首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A resolution of the paradox of enrichment   总被引:1,自引:0,他引:1  
Theoretical studies have shown a paradoxical destabilizing response of predator-prey ecosystems to enrichment, but there is the gap between the intuitive view of nature and this theoretical prediction. We studied a minimal predator-prey system (a two predator-two prey system) in which the paradox of enrichment pattern can vanish; the destabilization with enrichment is reversed, leading to stabilization (a decrease in the amplitude of oscillation of population densities). For resolution of the paradox, two conditions must be met: (1) the same prey species must be preferred as a dietary item by both predator species, creating the potential for high exploitative competition between the predator species, and (2), while both predators are assumed to select their diet in accordance with optimal diet utilization theory, one predator must be a specialist and the other a generalist. In this system, the presence of a less profitable prey species can cause the increase in population oscillation amplitudes associated with increasing enrichment to be suppressed via the optimal diet utilization of the generalist predator. The resulting stabilization is explained by the mitigating effect of the less profitable prey showing better population growth with increasing enrichment on the destabilization underlying the specialist predator and prey relation, thus resolving the paradox of enrichment.  相似文献   

2.
The paradox of enrichment in an adaptive world   总被引:1,自引:0,他引:1  
Paradoxically, enrichment can destabilize a predator-prey food web. While adaptive dynamics can greatly influence the stability of interaction systems, few theoretical studies have examined the effect of the adaptive dynamics of interaction-related traits on the possibility of resolution of the paradox of enrichment. We consider the evolution of attack and defence traits of a predator and two prey species in a one predator-two prey system in which the predator practises optimal diet use. The results showed that optimal foraging alone cannot eliminate a pattern of destabilization with enrichment, but trait evolution of the predator or prey can change the pattern to one of stabilization, implying a possible resolution of the paradox of enrichment. Furthermore, trait evolution in all species can broaden the parameter range of stabilization. Importantly, rapid evolution can stabilize this system, but weaken its stability in the face of enrichment.  相似文献   

3.
In the absence of other limiting factors, assemblages in which species share a common, effective natural enemy are not expected to persist. Although a variety of mechanisms have been postulated to explain the coexistence of species that share natural enemies, the role of productivity gradients has not been explored in detail. Here, we examine how enrichment can affect the outcome of apparent competition. We develop a structured resource/consumer/natural enemy model in which the prey are exposed to attacks during a vulnerable life phase, the length of which depends on resource availability. With a single prey species, the model exhibits the "paradox of enrichment," with unstable dynamics at high levels of resource productivity. We extend this model to consider two prey species linked by a shared predator, each with their own distinct resource base. We derive invasion and stability conditions and examine how enrichment influences prey species exclusion and coexistence. Contrary to expectations from simpler, prey-dependent models, apparent competition is not necessarily strong at high productivity, and prey species coexistence may thus be more likely in enriched environments. Further, the coexistence of apparent competitors may be facilitated by unstable dynamics. These results contrast with the standard theory that apparent competition in productive environments leads to nonpersistent interactions and that coexistence of multispecies interactions is more likely under equilibrial conditions.  相似文献   

4.
In this paper, we consider an interaction of prey and predator species where prey species have the ability of group defence. Thresholds, equilibria and stabilities are determined for the system of ordinary differential equations. Taking carrying capacity as a bifurcation parameter, it is shown that a Hopf bifurcation can occur implying that if the carrying capacity is made sufficiently large by enrichment of the environment, the model predicts the eventual extinction of the predator providing strong support for the so-called ‘paradox of enrichment’.  相似文献   

5.
Akihiko Mougi  Kinya Nishimura 《Oikos》2008,117(11):1732-1740
Destabilization of one predator–one prey systems with an increase in nutrient input has been viewed as a paradox. We report that enrichment can damp population cycles by a food‐web structure that balances inflexible and flexible interaction links (i.e. specialist and generalist predators). We modeled six predator–prey systems involving three or four species in which the predators practice optimal foraging based on prey profitability determined by handling time. In all models, the balance of interaction links simultaneously decreased the amplitude of population oscillations and increased the minimum density with increasing enrichment, leading to a potential theoretical resolution of the paradox of enrichment in non‐equilibrium dynamics. The stabilization mechanism was common to all of the models. Important previous studies on the stability of food webs have also demonstrated that a balance of interaction strengths stabilizes systems, suggesting a general rule of ecosystem stability.  相似文献   

6.
The stability of ecosystems: A brief overview of the paradox of enrichment   总被引:1,自引:1,他引:0  
In theory, enrichment of resource in a predator-prey model leads to destabilization of the system,thereby collapsing the trophic interaction,a phenomenon referred to as "the paradox of enrichment". After it was first pro posed by Rosenzweig (1971), a number of subsequent studies were carried out on this dilemma over many decades. In this article, we review these theoretical and experimental works and give a brief overview of the proposed solutions to the paradox. The mechanisms that have been discussed are modifications of simple predator -prey models in the presence of prey that is inedible, invulnerable, unpalatable and toxic. Another class of mechanisms includes an incorporation of a ratio-dependent functional form,inducible defence of prey and density-dependent mortality of the predator. Moreover, we find a third set of explanations based on complex population dynamics including chaos in space and time. We conclude that,although any one of the various mechanisms proposed so far might potentially prevent destabilization of the predator-prey dynamics following enrichment, in nature different mechanisms may combine to cause stability, even when a system is enriched. The exact mechanisms,which may differ among systems,need to be disentangled through extensive field studies and laboratory experiments coupled with realistic theoretical models.  相似文献   

7.
Maternal effects, where the conditions experienced by mothers affect the phenotype of their offspring, are widespread in nature and have the potential to influence population dynamics. However, they are very rarely included in models of population dynamics. Here, we investigate a recently discovered maternal effect, where maternal food availability affects the feeding rate of offspring so that well-fed mothers produce fast-feeding offspring. To understand how this maternal effect influences population dynamics, we explore novel predator–prey models where the consumption rate of predators is modified by changes in maternal prey availability. We address the ‘paradox of enrichment'', a theoretical prediction that nutrient enrichment destabilizes populations, leading to cycling behaviour and an increased risk of extinction, which has proved difficult to confirm in the wild. Our models show that enriched populations can be stabilized by maternal effects on feeding rate, thus presenting an intriguing potential explanation for the general absence of ‘paradox of enrichment'' behaviour in natural populations. This stabilizing influence should also reduce a population''s risk of extinction and vulnerability to harvesting.  相似文献   

8.
Roy S  Chattopadhyay J 《Bio Systems》2007,90(2):371-378
Simple predator-prey models with a prey-dependent functional response predict that enrichment (increased carrying capacity) destabilizes community dynamics: this is the 'paradox of enrichment'. However, the energy value of prey is very important in this context. The intraspecific chemical composition of prey species determines its energy value as a food for the potential predator. Theoretical and experimental studies establish that variable chemical composition of prey affects the predator-prey dynamics. Recently, experimental and theoretical approaches have been made to incorporate explicitly the stoichiometric heterogeneity of simple predator-prey systems. Following the results of the previous experimental and theoretical advances, in this article we propose a simple phenomenological formulation of the variation of energy value at increased level of carrying capacity. Results of our study demonstrate that coupling the parameters representing the phenomenological energy value and carrying capacity in a realistic way, may avoid destabilization of community dynamics following enrichment. Additionally, under such coupling the producer-grazer system persists for only an intermediate zone of production--a result consistent with recent studies. We suggest that, while addressing the issue of enrichment in a general predator-prey model, the phenomenological relationship that we propose here might be applicable to avoid Rosenzweig's paradox.  相似文献   

9.
We show that the paradox of enrichment can be theoretically resolved in a flexible predator–prey system in which the predator practices imperfect optimal foraging. A previous study showed that perfect optimal foraging can mitigate increases in the amplitude of population oscillations associated with enrichment, but it did not show a stabilization pattern. Our results show that imperfect optimal foraging can stabilize the system and resolve the paradox of enrichment under nonequilibrium dynamics. Furthermore, the degree of stabilization with enrichment was stronger when the imperfection of optimal foraging was larger.  相似文献   

10.
Recent studies suggest the necessity of understanding the interactive effects of predation and productivity on species coexistence and prey diversity. Models predict that coexistence of prey species with different competitive abilities can be achieved if inferior resource competitors are less susceptible to predation and if productivity and/or predation pressure are at intermediate levels. Hence, predator effects on prey diversity are predicted to be highly context dependent: enhancing diversity from low to intermediate levels of productivity or predation and reducing diversity of prey at high levels of productivity or predation. While several studies have examined the interactive effects of herbivory and productivity on primary producer diversity, experimental studies of such effects in predator‐prey systems are rare. We tested these predictions using an aquatic field mesocosm experiment in which initial density of the zooplankton predator Notonecta undulata and productivity were manipulated to test their interactive effects on diversity of seven zooplankton, cladoceran species that were common in surrounding ponds. Two productivity levels were imposed via phosphorus enrichment at levels comparable to low and intermediate levels found within neighboring natural ponds. We used open systems to allow for natural dispersal and behaviorally‐mediated numerical responses by the flight‐capable predator. Effects of predators on zooplankton diversity depended on productivity level. At low and high productivity, prey species richness declined while at high productivity it showed a unimodal relationship with increasing the predator density. Effects of treatments were weaker when using Pielou's evenness index or the inverse Simpson index as measures of prey diversity. Our findings are generally consistent with model predictions in which predators can facilitate prey coexistence and diversity at intermediate levels of productivity and predation intensity. Our work also shows that the functional form of the relationship between prey diversity and predation intensity can be complex and highly dependent on environmental context.  相似文献   

11.
Summary A general model of arthropod predator-prey systems incorporating age structure in the predator is employed to study the role of functional and numerical responses on stability and the paradox of enrichment. The destabilizing effect of age structure leads to both qualitatively and quantitatively new results for an environment which has an infinite prey carrying capacity, including a lower bound to prey density for a stable equilibrium, a feature not present in models without age structure. When applied to an environment with finite prey carrying capacity, the effect of age structure is to reinforce the arguments implicit to the paradox of enrichment originally developed for traditional models lacking age structure.  相似文献   

12.
It takes time for individuals to move from place to place. This travel time can be incorporated into metapopulation models via a delay in the interpatch migration term. Such a term has been shown to stabilize the positive equilibrium of the classical Lotka-Volterra predator-prey system with one species (either the predator or the prey) dispersing. We study a more realistic, Rosenzweig-MacArthur, model that includes a carrying capacity for the prey, and saturating functional response for the predator. We show that dispersal delays can stabilize the predator-prey equilibrium point despite the presence of a Type II functional response that is known to be destabilizing. We also show that dispersal delays reduce the amplitude of oscillations when the equilibrium is unstable, and therefore may help resolve the paradox of enrichment.  相似文献   

13.

We consider a modified Holling-type II predator–prey model, based on the premise that the search rate of predators is dependent on the prey density, rather than constant. A complete analysis of the global behavior of the model is presented, and shows that the model exhibits a dichotomy similar to the classical Holling-type II model: either the coexistence steady state is globally stable; or it is unstable, and then a unique, globally stable limit cycle exists. We discuss the similarities, but also important differences between our model and the Holling-type II model. The main differences are that: 1. The paradox of enrichment which always occurs in the Holling-type II model, does not always occur here, and 2. Even when the paradox of enrichment occurs, predators can adapt by lowering their search rate, and effectively stabilize the system.

  相似文献   

14.
Müllerian mimicry, where groups of chemically defended species display a common warning color pattern and thereby share the cost of educating predators, is one of the most striking examples of ecological adaptation. Classic models of Müllerian mimicry predict that all unpalatable species of a similar size and form within a community should converge on a single mimetic pattern, but instead communities of unpalatable species often display a remarkable diversity of mimetic patterns (e.g. neotropical ithomiine butterflies). It has been suggested that this apparent paradox may be explained if different suites of predators and species belonging to different mimicry groups utilize different micro-habitats within the community. We developed a stochastic individual-based model for a community of unpalatable mimetic prey species and their predators to evaluate this hypothesis and to examine the effect of predator heterogeneity on prey micro-habitat use. We found that community-level mimetic diversity was higher in simulations with heterogeneous predator micro-habitat use than in simulations with homogeneous predator micro-habitat use. Regardless of the form of predation, mimicry pattern-based assortative mating caused community-level mimetic diversity to persist. Heterogeneity in predator micro-habitat use led to an increased association between mimicry pattern and prey micro-habitat use relative to homogeneous predator micro-habitat use. This increased association was driven, at least in part, by evolutionary convergence of prey micro-habitat use when predators displayed heterogeneous micro-habitat use. These findings provide a theoretical explanation for an important question in evolutionary biology: how is community-level Müllerian mimetic diversity maintained in the face of selection against rare phenotypes?  相似文献   

15.
We consider a simple predator-prey model of coevolution. By allowing coevolution both within and between trophic levels the model breaks the traditional dichotomy between coevolution among competitors and coevolution between a prey and its predator. By allowing the diversity of prey and predator species to emerge as a property of the evolutionarily stable strategies (ESS), the model breaks another constraint of most approaches to coevolution that consider as fixed the number of coevolving species. The number of species comprising the ESS is influenced by a parameter that determines the predator's niche breadth. Depending upon the parameter's value the ESS may contain: 1) one prey and one predator species, 2) two prey and one predator, 3) two prey and two predators, 4) three prey and two predators, 5) three prey and three predators, etc. Evolutionarily, these different ESSs all emerge from the same model. Ecologically, however, these ESSs result in very different patterns of community organization. In some communities the predator species are ecologically keystone in that their removal results in extinctions among the prey species. In others, the removal of a predator species has no significant impact on the prey community. These varied ecological roles for the predator species contrasts sharply with the essential evolutionary role of the predators in promoting prey species diversity. The ghost of predation past in which a predator's insignificant ecological role obscures its essential evolutionary role may be a frequent property of communities of predator and prey.  相似文献   

16.
Honma A  Takakura K  Nishida T 《PloS one》2008,3(10):e3411

Background

Mimicry, in which one prey species (the Mimic) imitates the aposematic signals of another prey (the Model) to deceive their predators, has attracted the general interest of evolutionary biologists. Predator psychology, especially how the predator learns and forgets, has recently been recognized as an important factor in a predator–prey system. This idea is supported by both theoretical and experimental evidence, but is also the source of a good deal of controversy because of its novel prediction that in a Model/Mimic relationship even a moderately unpalatable Mimic increases the risk of the Model (quasi-Batesian mimicry).

Methodology/Principal Findings

We developed a psychology-based Monte Carlo model simulation of mimicry that incorporates a “Pavlovian” predator that practices an optimal foraging strategy, and examined how various ecological and psychological factors affect the relationships between a Model prey species and its Mimic. The behavior of the predator in our model is consistent with that reported by experimental studies, but our simulation''s predictions differed markedly from those of previous models of mimicry because a more abundant Mimic did not increase the predation risk of the Model when alternative prey were abundant. Moreover, a quasi-Batesian relationship emerges only when no or very few alternative prey items were available. Therefore, the availability of alternative prey rather than the precise method of predator learning critically determines the relationship between Model and Mimic. Moreover, the predation risk to the Model and Mimic is determined by the absolute density of the Model rather than by its density relative to that of the Mimic.

Conclusions/Significance

Although these predictions are counterintuitive, they can explain various kinds of data that have been offered in support of competitive theories. Our model results suggest that to understand mimicry in nature it is important to consider the likely presence of alternative prey and the possibility that predation pressure is not constant.  相似文献   

17.
We investigate the influence of competition between predators on the dynamics of bitrophic predator–prey systems and of tritrophic food chains. Competition between predators is implemented either as interference competition, or as a density-dependent mortality rate. With interference competition, the paradox of enrichment is reduced or completely suppressed, but otherwise, the dynamical behavior of the systems is not fundamentally different from that of the Rosenzweig–MacArthur model, which contains no predator competition and shows only continuous transitions between fixed points or periodic oscillations. In contrast, with density-dependent predator mortality, the system shows a surprisingly rich dynamical behavior. In particular, decreasing the density regulation of the predator can induce catastrophic shifts from a stable fixed point to a large oscillation where the predator chases the prey through a cycle that brings both species close to the threshold of extinction. Other catastrophic bifurcations, such as subcritical Hopf bifurcations and saddle-node bifurcations of limit cycles, do also occur. In tritrophic food chains, we find again that fixed points in the model with predator interference become unstable only through Hopf bifurcations, which can also be subcritical, in contrast to the bitrophic situation. The model with a density limitation shows again catastrophic destabilization of fixed points and various nonlocal bifurcations. In addition, chaos occurs for both models in appropriate parameter ranges.  相似文献   

18.
1. Indirect interactions between populations of different prey species mediated by a shared predator population are known to affect prey dynamics. 2. Depending on the temporal and spatial scale, these indirect interactions may result in positive (apparent mutualism), neutral or negative effects (apparent competition) of the prey on each other's densities. Although there is ample evidence for the latter, evidence for apparent mutualism is scarce. 3. The effectiveness of using one species of predator for biological control of more than one pest species depends on the occurrence of such positive or negative effects. 4. We used an experimental system consisting of the two prey species Western flower thrips (Franklineilla occidentalis Pergande) and greenhouse whitefly (Trialeurodes vaporariorum Westwood) and a shared predator, the phytoseiid mite Amblyseius swirskii Athias‐Henriot. We released all three species on the same plant and studied their dynamics and distribution along rows of plants. 5. We expected that the more mobile prey species (thrips) would escape temporarily in the presence of the other prey species (whitefly) by dispersing from plants with the predator. The predator was expected to disperse slower in the presence of two prey species because of the higher availability of food. 6. Evidence was found for slower dispersal of predators and short‐term escape of thrips from predation when whiteflies were present, thus confirming the occurrence of short‐term apparent mutualism. 7. The apparent mutualism resulted in a cascade to the first trophic level: a higher proportion of fruits was damaged by thrips in the presence of whiteflies. 8. We conclude that apparent mutualism can be an important phenomenon in population dynamics, and can significantly affect biological control of pest species that share a natural enemy.  相似文献   

19.
Predation on a species subjected to an infectious disease can affect both the infection level and the population dynamics. There is an ongoing debate about the act of managing disease in natural populations through predation. Recent theoretical and empirical evidence shows that predation on infected populations can have both positive and negative influences on disease in prey populations. Here, we present a predator–prey system where the prey population is subjected to an infectious disease to explore the impact of predator on disease dynamics. Specifically, we investigate how the interference among predators affects the dynamics and structure of the predator–prey community. We perform a detailed numerical bifurcation analysis and find an unusually large variety of complex dynamics, such as, bistability, torus and chaos, in the presence of predators. We show that, depending on the strength of interference among predators, predators enhance or control disease outbreaks and population persistence. Moreover, the presence of multistable regimes makes the system very sensitive to perturbations and facilitates a number of regime shifts. Since, the habitat structure and the choice of predators deeply influence the interference among predators, thus before applying predators to control disease in prey populations or applying predator control strategy for wildlife management, it is essential to carefully investigate how these predators interact with each other in that specific habitat; otherwise it may lead to ecological disaster.  相似文献   

20.
Synthesis Predation risk experienced by individuals living in groups depends on the balance between predator dilution, competition for refuges, and predator interference or synergy. These interactions operate between prey species as well: the benefits of group living decline in the presence of an alternative prey species. We apply a novel model‐fitting approach to data from field experiments to distinguish among competing hypotheses about shifts in predator foraging behavior across a range of predator and prey densities. Our study provides novel analytical tools for analyzing predator foraging behavior and offers insight into the processes driving the dynamics of coral reef fish. Studies of predator foraging behavior typically focus on single prey species and fixed predator densities, ignoring the potential importance of complexities such as predator dilution; predator‐mediated effects of alternative prey; heterospecific competition; or predator–predator interactions. Neglecting the effects of prey density is particularly problematic for prey species that live in mixed species groups, where the beneficial effects of predator dilution may swamp the negative effects of heterospecific competition. Here we use field experiments to investigate how the mortality rates of a shoaling coral reef fish (a wrasse: Thalassoma amblycephalum), change as a result of variation in: 1) conspecific density, 2) density of a predator (a hawkfish: Paracirrhites arcatus), and 3) presence of an alternative prey species that competes for space (a damselfish: Pomacentrus pavo). We quantify changes in prey mortality rates from the predator's perspective, examining the effects of added predators or a second prey species on the predator's functional response. Our analysis highlights a model‐fitting approach that discriminates amongst multiple hypotheses about predator foraging in a community context. Wrasse mortality decreased with increasing conspecific density (i.e. mortality was inversely density‐dependent). The addition of a second predator doubled prey mortality rates, without significantly changing attack rate or handling time – i.e. there was no evidence for predator interference. The presence of a second prey species increased wrasse mortality by 95%; we attribute this increase either to short‐term apparent competition (predator aggregation) or to a decrease in handling time of the predator (e.g. through decreased wrasse vigilance). In this system, 1) prey benefit from intraspecific group living though a reduced predation risk, and 2) the benefit of group living is reduced in the presence of an alternative prey species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号