首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Coevolutionary clines across selection mosaics   总被引:6,自引:0,他引:6  
Abstract. Much of the dynamics of coevolution may be driven by the interplay between geographic variation in reciprocal selection (selection mosaics) and the homogenizing action of gene flow. We develop a genetic model of geographically structured coevolution in which gene flow links coevolving communities that may differ in both the direction and magnitude of reciprocal selection. The results show that geographically structured coevolution may lead to allele-frequency clines within both interacting species when fitnesses are spatially uniform or spatially heterogeneous. Furthermore, the results show that the behavior and shape of clines differ dramatically among different types of coevolutionary interaction. Antagonistic interactions produce dynamic clines that change shape rapidly through time, producing shifting patterns of local adaptation and maladaptation. Unlike antagonistic interactions, mutualisms generate stable equilibrium patterns that lead to fixed spatial patterns of adaptation. Interactions that vary between mutualism and antagonism produce both equilibrium and dynamic clines. Furthermore, the results demonstrate that these interactions may allow mutualisms to persist throughout the geographic range of an interaction, despite pockets of locally antagonistic selection. In all cases, the coevolved spatial patterns of allele frequencies are sensitive to the relative contributions of gene flow, selection, and overall habitat size, indicating that the appropriate scale for studies of geographically structured coevolution depends on the relative contributions of each of these factors.  相似文献   

2.
Coevolution and maladaptation   总被引:3,自引:1,他引:2  
Many of the most commonly cited examples of exquisite adaptationare of coevolved symbioses. As we learn more about the coevolutionaryprocess, however, it is becoming increasingly evident that coevolutionmay also keep populations moderately maladapted much of thetime. As a result, coevolving populations may only rarely occupyadaptive peaks, because the selective landscape is under continualchange through reciprocal selection on the species themselves.These shifting patterns of coadaptation are further shaped bythe geographic structure of most species. Selection mosaicsacross landscapes and coevolutionary hotspots can favor differentevolutionary trajectories in different populations. The combinedaction of gene flow, random genetic drift, and local extinctionof populations may then continually remold these local patterns,creating a geographic mosaic in the degrees of maladaptationfound within local interactions. Recent mathematical modelsof the geographic mosaic of coevolution suggest that complexmosaics of maladaptation are a likely consequence of spatiallystructured species interactions. These models indicate thatthe spatial structure of maladaptation may depend upon the typeof coevolutionary interaction, the underlying selection mosaic,and patterns of gene flow across landscapes. By maintaininglocal polymorphisms and driving the divergence of populations,coevolution may produce spatial patterns of maladaptation thatare a source of ongoing innovation and diversification in speciesinteractions.  相似文献   

3.
Many potentially mutualistic interactions are conditional, with selection that varies between mutualism and antagonism over space and time. We develop a genetic model of temporally variable coevolution that incorporates stochastic fluctuations between mutualism and antagonism. We use this model to determine conditions necessary for the coevolution of matching traits between a host and a conditional mutualist. Using an analytical approximation, we show that matching traits will coevolve when the geometric mean interaction is mutualistic. When this condition does not hold, polymorphism and trait mismatching are maintained, and coevolutionary cycles may result. Numerical simulations verify this prediction and suggest that it remains robust in the presence of temporal autocorrelation. These results are compared with those from spatial models with unrestricted movement. The comparisons demonstrate that gene flow is unnecessary for generating empirical patterns predicted by the geographic mosaic theory of coevolution.  相似文献   

4.
Parasite local adaptation in a geographic mosaic   总被引:2,自引:0,他引:2  
A central prediction of the geographic mosaic theory of coevolution is that coevolving interspecific interactions will show varying degrees of local maladaptation. According to the theory, much of this local maladaptation is driven by selection mosaics and spatially intermingled coevolutionary hot and cold spots, rather than a simple balance between gene flow and selection. Here I develop a genetic model of host-parasite coevolution that is sufficiently general to incorporate selection mosaics, coevolutionary hot and cold spots, and a diverse array of genetic systems of infection/resistance. Results from this model show that the selection mosaics experienced by the interacting species are an important determinant of the sign and magnitude of local maladaptation. In some cases, this effect may be stronger than a previously described effect of relative rates of parasite and host gene flow. These results provide the first theoretical evidence that selection mosaics and coevolutionary hot and cold spots per se determine the magnitude and sign of local maladaptation. At the same time, however, these results demonstrate that coevolution in a geographic mosaic can lead to virtually any pattern of local adaptation or local maladaptation. Consequently, empirical studies that describe only patterns of local adaptation or maladaptation do not provide evidence either for or against the theory.  相似文献   

5.
Species interactions commonly coevolve as complex geographic mosaics of populations shaped by differences in local selection and gene flow. We use a haploid matching-alleles model for coevolution to evaluate how a pair of species coevolves when fitness interactions are reciprocal in some locations ("hot spots") but not in others ("cold spots"). Our analyses consider mutualistic and antagonistic interspecific interactions and a variety of gene flow patterns between hot and cold spots. We found that hot and cold spots together with gene flow influence coevolutionary dynamics in four important ways. First, hot spots need not be ubiquitous to have a global influence on evolution, although rare hot spots will not have a disproportionate impact unless selection is relatively strong there. Second, asymmetries in gene flow can influence local adaptation, sometimes creating stable equilibria at which species experience minimal fitness in hot spots and maximal fitness in cold spots, or vice versa. Third, asymmetries in gene flow are no more important than asymmetries in population regulation for determining the maintenance of local polymorphisms through coevolution. Fourth, intraspecific allele frequency differences among hot and cold spot populations evolve under some, but not all, conditions. That is, selection mosaics are indeed capable of producing spatially variable coevolutionary outcomes across the landscapes over which species interact. Altogether, our analyses indicate that coevolutionary trajectories can be strongly shaped by the geographic distribution of coevolutionary hot and cold spots, and by the pattern of gene flow among populations.  相似文献   

6.
As a corollary to the Red Queen hypothesis, host–parasite coevolution has been hypothesized to maintain genetic variation in both species. Recent theoretical work, however, suggests that reciprocal natural selection alone is insufficient to maintain variation at individual loci. As highlighted by our brief review of the theoretical literature, models of host–parasite coevolution often vary along multiple axes (e.g. inclusion of ecological feedbacks or abiotic selection mosaics), complicating a comprehensive understanding of the effects of interacting evolutionary processes on diversity. Here we develop a series of comparable models to explore the effect of interactions between spatial structures and antagonistic coevolution on genetic diversity. Using a matching alleles model in finite populations connected by migration, we find that, in contrast to panmictic populations, coevolution in a spatially structured environment can maintain genetic variation relative to neutral expectations with migration alone. These results demonstrate that geographic structure is essential for understanding the effect of coevolution on biological diversity.  相似文献   

7.

Background

Recent studies suggest that environmental changes may tip the balance between interacting species, leading to the extinction of one or more species. While it is recognized that evolution will play a role in determining how environmental changes directly affect species, the interactions among species force us to consider the coevolutionary responses of species to environmental changes.

Methodology/Principle Findings

We use simple models of competition, predation, and mutualism to organize and synthesize the ways coevolution modifies species interactions when climatic changes favor one species over another. In cases where species have conflicting interests (i.e., selection for increased interspecific interaction strength on one species is detrimental to the other), we show that coevolution reduces the effects of climate change, leading to smaller changes in abundances and reduced chances of extinction. Conversely, when species have nonconflicting interests (i.e., selection for increased interspecific interaction strength on one species benefits the other), coevolution increases the effects of climate change.

Conclusions/Significance

Coevolution sets up feedback loops that either dampen or amplify the effect of environmental change on species abundances depending on whether coevolution has conflicting or nonconflicting effects on species interactions. Thus, gaining a better understanding of the coevolutionary processes between interacting species is critical for understanding how communities respond to a changing climate. We suggest experimental methods to determine which types of coevolution (conflicting or nonconflicting) drive species interactions, which should lead to better understanding of the effects of coevolution on species adaptation. Conducting these experiments across environmental gradients will test our predictions of the effects of environmental change and coevolution on ecological communities.  相似文献   

8.
Local adaptation of interacting species to one another indicates geographically variable reciprocal selection. This process of adaptation is central in the organization and maintenance of genetic variation across populations. Given that the strength of selection and responses to it often vary in time and space, the strength of local adaptation should in theory vary between generations and among populations. However, such spatiotemporal variation has rarely been explicitly demonstrated in nature and local adaptation is commonly considered to be relatively static. We report persistent local adaptation of the short‐lived herbivore Abrostola asclepiadis to its long‐lived host plant Vincetoxicum hirundinaria over three successive generations in two studied populations and considerable temporal variation in local adaptation in six populations supporting the geographic mosaic theory. The observed variation in local adaptation among populations was best explained by geographic distance and population isolation, suggesting that gene flow reduces local adaptation. Changes in herbivore population size did not conclusively explain temporal variation in local adaptation. Our results also imply that short‐term studies are likely to capture only a part of the existing variation in local adaptation.  相似文献   

9.
Although the importance of gene flow in the geographic structuring of host-parasite interactions has been well discussed, little is known about how dispersal drives the spatial dynamics of other types of coevolutionary interactions in nature. We evaluated the roles of gene flow in the geographically structured processes of a predator-prey arms race involving a seed-predatory weevil with a long mouthpart and its host camellia plant with a thick fruit coat. Molecular genetic analyses showed that both weevil and camellia populations were structured at a spatial scale of several kilometers. Importantly, the spatial pattern of the migration of weevils, but not that of camellias, imposed significant effects on the geographic configuration of the levels of coevolutionary escalation. This result suggests that even if migration is limited in one species (camellia), local coevolution with the other species that migrates between neighboring localities (weevil) can reduce the interpopulation difference in the local adaptive optima of the former species. Thus, gene flow of a species potentially homogenizes the local biological environments provided by the species and thereby promotes the evolutionary convergence of its coevolving counterparts. Consequently, by focusing on coevolutionary interactions in natural communities, "indirect" effects of gene flow on the adaptive divergence of organisms could be identified.  相似文献   

10.
Coevolutionary outcomes between interacting species are predicted to vary across landscapes, as environmental conditions, gene flow, and the strength of selection vary among populations. Using a combination of molecular, experimental, and field approaches, we describe how broad-scale patterns of environmental heterogeneity, genetic divergence, and regional adaptation have the potential to influence coevolutionary processes in the Linum marginale-Melampsora lini plant-pathogen interaction. We show that two genetically and geographically divergent pathogen lineages dominate interactions with the host across Australia, and demonstrate a hybrid origin for one of the lineages. We further demonstrate that the geographic divergence of the two lineages of M. lini in Australia is related to variation among lineages in virulence, life-history characteristics, and response to environmental conditions. When correlated with data describing regional patterns of variation in host resistance diversity and mating system these observations highlight the potential for gene flow and geographic selection mosaics to generate and maintain coevolutionary diversification in long-standing host-pathogen interactions.  相似文献   

11.
Urban MC 《Ecology letters》2011,14(7):723-732
Given the potential for rapid and microgeographical adaptation, ecologists increasingly are exploring evolutionary explanations for community patterns. Biotic selection can generate local adaptations that alter species interactions. Although some gene flow might be necessary to fuel local adaptation, higher gene flow can homogenise traits across regions and generate local maladaptation. Herein, I estimate the contributions of local biotic selection, gene flow and spatially autocorrelated biotic selection to among-population divergence in traits involved in species interactions across 75 studies. Local biotic selection explained 6.9% of inter-population trait divergence, an indirect estimate of restricted gene flow explained 0.1%, and spatially autocorrelated selection explained 9.3%. Together, biotic selection explained 16% of the variance in population trait means. Most biotic selection regimes were spatially autocorrelated. Hence, most populations receive gene flow from populations facing similar selection, which could allow for local adaptation despite moderate gene flow. Gene flow constrained adaptation in studies conducted at finer spatial scales as expected, but this effect was often confounded with spatially autocorrelated selection. Results indicate that traits involved in species interactions might often evolve across landscapes, especially when biotic selection is spatially autocorrelated. The frequent evolution of species interactions suggests that evolutionary processes might often influence community ecology.  相似文献   

12.
Why do some host–parasite interactions become less antagonistic over evolutionary time? Vertical transmission can select for reduced antagonism. Vertical transmission also promotes coevolution between hosts and parasites. Therefore, we hypothesized that coevolution itself may underlie transitions to reduced antagonism. To test the coevolution hypothesis, we selected for reduced antagonism between the host Caenorhabditis elegans and its parasite Serratia marcescens. This parasite is horizontally transmitted, which allowed us to study coevolution independently of vertical transmission. After 20 generations, we observed a response to selection when coevolution was possible: reduced antagonism evolved in the copassaged treatment. Reduced antagonism, however, did not evolve when hosts or parasites were independently selected without coevolution. In addition, we found strong local adaptation for reduced antagonism between replicate host/parasite lines in the copassaged treatment. Taken together, these results strongly suggest that coevolution was critical to the rapid evolution of reduced antagonism.  相似文献   

13.
Mimura M  Aitken SN 《Heredity》2007,99(2):224-232
Fossil pollen records suggest rapid migration of tree species in response to Quaternary climate warming. Long-distance dispersal and high gene flow would facilitate rapid migration, but would initially homogenize variation among populations. However, contemporary clinal variation in adaptive traits along environmental gradients shown in many tree species suggests that local adaptation can occur during rapid migration over just a few generations in interglacial periods. In this study, we compared growth performance and pollen genetic structure among populations to investigate how populations of Sitka spruce (Picea sitchensis) have responded to local selection along the historical migration route. The results suggest strong adaptive divergence among populations (average Q(ST)=0.61), corresponding to climatic gradients. The population genetic structure, determined by microsatellite markers (R(ST)=0.09; F(ST)=0.11), was higher than previous estimates from less polymorphic genetic markers. The significant correlation between geographic and pollen haplotype genetic (R(ST)) distances (r=0.73, P<0.01) indicates that the current genetic structure has been shaped by isolation-by-distance, and has developed in relatively few generations. This suggests relatively limited gene flow among populations on a recent timescale. Gene flow from neighboring populations may have provided genetic diversity to founder populations during rapid migration in the early stages of range expansion. Increased genetic diversity subsequently enhanced the efficiency of local selection, limiting gene flow primarily to among similar environments and facilitating the evolution of adaptive clinal variation along environmental gradients.  相似文献   

14.
The "geographic mosaic" approach to understanding coevolution is predicated on the existence of variable selection across the landscape of an interaction between species. A range of ecological factors, from differences in resource availability to differences in community composition, can generate such a mosaic of selection among populations, and thereby differences in the strength of coevolution. The result is a mixture of hotspots, where reciprocal selection is strong, and coldspots, where reciprocal selection is weak or absent, throughout the ranges of species. Population subdivision further provides the opportunity for nonadaptive forces, including gene flow, drift, and metapopulation dynamics, to influence the coevolutionary interaction between species. Some predicted results of this geographic mosaic of coevolution include maladapted or mismatched phenotypes, maintenance of high levels of polymorphism, and prevention of stable equilibrium trait combinations. To evaluate the potential for the geographic mosaic to influence predator-prey coevolution, we investigated the geographic pattern of genetically determined TTX resistance in the garter snake Thamnophis sirtalis over much of the range of its ecological interaction with toxic newts of genus Taricha. We assayed TTX resistance in over 2900 garter snakes representing 333 families from 40 populations throughout western North America. Our results provide dramatic evidence that geographic structure is an important component in coevolutionary interactions between predators and prey. Resistance levels vary substantially (over three orders of magnitude) among populations and over short distances. The spatial array of variation is consistent with two areas of intense evolutionary response by predators ("hotspots") surrounded by clines of decreasing resistance. Some general predictions of the geographic mosaic process are supported, including clinal variation in phenotypes, polymorphism in some populations, and divergent outcomes of the interaction between predator and prey. Conversely, our data provide little support for one of the major predictions, mismatched values of interacting traits. Two lines of evidence suggest selection is paramount in determining population variation in resistance. First, phylogenetic information indicates that two hotspots of TTX resistance have evolved independently. Second, in the one region that TTX levels in prey have been quantified, resistance and toxicity levels match almost perfectly over a wide phenotypic and geographic range. However, these results do not preclude the role the nonadaptive forces in generating the overall geographic mosaic of TTX resistance. Much work remains to fill in the geographic pattern of variation among prey populations and, just as importantly, to explore the variation in the ecology of the interaction that occurs within populations.  相似文献   

15.
Spatial structure has dramatic effects on the demography and the evolution of species. A large variety of theoretical models have attempted to understand how local dispersal may shape the coevolution of interacting species such as host–parasite interactions. The lack of a unifying framework is a serious impediment for anyone willing to understand current theory. Here, we review previous theoretical studies in the light of a single epidemiological model that allows us to explore the effects of both host and parasite migration rates on the evolution and coevolution of various life‐history traits. We discuss the impact of local dispersal on parasite virulence, various host defence strategies and local adaptation. Our analysis shows that evolutionary and coevolutionary outcomes crucially depend on the details of the host–parasite life cycle and on which life‐history trait is involved in the interaction. We also discuss experimental studies that support the effects of spatial structure on the evolution of host–parasite interactions. This review highlights major similarities between some theoretical results, but it also reveals an important gap between evolutionary and coevolutionary models. We discuss possible ways to bridge this gap within a more unified framework that would reconcile spatial epidemiology, evolution and coevolution.  相似文献   

16.
We use individual-based stochastic simulations and analytical deterministic predictions to investigate the interaction between drift, natural selection and gene flow on the patterns of local adaptation across a fragmented species' range under clinally varying selection. Migration between populations follows a stepping-stone pattern and density decreases from the centre to the periphery of the range. Increased migration worsens gene swamping in small marginal populations but mitigates the effect of drift by replenishing genetic variance and helping purge deleterious mutations. Contrary to the deterministic prediction that increased connectivity within the range always inhibits local adaptation, simulations show that low intermediate migration rates improve fitness in marginal populations and attenuate fitness heterogeneity across the range. Such migration rates are optimal in that they maximize the total mean fitness at the scale of the range. Optimal migration rates increase with shallower environmental gradients, smaller marginal populations and higher mutation rates affecting fitness.  相似文献   

17.
Mutualistic interactions are likely to exhibit a strong geographic mosaic in their coevolutionary dynamics, but the structure of geographic variation in these interactions is much more poorly characterized than in host-parasite interactions. We used a cross-inoculation experiment to characterize the scales and patterns at which geographic structure has evolved in an interaction between three pine species and one ectomycorrhizal fungus species along the west coast of North America. We found substantial and contrasting patterns of geographic interaction structure for the plants and fungi. The fungi exhibited a clinal pattern of local adaptation to their host plants across the geographic range of three coastal pines. In contrast, plant growth parameters were unaffected by fungal variation, but varied among plant populations and species. Both plant and fungal performance measures varied strongly with latitude. This set of results indicates that in such widespread species interactions, interacting species may evolve asymmetrically in a geographic mosaic because of differing evolutionary responses to clinally varying biotic and abiotic factors.  相似文献   

18.
Mark C. Urban 《Oikos》2010,119(4):646-658
Spatial heterogeneity in the selection imposed by different predator species could promote the adaptive diversification of local prey populations. However, high gene flow might swamp local adaptations at limited spatial scales or generalized phenotypic plasticity might evolve in place of local diversification. Spotted salamander larvae Ambystoma maculatum face strongly varying risks from gape‐limited marbled salamander larvae Ambystoma opacum and gape‐unconstrained diving beetle larvae Dytiscus spp. across natural landscapes. To evaluate if A. maculatum adapts to these predation risk across micro‐geographic scales, I measured selection gradients in response to the two focal predators and then assayed the defensive morphologies of ten populations in a common garden experiment. I found that A. opacum induced selection on A. maculatum for larger tailfins and bodies whereas beetles induced selection for larger tail muscles and smaller bodies. In accordance with the local adaptation hypothesis, A. maculatum populations inhabiting ponds with high beetle densities grew larger tail muscles relative to other populations when raised in a common environment. However, populations exposed to strong A. opacum selection did not evolve larger tailfins as predicted. High gene flow or morphological plasticity could explain the absence of this morphological response to A. opacum. Overall, results suggest that populations can sometimes evolve adaptive traits in response to locally variable selection regimes even across the very limited distances that separate populations in this study. If prey populations often differ in their defenses against local predators, then this variation could affect the outcome of species interactions in local communities.  相似文献   

19.
There is continuing interest in understanding factors that facilitate the evolution and stability of cooperation within and between species. Such interactions will often involve plasticity in investment behavior, in response to the interacting partner''s investments. Our aim here is to investigate the evolution and stability of reciprocal investment behavior in interspecific interactions, a key phenomenon strongly supported by experimental observations. In particular, we present a comprehensive analysis of a continuous reciprocal investment game between mutualists, both in well-mixed and spatially structured populations, and we demonstrate a series of novel mechanisms for maintaining interspecific mutualism. We demonstrate that mutualistic partners invariably follow investment cycles, during which mutualism first increases, before both partners eventually reduce their investments to zero, so that these cycles always conclude with full defection. We show that the key mechanism for stabilizing mutualism is phase polymorphism along the investment cycle. Although mutualistic partners perpetually change their strategies, the community-level distribution of investment levels becomes stationary. In spatially structured populations, the maintenance of polymorphism is further facilitated by dynamic mosaic structures, in which mutualistic partners form expanding and collapsing spatial bubbles or clusters. Additionally, we reveal strategy-diversity thresholds, both for well-mixed and spatially structured mutualistic communities, and discuss factors for meeting these thresholds, and thus maintaining mutualism. Our results demonstrate that interspecific mutualism, when considered as plastic investment behavior, can be unstable, and, in agreement with empirical observations, may involve a polymorphism of investment levels, varying both in space and in time. Identifying the mechanisms maintaining such polymorphism, and hence mutualism in natural communities, provides a significant step towards understanding the coevolution and population dynamics of mutualistic interactions.  相似文献   

20.
Co-evolutionary trajectories of host-parasite interactions are strongly affected by the antagonists' evolutionary potential, which in turn depends on population sizes as well as levels of recombination, mutation, and gene flow. Under similar selection pressures, the opponent with the higher evolutionary rate is expected to lead the co-evolutionary arms race and to develop local adaptations. Here, we use mitochondrial DNA sequence data and microsatellite markers to assess the amount of genetic variability and levels of gene flow in two host-parasite systems, each consisting of an ant social parasite--the European slavemaker Harpagoxenus sublaevis and the North American slavemaker Protomognathus americanus--and its two main host species. Our population genetic analyses revealed limited gene flow between individual populations of both host and parasite species, allowing for a geographic mosaic of co-evolution. In a between-system comparison, we found less genetic variability and more pronounced structure in Europe, where previous behavioural studies demonstrated strong local adaptation. Within the European host-parasite system, the larger host species Leptothorax acervorum exhibited higher levels of both genetic variability and gene flow, and previous field data showed that it is less affected by the social parasite H. sublaevis than the smaller host Leptothorax muscorum, which has genetically depleted and isolated populations. In North America, the parasite P. americanus showed higher levels of gene flow between sites, but overall less genetic diversity than its hyper-variable main host species, Temnothorax longispinosus. Interestingly, recent ecological and chemical studies demonstrated adaptation of P. americanus to local host populations, indicating the importance of migration in co-evolutionary interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号