes modulating the frequency of recombination have direct effects on fitness as proposed by the hypothesis. However, the correlation between frequency of recombination and fitness is negative. Thus, the riddle of recombination remains unexplained and, in fact, more puzzling that ever.  相似文献   

12.
Most spontaneous mutations affecting fitness are likely to be deleterious, but the strength of selection acting on them might be impacted by environmental stress. Such stress‐dependent selection could expose hidden genetic variation, which in turn might increase the adaptive potential of stressed populations. On the other hand, this variation might represent a genetic load and thus lead to population extinction under stress. Previous studies to determine the link between stress and mutational effects on fitness, however, have produced inconsistent results. Here, we determined the net change in fitness in 29 genotypes of the green algae Chlamydomonas reinhardtii that accumulated mutations in the near absence of selection for approximately 1000 generations across two stress gradients, increasing NaCl and decreasing phosphate. We found mutational effects to be magnified under extremely stressful conditions, but such effects were specific both to the type of stress and to the genetic background. The detection of stress‐dependent fitness effects of mutations depended on accurately scaling relative fitness measures by generation times, thus offering an explanation for the inconsistencies among previous studies.  相似文献   

13.
A fundamental assumption of models for the maintenance of genetic variation by environmental heterogeneity is that selection favours different genotypes in different environments. Here, I use a method for measuring total fitness of chromosomal heterozygotes in Drosophila melanogaster to assess genotype-environment interaction for fitness across two ecologically relevant environments, medium with and without added ethanol. Two-third chromosomes are compared, one from a population selected for ethanol tolerance, and the other from a control population. The results show strong crossing of reaction norms for outbred, total fitness, with the chromosome from the ethanol-adapted population increasing fitness on ethanol-supplemented food, but decreasing fitness on regular food, relative to the chromosome from the control population. Although I did not map the fitness effects below the chromosome level, the method could be adapted for quantitative trait locus mapping, to determine whether a substantial proportion of fitness variation is contributed by loci at which different alleles are favoured in different environments.  相似文献   

14.
Arrowhead (AR) third chromosome arrangements of Drosophila pseudoobscura, whose competitive fitnesses had been determined in population cages, were tested for their genetic loads in homozygous, heterozygous (homokaryotypic), and heterokaryotypic (AR/CH) combinations. The results showed that their competitive population cage performances were correlated to their viabilities as homozygotes but were not correlated to their viabilities as heterozygotes or as heterokaryotypes. However, the results do not fit in too simply with the mutational model of population structure, since the improvement of homozygous viability with increased competitive fitness was not accompanied by a significant degree of dominance as measured by the regression of viabilities of heterozygotes on homozygotes. Only the AR chromosomes derived from the population with poorest competitive fitness showed marked partial dominance (h=.35). The viabilities of heterokaryotypes were markedly uniform for all chromosomes tested and produced significantly greater numbers of flies per culture than the homokaryotypes. In general, the results show that the ranking of relative competitive fitnesses of these chromosomes is not a simple extrapolation of their viabilities, although marked changes in the populations tested have occurred. It is proposed that the differences in competitive fitness, homozygous viability, and degree of dominance observed among these chromosomes, arise from differences in genetic variability which enable different linkage relationships to be established for genes affecting these attributes.  相似文献   

15.
Itan E  Tannenbaum E 《PloS one》2012,7(5):e26513
This paper develops a mathematical model describing the evolutionary dynamics of a unicellular, asexually replicating population exhibiting chromosomal instability. Chromosomal instability is a form of genetic instability characterized by the gain or loss of entire chromosomes during cell division. We assume that the cellular genome is divided into several homologous groups of chromosomes, and that a single functional chromosome per homologous group is required for the cell to have the wild-type fitness. If the fitness is unaffected by the total number of chromosomes in the cell, our model is analytically solvable, and yields a mean fitness at mutation-selection balance that is identical to the mean fitness when there is no chromosomal instability. If this assumption is relaxed and the total number of chromosomes in the cell is not allowed to increase without bound, then chromosomal instability leads to a reduction in mean fitness. The results of this paper provide a useful baseline that can inform both future theoretial and experimental studies of chromosomal instability.  相似文献   

16.
A Danish population of bank voles is polymorphic for three electrophoretically different salivary amylases; A, H and S, of which A is the most common. Both single-, double- and triple banded phenotypes were observed, and in several crosses two electrophoretic forms cosegregated. In addition to the qualitative variation, some individuals show consistent quantitative variation in the relative activities of their amylase bands. This variation has been qualified by spectrophotometrical measurements of the relative amounts of amylase protein in the various bands. --Seventy wild chromosomes were analyzed by determining the amounts of amylase they produced when heterozygous with a laboratory stock chromosome known to carry two closely linked amylase genes, both coding for a fourth electrophoretic variant, B. The amount of A-protein divided by half the amount of B-protein was used as an estimate of the number of A-genes on the tested chromosomes. The wild chromosomes fell into three clearly distinguishable classes: 9 clustered around a gene number estimate of one, 45 chromosomes yielded estimates around two genes, and the gene number estimate of the remaining 16 was close to three. The integer values of the gene number estimates and the cosegregation of electrophoretically different salivary amylases are consistent with the model that the population is polymorphic for chromosomes with either one, two, or three closely linked amylase genes. It is suggested that such gene number variation may be more common than generally recognized, and some other reported cases of quantitative enzyme variation, for instance that of human red cell acid phosphatase, are interpreted in terms of variation in the number of genes involved.  相似文献   

17.
To investigate the genetic basis of the seasonal fluctuations in resistance to three organophosphates, observed within a natural population of Drosophila melanogaster (Meigen), we compared the intrinsic rate of increase, generation time and net reproduction rate among chromosome substitution lines derived from a resistant and a susceptible line, obtained from this natural population. There was significant variation among substituted lines; lines possessing the third chromosome from the resistant line, which confers resistance to the three organophosphates, generally showed lower mean values of these fitness measures. Chromosomal analyses also indicated significant negative contributions of the third chromosome from the resistant line. However, significant positive contributions of the interactions among chromosomes from the resistant line to these fitness measures were also detected. We further conducted a local stability analysis, in which each chromosome-substituted line was assumed to be introduced at a low frequency into the initial susceptible population. It was demonstrated that the resistance factor(s) on the third chromosome tend to decrease in their frequency under both density-independent and juvenile density-regulated conditions. Based on these results, a possible explanation for the seasonal fluctuations in resistance to the three organophosphates observed in the natural population was proposed.  相似文献   

18.
Eanes WF  Hey J  Houle D 《Genetics》1985,111(4):831-844
We report here a study of viability inbreeding depression associated with the X chromosome of Drosophila melanogaster. Fifty wild chromosomes from Mt. Sinai, New York, and 90 wild chromosomes from Death Valley, California, were extracted using the marked FM6 balancer chromosome and viabilities measured for homozygous and heterozygous females, and for hemizygous males, relative to FM6 males as a standard genotype. No statistically significant female genetic load was observed for either chromosome set, although a 95% confidence limit estimated the total load <0.046 for the samples pooled. About 10% of the Death Valley chromosomes appear to be "supervital" as homozygotes. There is little evidence for a pervasive sex-limited detrimental load on the X chromosome; the evidence indicates nearly identical viability effects in males and homozygous females excluding the supervital chromosomes. The average degree of dominance for viability polygenes is estimated between 0.23 to 0.36, which is consistent with autosomal variation and implies near additivity. We conclude that there is little genetic load associated with viability variation on the X chromosome and that the substantial reduction in total fitness observed for chromosome homozygosity in an earlier study may be due largely to sex-limited fertility in females.  相似文献   

19.
Yamazaki T 《Genetics》1984,108(1):201-211
Six laboratory strains of Drosophila melanogaster were used to measure "net fitness" and its components by interspecific competition with D. hydei using 100 experimental populations. The "total competitive ability," an estimate of net fitness measured in these competition experiments, was tightly correlated with another measure of net fitness, the population size, in single-species experiments (phenotypic correlation rp = 0.675 and genotypic correlation rg = 0.997). Other components of fitness were also measured simultaneously, and the correlation with the net fitness was calculated. The very high correlation between two measurements of net fitness and lower correlations between net fitness and components of fitness suggests that these net fitness measures are more reliable estimates of the "real net fitness" than the components of fitness.  相似文献   

20.
Any release of transgenic organisms into nature is a concern because ecological relationships between genetically engineered organisms and other organisms (including their wild-type conspecifics) are unknown. To address this concern, we developed a method to evaluate risk in which we input estimates of fitness parameters from a founder population into a recurrence model to predict changes in transgene frequency after a simulated transgenic release. With this method, we grouped various aspects of an organism's life cycle into six net fitness components: juvenile viability, adult viability, age at sexual maturity, female fecundity, male fertility, and mating advantage. We estimated these components for wild-type and transgenic individuals using the fish, Japanese medaka (Oryzias latipes). We generalized our model's predictions using various combinations of fitness component values in addition to our experimentally derived estimates. Our model predicted that, for a wide range of parameter values, transgenes could spread in populations despite high juvenile viability costs if transgenes also have sufficiently high positive effects on other fitness components. Sensitivity analyses indicated that transgene effects on age at sexual maturity should have the greatest impact on transgene frequency, followed by juvenile viability, mating advantage, female fecundity, and male fertility, with changes in adult viability, resulting in the least impact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号