首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated EGF-driven signaling processes in rat intestinal epithelial cell lines that overexpress either the alpha5beta1 integrin or the alpha2beta1 integrin. Both cell types display efficient activation of Erk/MAP kinase, but only the alpha5beta1 expressing cells display a strong activation of Akt. A complex is formed between activated EGFR and alpha5beta1, but not with alpha2beta1; this complex also contains ErbB3 and p85. Thus alpha5beta1 can support efficient activation of both the Erk and the phosphatidylinositol-3-kinase/Akt branches of the EGFR signaling cascade, whereas alpha2beta1 can support only the Erk branch.  相似文献   

2.
Human intestinal epithelial cell survival and anoikis are distinctively regulated according to the state of differentiation. In the present study, we analyzed the roles of focal adhesion kinase (Fak)/Src signaling to the PI3-K/Akt-1 and mitogen-activated protein kinase (MEK)/extracellular regulated kinases (Erk) pathways, within the context of such differentiation-state distinctions. Anoikis was induced by inhibition of beta1 integrins (antibody blocking), inhibition of Fak (pharmacologic inhibition or overexpression of dominant negative mutants), or by maintaining cells in suspension. Activation parameters of Fak, Src, Akt-1, and Erk1/2 were analyzed. Activities of Src, Akt-1, or Erk1/2 were also blocked by pharmacological inhibition or by overexpression of dominant-negative mutants. We report that: (1) the loss or inhibition of beta1 integrin binding activity causes anoikis and results in a down-activation of Fak, Src, Akt-1, and Erk1/2 in both undifferentiated, and differentiated cells; (2) the inhibition of Fak likewise causes anoikis and a down-activation of Src, Akt-1, and Erk1/2, regardless of the differentiation state; (3) Src, PI3-K/Akt-1, and MEK/Erk contribute to the survival of differentiated cells, whereas MEK/Erk does not play a role in the survival of undifferentiated ones; (4) the inhibition/loss of beta1 integrin binding and/or Fak activity results in a loss of Src engagement with Fak, regardless of the state of differentiation; and (5) Src contributes to the activation of both the PI3-K/Akt-1 and MEK/Erk pathways in undifferentiated cells, but does not influence PI3-K/Akt-1 in differentiated ones. Hence, Fak/Src signaling to the PI3-K/Akt-1 and MEK/Erk pathways undergoes a differentiation state-specific uncoupling which ultimately reflects upon the selective engagement of these same pathways in the mediation of intestinal epithelial cell survival.  相似文献   

3.
To investigate the mechanisms responsible for survival and apoptosis/anoikis in normal human intestinal epithelial crypt cells, we analyzed the roles of various signaling pathways and cell adhesion on the expression of six Bcl-2 homologs (Bcl-2, Bcl-XL, Mcl-1, Bax, Bak, Bad) in the well established HIEC-6 cell model. Pharmacological inhibitors and/or dominant-negative constructs were used to inhibit focal adhesion kinase (Fak) and p38 isoforms, as well as the phosphatidylinositol 3'-kinase (PI3-K)/Akt-1 and mitogen-activated protein kinase [MAPK] kinase (MEK)/extracellular regulated kinases (Erk) pathways. Cell adhesion was disrupted by antibody-inhibition of integrin binding or forced cell suspension. The activation levels of studied kinase pathways were also analyzed. Herein, we report that beta1 integrins, Fak, and the PI3-K/Akt-1 pathway, but not beta4 integrins or the MEK/Erk pathway, are crucial for the survival of HIEC-6 cells. Conversely, p38beta, but not p38alpha or gamma, is required for the induction of apoptosis/anoikis in HIEC-6 cells. However, each of the signaling molecules/pathways analyzed were found to affect distinctively the individual expression of the Bcl-2 homologs studied. For example, the inhibition of the PI3-K/Akt-1 pathway down-regulated Bcl-XL, Mcl-1, and Bad, while at the same time up-regulating Bax, whereas the inhibition of Fak up-regulated both Bax and Bak, down-regulated Bad, and did not affect the other Bcl-2 homologs analyzed. These results indicate that integrins, Fak, PI3-K/Akt-1, MEK/Erk, and p38 isoforms perform distinct roles in the regulation of HIEC-6 cell survival and/or death. In addition, our data show that the functions performed by these molecules/pathways in promoting cell survival or apoptosis/anoikis translate into complex, differential modulations of individual Bcl-2 homologs.  相似文献   

4.
In vivo in the prostate gland, basal epithelial cells adhere to laminin 5 (LM5) via alpha3beta1 and alpha6beta4 integrins. When placed in culture primary prostate basal epithelial cells secrete and adhere to their own LM5-rich matrix. Adhesion to LM5 is required for cell survival that is dependent on integrin-mediated, ligand-independent activation of the epidermal growth factor receptor (EGFR) and the cytoplasmic tyrosine kinase Src, but not PI-3K. Integrin-mediated adhesion via alpha3beta1, but not alpha6beta4 integrin, supports cell survival through EGFR by signaling downstream to Erk. PC3 cells, which do not activate EGFR or Erk on LM5-rich matrices, are not dependent on this pathway for survival. PC3 cells are dependent on PI-3K for survival and undergo caspase-dependent death when PI-3K is inhibited. The death induced by inhibition of EGFR or Src in normal primary prostate cells is not mediated through or dependent on caspase activation, but depends on the induction of reactive oxygen species. In addition the presence of an autophagic pathway, maintained by adhesion to matrix through alpha3beta1 and alpha6beta4, prevents the induction of caspases when EGFR or Src is inhibited. Suppression of autophagy is sufficient to induce caspase activation and apoptosis in LM5-adherent primary prostate epithelial cells.  相似文献   

5.
We have shown previously that human intestinal epithelial cell survival and anoikis are distinctively regulated according to the state of differentiation. Here we analyzed the roles of protein kinase B/Akt isoforms in such differentiation state distinctions. Anoikis was induced in undifferentiated and differentiated enterocytes by inhibition of focal adhesion kinase (Fak; pharmacologic inhibition or overexpression of dominant-negative mutants) or beta1 integrins (antibody blocking) or by maintaining cells in suspension. Expression/activation parameters of Akt isoforms (Akt-1, Akt-2, and Akt-3) and Fak were analyzed. Activity of Akt isoforms was also blocked by inhibition of phosphatidylinositol 3-kinase or by overexpression of dominant-negative mutants. Here we report the following. 1) The expression/activation levels of Akt-1 increase overall during enterocytic differentiation, and those of Akt-2 decrease, whereas Akt-3 is not expressed. 2) Akt-1 activation is dependent on beta1 integrins/Fak signaling, regardless of the differentiation state. 3) Akt-2 activation is dependent on beta1 integrins/Fak signaling in undifferentiated cells only. 4) Activation of Akt-1 is phosphatidylinositol 3-kinase-dependent, whereas that of Akt-2 is not. 5) Akt-2 does not promote survival or apoptosis/anoikis. 6) Akt-1 is essential for survival. 7) Akt-2 cannot substitute for Akt-1 in the suppression of anoikis. Hence, the expression and regulation of Akt isoforms show differentiation state-specific distinctions that ultimately reflect upon their selective implication in the mediation of human intestinal epithelial cell survival. These data provide new insights into the synchronized regulation of cell survival/death that is required in the dynamic renewal process of tissues such as the intestinal epithelium.  相似文献   

6.
To investigate whether human intestinal epithelial cell survival involves distinct control mechanisms depending on the state of differentiation, we analyzed the in vitro effects of insulin, pharmacological inhibitors of Fak, MEK/Erk, and PI3-K/Akt, and integrin (beta1, beta4)-blocking antibodies on the survival of the well-established human Caco-2 enterocyte-like and HIEC-6 cryptlike cell models. In addition, relative expression levels of six Bcl-2 homologs (Bcl-2, Bcl-X(L), Mcl-1, Bax, Bak, and Bad) and activation levels of Fak, Erk-2, and Akt were analyzed. Herein, we report that 1) the enterocytic differentiation process results in the establishment of distinct profiles of Bcl-2 homolog expression levels, as well as p125(Fak), p42(Erk-2), and p57(Akt) activated levels; 2) the inhibition of Fak, of the MEK/Erk pathway, or of PI3-K, have distinct impacts on enterocytic cell survival in undifferentiated (subconfluent Caco-2, confluent HIEC-6) and differentiated (30 days postconfluent Caco-2) cells; 3) exposure to insulin and the inhibition of Fak, MEK, and PI3-K resulted in differentiation state-distinct modulations in the expression of each Bcl-2 homolog analyzed; and 4) Fak, beta1 and beta4 integrins, as well as the MEK/Erk and PI3-K/Akt pathways, are distinctively involved in cell survival depending on the state of cell differentiation. Taken together, these data indicate that human intestinal epithelial cell survival is regulated according to differentiation state-specific control mechanisms.  相似文献   

7.
Renewal of the gastrointestinal epithelium involves a coordinated process of terminal differentiation and programmed cell death. Integrins have been implicated in the control of apoptotic processes in various cell types. Here we examine the role of integrins in the regulation of apoptosis in gastrointestinal epithelial cells with the use of a rat small intestinal epithelial cell line (RIE1) as a model. Overexpression of the integrin alpha5 subunit in RIE1 cells conferred protection against several proapoptotic stimuli. In contrast, overexpression of the integrin alpha2 subunit had no effect on cell survival. The antiapoptotic effect of the alpha5 subunit was partially retained by a mutated version that had a truncation of the cytoplasmic domain. The antiapoptotic effects of the full-length or truncated alpha5 subunit were reversed upon treatment with inhibitors of phosphatidylinositol 3-kinase (PI-3-kinase), suggesting that the alpha5beta1 integrin might interact with the PI-3-kinase/Akt survival pathway. When cells overexpressing alpha5 were allowed to adhere to fibronectin, there was a moderate activation of protein kinase B (PKB)/Akt, whereas no such effect was seen in alpha2-overexpressing cells adhering to collagen. Furthermore, in cells overexpressing alpha5 and adhering to fibronectin, there was a dramatic enhancement of the ability of growth factors to stimulate PKB/Akt; again, this was not seen in cells overexpressing alpha2 subunit and adhering to collagen or fibronectin. Expression of a dominant negative version of PKB/Akt in RIE cells blocked to ability of alpha5 to enhance cell survival. Thus, the alpha5beta1 integrin seems to protect intestinal epithelial cells against proapoptotic stimuli by selectively enhancing the activity of the PI-3-kinase/Akt survival pathway.  相似文献   

8.
Human integrin alpha5 was transfected into the integrin alpha5/beta1-negative intestinal epithelial cell line Caco-2 to study EGF receptor (EGFR) and integrin alpha5/beta1 signaling interactions involved in epithelial cell proliferation. On uncoated or fibronectin-coated plastic, the integrin alpha5 and control (vector only) transfectants grew at similar rates. In the presence of the EGFR antagonistic mAb 225, the integrin alpha5 transfectants and controls were significantly growth inhibited on plastic. However, when cultured on fibronectin, the integrin alpha5 transfectants were not growth inhibited by mAb 225. The reversal of mAb 225-mediated growth inhibition on fibronectin for the integrin alpha5 transfectants correlated with activation of the EGFR, activation of MAPK, and expression of proliferating cell nuclear antigen. EGFR kinase activity was necessary for both MAPK activation and integrin alpha5/beta1-mediated cell proliferation. Although EGFR activation occurred when either the integrin alpha5-transfected or control cells were cultured on fibronectin, coprecipitation of the EGFR with SHC could be demonstrated only in the integrin alpha5-transfected cells. These results suggest that integrin alpha5/beta1 mediates fibronectin-induced epithelial cell proliferation through activation of the EGFR.  相似文献   

9.
Inflammatory bowel diseases (IBD) are linked to an increased risk of developing colon cancer, by inflammatory mediators and alterations to the extracellular matrix (ECM). The events induced by inflammatory mediators lead to dysregulated activation and induction of inflammatory genes such as cyclooxygenase-2 (COX-2). COX-2 is involved in the conversion of arachidonic acid to biologically active prostanoids and is highly upregulated in colon cancer. Since inflammation-induced changes to the extracellular matrix could affect integrin activities, we here investigated the effect of integrin signalling on the level of COX-2 expression in the non-transformed intestinal epithelial cell lines, Int 407 and IEC-6. Adhesion of these cells to a collagen I- or IV-coated surface, increased surface expression of alpha2beta1 integrin. Activation of integrins with collagen caused an increased cox-2 promoter activity, with a subsequent increase in COX-2 expression. The signalling cascade leading to this increased expression and promoter activity of cox-2, involves PKCalpha, the small GTPase Ras and NFkappaB but not Erk1/2 or Src activity. The integrin-induced increase in cellular COX-2 activity is responsible for an elevated generation of reactive oxygen species (ROS) and increased cell migration. This signalling pathway suggests a mechanism whereby inflammation-induced modulations of the ECM, can promote cancer transformation in the intestinal epithelial cells.  相似文献   

10.
Netrins, axon guidance cues in the CNS, have also been detected in epithelial tissues. In this study, using the embryonic pancreas as a model system, we show that Netrin-1 is expressed in a discrete population of epithelial cells, localizes to basal membranes, and specifically associates with elements of the extracellular matrix. We demonstrate that alpha6beta4 integrin mediates pancreatic epithelial cell adhesion to Netrin-1, whereas recruitment of alpha6beta4 and alpha3beta1 regulate the migration of CK19+/PDX1+ putative pancreatic progenitors on Netrin-1. These results provide evidence for the activation of epithelial cell adhesion and migration by a neural chemoattractant, and identify Netrin-1/integrin interactions as adhesive/guidance cues for epithelial cells.  相似文献   

11.
Mammary epithelial cells in primary cell culture require both growth factors and specific extracellular matrix (ECM)-attachment for survival. Here we demonstrate for the first time that inhibition of the ECM-induced Erk 1/Erk 2 (p42/44 MAPK) pathway, by PD 98059, leads to apoptosis in these cells. Associated with this cell death is a possible compensatory signalling through the p38 MAP kinase pathway the inhibition of which, by SB 203580, leads to a more rapid onset of apoptosis. This provides evidence for a hitherto undescribed Erk 1/Erk 2 to p38 MAP kinase pathway 'cross-talk' that is essential for the survival of these cells. The cell death associated with inhibition of these two MAP kinase pathways however, occurred in the presence of insulin that activates the classical PI-3 kinase-dependent Akt/PKB survival signals and Akt phosphorylation. Cell death induced by inhibition of the MAP kinase pathways did not affect Akt phosphorylation and may, thus, be independent of PI-3 kinase signalling.  相似文献   

12.
13.
Integrin-ligand binding regulates tumor cell motility and invasion. Cell migration also involves the Rho GTPases that control the interplay between adhesion receptors and the cytoskeleton. We evaluated how specific extracellular matrix ligands modulate Rho GTPases and control motility of human squamous cell carcinoma cells. On laminin-5 substrates, the epithelial cells rapidly spread and migrated, but on type I collagen the cells spread slowly and showed reduced motility. We found that RhoA activity was suppressed in cells attached to laminin-5 through the alpha3 integrin receptor. In contrast, RhoA was strongly activated in cells bound to type I collagen and this was mediated by the alpha2 integrin. Inhibiting the RhoA pathway by expression of a dominant-negative RhoA mutant or by directly inhibiting ROCK, reduced focal adhesion formation and enhanced cell migration on type I collagen. Cdc42 and Rac and their downstream target PAK1 were activated following adhesion to laminin-5. PAK1 activation induced by laminin-5 was suppressed by expression of a dominant-negative Cdc42. Moreover, constitutively active PAK1 stimulated migration on collagen I substrates. Our results indicate that in squamous epithelial cells, collagen-alpha2beta1 integrin binding activates RhoA, slowing cell locomotion, whereas laminin-5-alpha3beta1 integrin interaction inhibits RhoA and activates PAK1, stimulating cell migration. The data demonstrate that specific ligand-integrin pairs regulate cell motility differentially by selectively modulating activities of Rho GTPases and their effectors.  相似文献   

14.
Stimulation by both adrenergic and non-adrenergic pathways can induce proliferation of brown pre-adipocytes. To understand the signalling pathways involved in non-adrenergic stimulation of cell proliferation, we examined Erk1/2 activation. In primary cultures of mouse brown pre-adipocytes, both EGF (epidermal growth factor) and PDGF (platelet-derived growth factor) induced Erk1/2 activation. EGF-stimulated Erk1/2 activation involved Src tyrosine kinases, but not PKC or PI3K, whereas in PDGF-induced Erk1/2 activation, PI3K, PKC (probably the atypical ζ isoform) and Src were involved sequentially. Both EGF and PDGF induced PI3K-dependent Akt activation that was not involved in Erk1/2 activation. By comparing effects of signalling inhibitors (wortmannin, SH-6, TPA, Gö6983, PP2, PD98059) on EGF- and PDGF-induced Erk1/2 activation and cell proliferation (3H-thymidine incorporation), we conclude that while the signal transduction pathways initiated by these growth factors are clearly markedly different, their effects on cell proliferation can be fully explained through their stimulation of Erk1/2 activation; thus Erk1/2 is a common, essential step for stimulation of proliferation in these cells.  相似文献   

15.
SCC4 human keratinocytes are derived from a squamous cell carcinoma of the tongue and undergo very little spontaneous differentiation. Introduction of a wild-type beta 1 integrin subunit into SCC4 cells stimulates differentiation, suggesting either that the cells have a defect in the integrin signaling pathways that control differentiation or that the beta1 subunit itself is defective. Here we describe a heterozygous mutation in the SCC4 beta 1 subunit. The mutation, T188I, maps to the I-like domain. It results in constitutive activation of ligand binding, irrespective of the partner alpha subunit, in solid phase assays with recombinant protein and in living cells. The mutation promotes cell spreading, but not proliferation, motility, or invasiveness. It results in sustained activation of Erk MAPK independent of cell spreading. When introduced into SCC4 keratinocytes, the wild-type beta1 integrin stimulates differentiation, whereas the mutant is inactive. Activation of beta 1 integrins in normal keratinocytes also suppresses differentiation. These results establish, for the first time, mutation as a mechanism by which integrins can contribute to neoplasia, because the degree of differentiation in epithelial cancers is inversely correlated with prognosis. They also provide new insights into how integrins regulate keratinocyte differentiation.  相似文献   

16.
Expression of alpha5beta1 integrin in the drug-resistant MCF-7/ADR breast carcinoma cells was inhibited by treatment of these cells with alpha5-specific siRNA. The decrease of alpha5beta1 expression resulted in a sharp decrease of expression of MMP-2 collagenase and inhibition of invasion activity of these cells in vitro. Similar decrease of invasion was also observed during inhibition of MMP-2 expression by treatment of these cells with MMP-2-specific siRNA. Inhibition of alpha5beta1 expression was also accompanied by significant decrease in cell content of active (phosphorylated) forms of signal protein kinases Akt and Erk1/2. Inhibition of activity of these kinases by treatment of cells with PI-3K/Akt-specific inhibitor LY294002 or Erk-specific inhibitor PD98059 resulted in inhibition of MMP-2 expression and the decrease of invasion in vitro. These data suggest that alpha5beta1 controls invasion ability of these cells by regulating expression of MMP-2, which involves PI-3K and Erk1/2 protein kinase signaling.  相似文献   

17.
Akt (also known as PKB or RAC-PK) is an intracellular serine/threonine kinase involved in regulating cell survival. Although this makes it a promising target for the discovery of drugs to treat human cancer, a complicating factor may be the role played by Akt in insulin signalling. Two human isoforms, Akt-1 and Akt-2, have been described previously and a third isoform has been identified in rats (here termed Akt-3, but also called RAC-PK-gamma or PKB-gamma). We describe the identification of the corresponding human isoform of Akt-3. The gene encoding human Akt-3 was localized to chromosome 1q43-44. The predicted protein sequence is 83% identical to human Akt-1 and 78% identical to human Akt-2, and contains a pleckstrin homology domain and a kinase domain. In contrast to the published rat Akt-3 isoform, human and mouse Akt-3 also possess a C-terminal 'tail' that contains a phosphorylation site (Ser472) thought to be involved in the activation of Akt kinases. In addition to phosphorylation of Ser472, phosphorylation of Thr305 also appears to contribute to the activation of Akt-3 because mutation of both these residues to aspartate increased the catalytic activity of Akt-3, whereas mutation to alanine inhibited activation. Akt-3 activity could be inhibited by the broad spectrum kinase inhibitor staurosporine and by the PKC inhibitor Ro 31-8220, but not by other PKC or PKA inhibitors tested. Although Akt-3 is expressed widely, it is not highly expressed in liver or skeletal muscle, suggesting that its principle function may not be in regulating insulin signalling. These observations suggest that Akt-3 is a promising target for the discovery of novel chemotherapeutic agents which do not interfere with insulin signalling.  相似文献   

18.
Adult stem cells are important cell sources in regenerative medicine, but isolating them is technically challenging. This study employed a novel strategy to generate stem-like corneal epithelial cells and promote the functional properties of these cells by coculture with embryonic stem cells. The primary corneal epithelial cells were labelled with GFP and cocultured with embryonic stem cells in a transwell or by direct cell-cell contact. The embryonic stem cells were pre-transfected with HSV-tk-puro plasmids and became sensitive to ganciclovir. After 10 days of coculture, the corneal epithelial cells were isolated by treating the cultures with ganciclovir to kill the embryonic stem cells. The expression of stem cell-associated markers (ABCG2, p63) increased whereas the differentiation mark (Keratin 3) decreased in corneal epithelial cells isolated from the cocultures as evaluated by RT-PCR and flow cytometry. Their functional properties of corneal epithelial cells, including cell adhesion, migration and proliferation, were also enhanced. These cells could regenerate a functional stratified corneal epithelial equivalent but did not form tumors. Integrin β1, phosphorylated focal adhesion kinase and Akt were significantly upregulated in corneal epithelial cells. FAK Inhibitor 14 that suppressed the expression of phosphorylated focal adhesion kinase and Akt inhibited cell adhesion, migration and proliferation. LY294002 that suppressed phosphorylated Akt but not phosphorylated focal adhesion kinase inhibited cell proliferation but had no effect on cell adhesion or migration. These findings demonstrated that the functional properties of stem-like corneal epithelial cells were enhanced by cocultured embryonic stem cells via activation of the integrin β1-FAK-PI3K/Akt signalling pathway.  相似文献   

19.
20.
Das S  Banerji A  Frei E  Chatterjee A 《Life sciences》2008,82(9-10):467-476
Interactions between tumour cells and the extracellular matrix (ECM) strongly influence tumour development, affecting cell survival, proliferation and migration. Many of these interactions are mediated through a family of cell surface receptors named integrins. Fibronectin and its integrin receptors play important roles in tumour development. The alpha5beta 1 integrin interacts with the central cell adhesive region of fibronectin and requires both the RGD and synergy sites for maximal binding. Matrix metalloproteinases (MMPs) are a family of zinc dependent endopeptidases. They are capable of digesting the different components of the ECM and basement membrane. The ECM gives structural support to cells and plays a central role in cell adhesion, differentiation, proliferation and migration. Binding of ECM to integrins modulates expression and activity of the different MMPs. Our experimental findings demonstrate that cultivation of human breast cancer cells, MCF-7, in serum free medium in the presence of fibronectin upregulates the activity of MMP-2 and MMP-9. Blocking of alpha5beta 1 integrin with anti-alpha5 monoclonal antibody inhibits the fibronectin-induced MMP activation response appreciably. This strongly indicates alpha5beta 1 mediated signalling events in activation of MMP-2 and MMP-9. Phosphorylation of FAK and PI-3 kinase and the nuclear translocation of ERK and NF-kappaB upon fibronectin binding demonstrate possible participation of the FAK/PI-3K/ERK signalling pathways in the regulation of MMP-2 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号