首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Three different ovariole types have been described in the Neuropteroidea. In this review, comparative analysis of their structure and function is presented, and the results are used for phylogenetic considerations. Neuropteran polytrophic ovaries exhibit deviations from the basic polytrophic pattern found in other insects. Asynchronous divisions of germ cells result in a variable and unfixed number of cystocytes per cluster. In contrast to the typically branched system, spatial organization of the cystocyte connections in neuropteran egg chambers is almost linear. A more precise comparative study of ovariole structure and function within Neuroptera brings further support for the placement of Coniopterygidae as an early off-shoot from the main neuropteran phylogenetic lineage. Ovaries of Raphidioptera and Megaloptera: Sialidae represent a distinct type of telotrophic organization. Its almost identical character in both groups favours the concept on the origin of this telotrophy from the common ancestral polytrophic condition. Ovarioles of Megaloptera: Corydalidae are neopanoistic and it is emphasized here that this organization must have evolved independently from the polytrophic background. A hypothesis on paraphyletic origin of Megaloptera is thus supported.  相似文献   

2.
Summary The pattern of intercellular connections between germ line cells has been studied in follicles of the mutantdicephalic (dic), which possess nurse cell clusters at both poles. Staining of follicles with a fluorescent rhodamine conjugate of phalloidin reveals ring canals and cell membranes and thus allows us to reconstruct the spatial organization of the follicle. Each germ line cell can be identified by the pattern of cell-cell connections which reflect the mitotic history of individual cells in the 16-cell cluster. The results indicate that in both wild-type anddicephalic cystocyte clusters one of the two cells with four ring canals normally becomes the pro-oocyte. However, in some follicles (dicephalic and wild-type) oocytes were found with fewer or more than four ring canals. Indic follicles, one or several nurse cells may become disconnected from the other cells during oocyte growth at stage 9–10. Such disconnected cells cannot later on empty their cytoplasm into the oocyte. This, in turn, might be of consequence for the determination of axial polarity of the embryo.  相似文献   

3.
The morphogenesis of ovaries and the organization of germ cells within them were visualized during the larval stages of the moth, Plodia interpunctella. The germ cells were observed by utilizing confocal microscopy coupled with immuno-fluorescent staining for the alpha-crystallin protein 25 (alphaCP25). The alphaCP25 was previously shown to be specific to germ cells of pupae and adults, and this study shows that alphaCP25 is present in larval germ cells as well. A cluster of 28 germ cells that stain for alphaCP25 was found in the gonads of newly hatched first instar larvae. The founding germ cells became segregated into four clusters, most likely by somatic cell intrusion, around the beginning of the second instar. Division of the primary germ cells began by the end of the second instar and the formation of all cystoblasts appeared to be completed within the four ovarioles by the end of the third instar. Within the ovarioles of third instar larvae, the germ cells were organized with a distal cap of seven germ cells which was segregated from the majority of the germ cells. The main body of germ cells was arranged around a central germ cell-free core as a spiral. Divisions of the cystoblasts to form cystocyte clusters were nearly completed during the fourth (last) larval instar. These features suggest that the strategy to produce follicles in moths is fundamentally different from the fruitfly, Drosophila. It appears that during the initial stages of ovary development in P. interpunctella, the primary germ cells undergo stage-complete divisions that are completed prior to the onset of the next set of divisions, which results in a complete complement of follicles available by the time of adult eclosion, while in Drosophila the primary germ cell divisions are initiated in the adult stage, and follicles are produced individually as resources are available.  相似文献   

4.
Animal germ cells tend to form clonal groups known as clusters or cysts. Germ cells within the cyst (cystocytes) are interconnected by intercellular bridges and thus constitute a syncytium. Our knowledge of the mechanisms that control the formation of germ-cell clusters comes from extensive studies carried on model organisms (Drosophila, Xenopus). Germ-cell clusters have also been described in worms (annelids, flat worms and nematodes), although their architecture differs significantly from that known in arthropods or vertebrates. Their peculiar feature is the presence of a central anucleate cytoplasmic core (cytophore, rachis) around which the cystocytes are clustered. Each cystocyte in such a cluster always has one intercellular bridge connecting it to the central cytoplasmic core. The way that such clusters are formed has remained a riddle for decades. By means of light, fluorescence and electron microscopy, we have analysed the formation and architecture of cystocyte clusters during early stages of spermatogenesis and oogenesis in a few species belonging to clitellate (oligochaetous) annelids. Our data indicate that the appearance of germ cells connected via a central cytophore is accompanied by a specific orientation of the mitotic spindles during cystocyte divisions. Spindle long axes are always oriented tangentially to the surface of the cytophore. In consequence, cystocytes divide perpendicularly to the plane of the existing intercellular bridge. Towards the final stages of cytokinesis, the contractile ring of the cleavage furrow merges with the rim of the intercellular bridge that connects the dividing cystocyte with the cytophore and forces partition of the existing bridge into two new bridges. This work was supported by the following research grants: 2P04C004 28 from the Ministry of Science and Informatization (to P. Świątek and J. Klag) and DS/1018/IZ/2007 (to J. Kubrakiewicz).  相似文献   

5.
Comparative study of ovary development and oogenesis in the dipterans revealed significant differences between the Nematocera (lower dipterans, midges) and the Brachycera (true flies). The occurrence of these differences emphasizes well the phylogenetic division of the Diptera into these major subgroups. Basic discrepancies were found in the course of ovary development and in the mode of follicular cell differentiation. In contrast to more advanced flies, in midges the initial stages of germ cell differentiation, i.e. divisions of gonial cells, germ cell cluster formation and diversification of cystocytes within clusters take place exclusively in the larval and early pupal stages. Moreover, the formation of cystocyte clusters precedes that of ovarioles. Differences in the behaviour of some follicular cells found between the ovarian follicles of midges and advanced flies suggest that both major dipteran subgroups may differ in the scenario and/or the mechanisms of terminal signalling leading to the determination of the anteriormost part of the body.  相似文献   

6.
The endoparasitic life of strepsipterans (Insecta), especially neotenic females, reduces to a great extent external and internal organs. Light and electron microscopic investigation of ovaries of Elenchus tenuicornis (Kirby) confirms the following: (1) somatic tissues of ovaries are totally reduced, with the exception of some cells surrounding germ cell clusters; (2) a previtellogenic growth phase of oocytes is reduced; (3) nurse cells remain diploid and their membranes degenerate at the onset of vitellogenesis; (4) vitellogenesis is reduced, vitellin and fat vacuoles contribute only 50% to the final egg volume; and (5) chorionogenesis is reduced to a vitellin membrane. However, some features of normal development remain, allowing classification of the ovary type as polytrophic meroistic: (1) germ cells undergo synchronized, incomplete divisions, following the 2n rule, where all former intercellular bridges become localized in one cystocyte, while the other has none; and (2) only one cell is determined as the oocyte, all other cystocytes serve as nurse cells and the surrounding somatic cells transform into follicular cells. Novel events in oogenesis of strepsipterans include fission of clusters during the phase of cluster mitoses, and protection of oocyte nuclei, while nurse cell nuclei degenerate in the same cytoplasm.  相似文献   

7.
In Drosophila, oogenesis is initiated when a germline stem cell produces a differentiating daughter cell called the cystoblast. The cystoblast undergoes four rounds of synchronous divisions with incomplete cytokinesis to generate a syncytial cyst of 16 interconnected cystocytes, in which one cystocyte differentiates into an oocyte. Strong mutations of the arrest (aret) gene disrupt cyst formation and cause the production of clusters of ill-differentiated germline cells that retain cellular and molecular characteristics of cystoblasts. These mutant germ cells express high levels of BAM-C and SXL proteins in the cytoplasm but do not accumulate markers for advanced cystocytes or differentiating oocytes, such as the nuclear localization of SXL or the accumulation of osk mRNA, orb mRNA, and cytoplasmic dynein. However, the mutant germ cells do not contain spectrosomes, the cytoplasmic structure that objectifies the divisional asymmetry of the cystoblast. The aret mutant germ cells undergo active mitosis with complete cytokinesis. Their mitosis is accompanied by massive necrosis, so that the number of germ cells in a stem cell-derived cluster ranges from one to greater than 70. These defects of aret mutants reveal a novel function of aret as the first gene with a defined function in the cystoblast to cyst transition during early oogenesis.  相似文献   

8.
Annelids are strongly segmented animals that display a high degree of metamerism in their body plan. The embryonic origin of metameric segmentation was examined in an oligochaete annelid Tubifex using lineage tracers. Segmental organization arises sequentially in the anterior-to-posterior direction along the longitudinal axis of the mesodermal germ band, a coherent column of primary blast cells that are produced from the mesodermal teloblast. Shortly after its birth, each primary blast cell undergoes a spatiotemporally stereotyped sequence of cell divisions to generate three classes of cells (in terms of cell size), which together give rise to a distinct cell cluster. Each cluster is composed of descendants of a single primary blast cell; there is no intermingling of cells between adjacent clusters. Relatively small-sized cells in each cluster become localized at its periphery, and they form coelomic walls including an intersegmental septum to establish individuality of segments. A set of cell ablation experiments showed that these features of mesodermal segmentation are not affected by the absence of the overlying ectodermal germ band. These results suggest that each primary blast cell serves as a founder cell of each mesodermal segment and that the boundary between segments is determined autonomously. It is concluded that the metameric body plan of Tubifex arises from an initially simple organization (i.e., a linear series) of segmental founder cells.  相似文献   

9.
The occurrence of vertical transmission of the DNA virus of tsetse was studied in virus-infected, femaleGlossina pallidipes with hypertrophied salivary glands (HSG). Ultrastructural examination of tissue components of ovaries of these females revealed virus particles within both germ cell cystocyte clusters and in the follicles, sparsely distributed within nurse cells and in the oocyte cytoplasm. The presence of the virus particles within the ooplasm demonstrates the ovum as a vehicle through which theG. pallidipes virus is disseminated in nature.  相似文献   

10.
In this study, we present evidence that the asp function is required in oogenesis for germline cell divisions as well as for cyst polarity and oocyte differentiation. Consistent with previously described roles in spindle organization during Drosophila meiosis and mitosis, asp mutation leads to severe defects in spindle microtubule organization within the germarium. The mitotic spindles of the mutant cystocytes are composed by wavy microtubules and have abnormal poles that often lack gamma-tubulin. The fusome structure is also compromised. In the absence of asp function, the cystocyte divisions fail resulting in egg chamber with fewer than 16 germ cells. Moreover, the microtubule network within the developing germline cysts may assemble incorrectly in turn affecting the microtubule based transport of the specific determinants that is required during mid-oogenesis for the oocyte differentiation program.  相似文献   

11.
Three different ovariole types exist in insects: panoistic, polytrophic- and telotrophic-meroistic. Their ontogenetic development is comparable to all insect orders. Each ovariole is composed of somatic tissues and germ cells.Panoistic ovarioles can be developed: (1) by totally blocking germ cell cluster division (e.g. in “primitive” insect orders; and (2) after germ cell cluster formation by final cleavage of cystocytes, which develop as oocytes (e.g. in stoneflies or thrips).Polytrophic-meroistic ovaries, showing a set of identical characters, are found among hemirnetabolous and holometabolous insects, indicating a “basic type” of common origin. One characteristic feature is the differentiation of only one oocyte, which is derived from one central cell of the cluster, whereas all other siblings are transformed into nurse cells.Telotrophic ovaries differ from polytrophic ovaries by retention of all nurse cells in the anterior trophic chamber. In addition, oocyte-nurse cell determination can be shifted towards more oocytes in a cluster, and clusters or subclusters can fuse by cell membrane reduction among nurse cells. This type of ovary developed independently 3 times from polytrophic ancestors and once in mayflies directly from panoistic ancestors.  相似文献   

12.
Germ line cell cluster formation in ovarioles of three different stages, each from a different mayfly species, was studied using ultra-thin serial sectioning. In the analysed ovariole of Cloeön sp., only one linear, zigzag germ line cell cluster was found, consisting of sibling cells connected by intercellular bridges which represent remnants of preceding synchronized mitotic cycles followed by incomplete cytokinesis. A polyfusome stretched through all sibling cells. At the tip of the ovariole, cytokinesis occurred without preceding division of nuclei; thus, intercellular bridges were lined up but the remaining cytoplasm between the bridges had no nuclei. The analysed Siphlonurus armatus vitellarium contained five oocytes at different stages of development. Each oocyte in the vitellarium was connected via a nutritive cord to the linear cluster of its sibling cells in the terminal trophic chamber. Each cluster had the same architecture as was found in Cloëon. The 3-dimensional arrangement and distribution of closed intercellular bridges strongly suggest that all five clusters are derived from a single primary clone. The position of oocytes within each cluster is random. However, each oocyte is embraced by follicular or prefollicular cells whilst all other sibling cells are enclosed by somatic inner sheath cells, clearly distinguishable from prefollicular cells. In the analysed ovariole of Ephemerella ignita, two small linear clusters were found in the tropharium beside two single cells, two isolated cytoplasmic bags with intercellular bridges but no nuclei, and some degenerating aggregates. One cluster was still connected to a growing oocyte via a nutritive cord. In all species the nurse cells remained small and no indications of polyploidization were found. We suggest that this ancient and previously unknown telotrophic meroistic ovary has evolved directly from panoistic ancestors.  相似文献   

13.
Regulated changes in the cell cycle underlie many aspects of growth and differentiation. Prior to meiosis, germ cell cycles in many organisms become accelerated, synchronized, and modified to lack cytokinesis. These changes cause cysts of interconnected germ cells to form that typically contain 2(n) cells. In Drosophila, developing germ cells during this period contain a distinctive organelle, the fusome, that is required for normal cyst formation. We find that the cell cycle regulator Cyclin A transiently associates with the fusome during the cystocyte cell cycles, suggesting that fusome-associated Cyclin A drives the interconnected cells within each cyst synchronously into mitosis. In the presence of a normal fusome, overexpression of Cyclin A forces cysts through an extra round of cell division to produce cysts with 32 germline cells. Female sterile mutations in UbcD1, encoding an E2 ubiquitin-conjugating enzyme, have a similar effect. Our observations suggest that programmed changes in the expression and cytoplasmic localization of key cell cycle regulatory proteins control germline cyst production.  相似文献   

14.
The paired ovaries of young larva of the 3rd instar of Orthezia urticae are filled with numerous germ cell clusters that can be regarded as ovariole anlagen. Germ cells (cystocytes) belonging to one cluster form a rosette, in the centre of which a polyfusome occurs. Staining with rhodamine-phalloidin has revealed that polyfusomes contain numerous microfilaments. The number of cystocytes per cluster is not stable and varies considerably. The ovaries of older larva become elongated with numerous young ovarioles protruding into the body cavity. The ovarioles are not subdivided into the tropharium and vitellarium. In this stage germ cells differentiate into oocytes and trophocytes (nurse cells). The ovaries of adult females are composed of about 20 (Newsteadia floccosa) or 30 (O. urticae) ovarioles. Their trophic chambers contain trophocytes and arrested oocytes. In the vitellarium, at the given moment, only one oocyte develops. It has been observed that after maturation of the first egg the arrested oocytes may develop.  相似文献   

15.
Pattern formation and ommatidial differentiation were examined in the developing retina of the lobster Homarus americanus using light and electron microscopy. In the lobster the retina differentiates from the surface ectoderm that covers the optic primordia. Initially a single band of proliferation moves across this surface ectoderm. Immediately following this wave of proliferation, rows of ommatidial cell clusters appear. The earliest cell clusters are often seen adjacent to dividing cells of the proliferation band. The changing organization of the first seven rows of ommatidial clusters, visible at the surface of the retina, reveals events in early ommatidial differentiation. A rosette-like cluster of 18 cells forms the first row. Each stage following the rosette clusters occurs in a separate staggered row. Developing ommatidia have a central cluster of retinula cells, whose organization changes at each stage. Four cone cells enclose the retinula cells in each cluster and extend to the surface. In the seventh row, rhabdome formation begins and the retinula cells recede, leaving only cone cells visible at the retinal surface. This change initiates the two-tiered organization of the adult ommatidium. In 70% embryos, asymmetries in the position of the R8 axon around R7 create an equatorial line separating the dorsal and ventral halves of the retina. Possible mechanisms for the formation of these asymmetries are discussed. Postembryonic growth of the retina continues in stage VI juvenile animals along the ventral edge of the retina.  相似文献   

16.
Summary

Caste-specific differentiation of the female honey bee gonad takes place in the fifth larval instar. In queen larvae most ovarioles exhibit almost simultaneous formation of numerous germ cell clusters within the first 20 h after the last larval molt. Ultrastructurally distinctive fusomal cytoplasm connects these cystocytes. Germ cell differentiation is accompanied by morphological changes in somatic components of the ovarioles, the follicle and the terminal filament cells. Subsequently, queen ovarioles elongate and differentiate basal stalks that coalesce in a basal calyx. A second round of mitotic activity was found to occur in the late prepupal and early pupal queen ovary. This round may elevate germ cell numbers composing each cluster to levels observed in follicles of adult honey bee queens. In contrast, germ cell cluster formation does not occur in most of the 120–160 ovarioles of the larval worker ovary, but instead many cells in such ovarioles show signs of impending degeneration, such as large autophagic bodies. DNA extracted from worker ovaries did not reveal nucleosomal laddering, and ultrastructurally, chromatin in germ cell nuclei appeared intact. In the 4–7 surviving ovarioles of the small worker ovary, germ cell clusters were found with ultrastructural characteristics identical to those in queen ovarioles. The temporal window during which divergence in developmental pathways of the larval ovaries initiates shortly after the last larval molt coincides with caste-specific differences in juvenile hormone titer which have long been considered critical to caste-specific morphogenesis.  相似文献   

17.
18.
Swiatek P 《Folia biologica》2002,50(3-4):153-163
The analysis of the germ cell cluster formation in Anthonomus pomorum (Coleoptera, Polyphaga, Curculionidae) has revealed that both linear and branched clones of cystocytes occur in the pupa stage. In the branched clones a poorly developed polyfusome is formed and cystocytes with maximally 3 intercellular bridges were found. In the linear clones the polyfusomes are absent. Further divisions of cystocytes produce exclusively linearly arranged cells. Just after metamorphosis (Imago-A stage), the process of the germ cell membrane reduction starts. Only 2 groups of cells retain cell membranes: i.e the most anteriorly localized group of cystocytes and the posteriorly located presumptive oocytes. The former cells divide mitotically during the summer. As a result an anterior-posterior gradient of the syncytialization process arises in the Imago-B stage (females preparing for hibernation). In the sexually mature females (Imago-C) the trophic chamber consists of a huge syncytial area with numerous nurse cell nuclei embedded in a common cytoplasm, and posteriorly located young oocytes surrounded by prefollicular cells. In the light of recent hypothesis concerning the germ cell cluster formation and telotrophy anagenesis in Polyphaga the significance of the presented results is discussed.  相似文献   

19.
Immunoglobulins are encoded by a large multigene system that undergoes somatic rearrangement and additional genetic change during the development of immunoglobulin-producing cells. Inducible antibody and antibody-like responses are found in all vertebrates. However, immunoglobulin possessing disulfide-bonded heavy and light chains and domain-type organization has been described only in representatives of the jawed vertebrates. High degrees of nucleotide and predicted amino acid sequence identity are evident when the segmental elements that constitute the immunoglobulin gene loci in phylogenetically divergent vertebrates are compared. However, the organization of gene loci and the manner in which the independent elements recombine (and diversify) vary markedly among different taxa. One striking pattern of gene organization is the "cluster type" that appears to be restricted to the chondrichthyes (cartilaginous fishes) and limits segmental rearrangement to closely linked elements. This type of gene organization is associated with both heavy- and light-chain gene loci. In some cases, the clusters are "joined" or "partially joined" in the germ line, in effect predetermining or partially predetermining, respectively, the encoded specificities (the assumption being that these are expressed) of the individual loci. By relating the sequences of transcribed gene products to their respective germ-line genes, it is evident that, in some cases, joined-type genes are expressed. This raises a question about the existence and/or nature of allelic exclusion in these species. The extensive variation in gene organization found throughout the vertebrate species may relate directly to the role of intersegmental (V<==>D<==>J) distances in the commitment of the individual antibody-producing cell to a particular genetic specificity. Thus, the evolution of this locus, perhaps more so than that of others, may reflect the interrelationships between genetic organization and function.   相似文献   

20.
Tribolium castaneum has telotrophic meroistic ovarioles of the Polyphaga type. During larval stages, germ cells multiply in a first mitotic cycle forming many small, irregularly branched germ-cell clusters which colonize between the anterior and posterior somatic tissues in each ovariole. Because germ-cell multiplication is accompanied by cluster splitting, we assume a very low number of germ cells per ovariole at the beginning of ovariole development. In the late larval and early pupal stages, we found programmed cell death of germ-cell clusters that are located in anterior and middle regions of the ovarioles. Only those clusters survive that rest on posterior somatic tissue. The germ cells that are in direct contact with posterior somatic cells transform into morphologically distinct pro-oocytes. Intercellular bridges interconnecting pro-oocytes are located posteriorly and are filled with fusomes that regularly fuse to form polyfusomes. Intercellular bridges connecting pro-oocytes to pro-nurse cells are always positioned anteriorly and contain small fusomal plugs. During pupal stages, a second wave of metasynchronous mitoses is initiated by the pro-oocytes, leading to linear subclusters with few bifurcations. We assume that the pro-oocytes together with posterior somatic cells build the center of determination and differentiation of germ cells throughout the larval, pupal, and adult stages. The early developmental pattern of germ-cell multiplication is highly similar to the events known from the telotrophic ovary of the Sialis type. We conclude that among the common ancestors of Neuropterida and Coleoptera, a telotrophic meroistic ovary of the Sialis type evolved, which still exists in Sialidae, Raphidioptera, and a myxophagan Coleoptera family, the Hydroscaphidae. Consequently, the telotrophic ovary of the Polyphaga type evolved from the Sialis type. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号