首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The effect of the X-linked Hyp mutation on 25-hydroxyvitamin D3 (25-OH-D3) metabolism in mouse renal cortical slices was investigated. Vitamin D replete normal mice and Hyp littermates fed the control diet synthesized primarily 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3); only minimal synthesis of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) was detected in both genotypes and 1,25-(OH)2D3 formation was not significantly greater in Hyp mice relative to normal littermates, despite hypophosphatemia and hypocalcemia in the mutants. Calcium-deficient diet fed to normal mice reduced serum calcium (p less than 0.01), increased renal 25-hydroxyvitamin D3-1-hydroxylase (1-OHase) activity (p less than 0.05), and decreased 25-hydroxyvitamin D3-24-hydroxylase (24-OHase) activity (p less than 0.05). In contrast, Hyp littermates on the calcium-deficient diet had decreased serum calcium (p less than 0.01), without significant changes in the renal metabolism of 25-OH-D3. Both normal and Hyp mice responded to the vitamin D-deficient diet with a fall in serum calcium (p less than 0.01), significantly increased renal 1-OHase, and significantly decreased renal 24-OHase activities. In Hyp mice, the fall in serum calcium on the vitamin D-deficient diet was significantly greater than that observed on the calcium-deficient diet. Therefore the ability of Hyp mice to increase renal 1-OHase activity when fed the vitamin D-deficient diet and their failure to do so on the calcium-deficient diet may be related to the resulting degree of hypocalcemia. The results suggest that although Hyp mice can respond to a disturbance of calcium homeostasis, the in vivo signal for the stimulation of renal 1-OHase activity may be set at a different threshold in the Hyp mouse; i.e. a lower serum calcium concentration is necessary for Hyp mice to initiate increased synthesis of 1,25(-OH)2D3.  相似文献   

2.
Twenty-four young pigs were divided into three groups and each fed a replete, low calcium (Ca) or low phosphorus (P) diet. It was found that the deficient diets induced rises in renal 25 hydroxy-vitamin D 1,hydroxylase (1-hydroxylase) activity, circulating 1,25 dihydroxy-vitamin D3 (1,25 (OH)2-D3) and Ca binding protein (CaBP) and intestinal 1,25(OH)2D3 and CaBP. All these rises were statistically significant in the low Ca group but only the rises in the 1-hydroxylase activity and intestinal 1,25(OH)2D3 were significant in the low P group. A high degree of correlation existed between the parameters. There was no enhancement of intestinal 1,25(OH)2D3 or CaBP concentration relative to the 1-hydroxylase activity in the low P pigs as occurs in the chick. The low-P-induced rise in 1-hydroxylase activity was independent of parathyroid hormone.  相似文献   

3.
There are three mixed function oxidases which catalyze hydroxylations of vitamin D and its derivatives. These include the hepatic mitochondrial or microsomal vitamin D3-25-hydroxylase and the two renal mitochondrial enzymes which further hydroxylate 25-hydroxyvitamin-D3 (25-OH-D3) to form 24R,25-dihydroxyvitamin D3 (24,25(OH)2D3) and 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], the primary steroid hormonal derivative of vitamin D3. All three enzymes are cytochrome P450 dependent. The two renal mitochondrial enzymes are regulated, usually in a reciprocal fashion. The intracellular signalling systems involved in this regulation include 1,25(OH)2D3 itself and both protein kinases A and C. Recent progress has been made in the purification and cloning of the vitamin D3-25-hydroxylase and the 25-OH-D3-24-hydroxylase. When the 25-OH-D3-1-hydroxylase is purified and cloned, efforts which have thus far been frustrated by its low abundance, fertile new ground for the study of the regulation of vitamin D metabolism at the molecular level will be opened up.  相似文献   

4.
The synthesis of 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) is most strongly regulated by dietary calcium and the action of parathyroid hormone to increase 1alpha-hydroxylase (1alpha-OHase) and decrease 24-hydroxylase (24-OHase) in kidney proximal tubules. This study examines the hypothesis that 1,25-(OH)(2)D(3) synthesis, induced by dietary calcium restriction, is also the result of negative feedback regulation blockade. Rats fed a low calcium (0.02%, -Ca) diet and given daily oral doses of vitamin D (0, 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 microg) remained hypocalcemic despite increasing levels of serum calcium in relation to the vitamin D dose. Plasma levels of 1,25-(OH)(2)D(3) rose to high levels (1200 pg/ml) at the high vitamin D dose levels. As expected, thyroparathyroidectomy caused a rapid fall in serum 1,25-(OH)(2)D(3). In rats fed a 0.47% calcium diet (+Ca) supplemented with vitamin D (4 microg/day), exogenous 1,25-(OH)(2)D(3) suppressed renal 1alpha-OHase and stimulated the 24-OHase. In rats fed the -Ca diet, vitamin D was unable to suppress the renal 1alpha-OHase or stimulate the renal 24-OHase. In contrast, vitamin D was fully able to stimulate intestinal 24-OHase. Intestinal vitamin D receptor (VDR) was present under all circumstances, while kidney VDR was absent under hypocalcemic conditions and present under normocalcemic conditions. It appears that tissue-specific down-regulation of VDR by hypocalcemia blocks the 1,25-(OH)(2)D(3) suppression of the 1alpha-OHase and upregulation of the 24-OHase in the kidney, causing a marked accumulation of 1,25-(OH)(2)D(3) in the plasma.  相似文献   

5.
A fluorescent Ca2+ indicator, acetoxymethyl Quin2, was used to quantify changes in the cytosolic free calcium concentration ([Ca2+]i) of confluent mouse osteoblasts. 1,25 - Dihydroxycholecalciferol (1,25 - (OH)2D3, 10-100 pM), 25-hydroxycholecalciferol (25-(OH)D3, 10-100 nM), parathyroid hormone (PTH(1-84), 0.1-10 nM), and prostaglandin E2 (PGE2, 10-1000 nM) all induced immediate (t less than 15 s) transient increases in [Ca2+]i, from a basal level of 135 +/- 8 nM to levels of 179-224 nM. These increases rapidly returned to a plateau approximately 10% higher than the basal level. 24,25-Dihydroxycholecalciferol (24,25-(OH)2D2, 0.1-10 nM) induced a rapid increase in [Ca2+]i which remained elevated for 5 min before decreasing. The 1,25-(OH)2D3- and PTH-induced spikes were abolished by the prior addition of EGTA and Ca2+ entry blockers (verapamil, nifedipine, 1 microM) while the responses to 25-(OH)D3, 24,25-(OH)2D3, and PGE2 were unaffected. Addition of 1,25-(OH)2D3 + EGTA or PTH + EGTA caused enhanced Ca efflux. Addition of drugs which interfere with calcium sequestration by the endoplasmic reticulum (ER) (caffeine, 4 mM; 8-(diethyl-amino)-octyl 3,4,5-trimethoxybenzoate HCl, 0.5 mM) or mitochondria (antimycin, 10 microM; oligomycin, 5 microM) showed that 25-(OH)D3 and PGE2 mainly mobilized Ca2+ from ER. 1,25-(OH)2D3 and bovine PTH caused a transient increase in [Ca2+]i, 70% of which resulted from Ca2+ influx from outside the cells and 30% by release from the ER. The [Ca2+]i increase induced by 24,25-(OH)2D3 included a 30% contribution from the ER and 70% from the mitochondria.  相似文献   

6.
Three A-ring analogs of 1 alpha,25-dihydroxyvitamin D3 (1,25(OH)2D3)--2-nor-1,3-seco-1,25(OH)2D3 (2-nor analog), 2-oxa-3-deoxy-25-OH-D3 (2-oxa analog), and A-homo-3-deoxy-3,3-dimethyl-2,4-dioxa-25-OH-D3 (A-homo analog)--were tested for their ability to inhibit 25-OH-D3-1 alpha-hydroxylase (1 alpha-hydroxylase) in isolated mitochondria and to alter 25-OH-D3 metabolism in cultured chick kidney cells. The 2-nor and 2-oxa analogs were relatively potent (Kis of 60 and 30 nM, respectively, compared with 170 nM for 1,25(OH)2D3), whereas the A-homo analog was completely ineffective in inhibiting 1 alpha-hydroxylase activity. In contrast, all three analogs were able to repress 1 alpha-hydroxylase and induce 24-hydroxylase activity in cultured chick kidney cells, suggesting that this process is not one of direct action in the mitochondria, but is more likely to be a receptor-mediated one.  相似文献   

7.
Previous work has shown that 25-hydroxyvitamin D3 (25-OH-D3) and 1 alpha, 25-dihydroxyvitamin D3 (1,25-(OH)2D3) may be metabolized in the mammalian kidney through a side chain oxidation pathway resulting in C23-C24 cleavage, yielding 24,25,26,27-tetranor-23-OH-D3. In the present study, we have used UMR-106 clonal osteoblast cells to demonstrate that products of the side chain oxidation pathway are produced by an osteoblast-like cell. Cells cultured on microcarrier beads and incubated in the presence of pharmacological levels of substrate (1.4 microM, either 25-OH-D3 or 1,25-(OH)2D3) produced sufficient quantities of metabolite to allow identification through mass spectrometry. In addition, putative metabolites were identified through comigration with authentic standards on three high pressure liquid chromatography systems, chemical modification by NaBH4 and periodate, and UV spectral characterization. The pathway was undetectable unless the cells had been exposed to 1,25-(OH)2D3 prior to incubation with substrate. We have shown that 1,25-(OH)2D3 induces the 24-hydroxylase and perhaps also the other enzymes of this pathway in the bone cell. Although we used pharmacological concentrations of substrate to demonstrate the existence of the side chain oxidation pathway in bone cells, physiological levels of 25-OH-D3 or 1,25-(OH)2D3 were also metabolized through the pathway, at least as far as the penultimate product. We speculate that the side chain oxidation pathway may be ubiquitous among vitamin D target tissues.  相似文献   

8.
Cholate-solubilized chick kidney mitochondria that 1-hydroxylated 25-hydroxyvitamin-D3 (25-OH-D3) upon reconstitution also produced 10-oxo-19-nor-25-OH-D3, which co-eluted with 1,25-dihydroxyvitamin D3 (1,25-(OH)2-D3) on normal phase high performance liquid chromatography (HPLC) with hexane:propanol-2 (9:1), the traditional chromatographic system for isolating 1,25-(OH)2-D3. The 10-oxo derivative was separated from 1,25-(OH)2-D3 by normal phase HPLC with dichloromethane:propanol-2 (19:1) or by reverse phase HPLC with methanol:water (4:1). Unlike 1,25-(OH)2-D3 production, formation of 10-oxo-19-nor-25-OH-D3 did not require a source of reducing equivalents and was blocked by the antioxidants, diphenyl-rho-phenylenediamine, and butylated hydroxytoluene, implicating a free radical or peroxidative synthetic mechanism. Rat kidney mitochondria solubilized with cholate or with cholate and Emulgen 911 produced 10-oxo-19-nor-25-OH-D3 but no detectable 1 alpha,25-(OH)2-D3. These results stress the importance of careful identification of vitamin D metabolites produced in vitro and suggest the use of alternate chromatographic conditions for isolating 1,25-(OH)2-D3 or inclusion of antioxidants in the assay of solubilized 1 alpha-hydroxylase to eliminate contamination of 1,25-dihydroxyvitamin D3 with 10-oxo-19-nor-25-OH-D3.  相似文献   

9.
Young animals adapt to a low calcium diet by increasing renal production of 1,25-dihydroxyvitamin D [1,25(OH)2D], the active metabolite of vitamin D. However, the capacity of adult animals to adapt is markedly diminished. With the recent cloning of the cytochrome P450 component (CYP1a) of the renal 1-hydroxylase enzyme complex, it is now possible to determine directly the effect of dietary calcium and maturation on the expression of renal 1-hydroxylase. Using a ribonuclease protection assay, it was found that feeding a low Ca diet markedly increased renal CYP1a mRNA levels in young rats. However, feeding this diet to adult rats produced an increase in CYP1a mRNA that was only 10% that of the young rats. These studies demonstrate that a low calcium diet increases renal 1,25-dihydroxyvitamin D production in young animals but not in adult animals by increasing CYP1a expression. Since the low calcium diet increased plasma parathyroid hormone levels to similar levels in both age groups, this suggests that in the adult there is a renal refractoriness to parathyroid hormone.  相似文献   

10.
Previous studies have shown that middle aged rats do not increase renal 1,25-dihydroxyvitamin D3(1,25(OH)2D3) production in response to short-term (4 weeks) dietary vitamin D and calcium restriction. The purpose of the experiments reported here was to determine if middle aged rats demonstrate adaptation to long-term restriction of dietary calcium and vitamin D and to compare that adaptation to the adaptation seen in young rats. Middle aged (14-16 months) Fischer 344 rats were fed either a 0.02% calcium, vitamin D-deficient (restricted) or a 1.2% calcium, vitamin D-replete (control) diet. Rats from each group were sacrificed after 1.5, 3.0, 4.5, and 6.0 months on the diets. Renal conversion of 25(OH)D3 to 1,25(OH)2D3 and 24,25(OH)2D3 was measured in vitro using isolated renal cortical slices. Renal 1,25(OH)2D3 production in the restricted group was not significantly increased until 3 months and reached a maximum of 85% higher than the control at 4.5 months. Renal 24,25(OH)2D3 production was significantly decreased after only 1.5 months of restriction and was decreased maximally by 70% at 3.0 months. Serum calcium remained in the range 11-12 mg/100 ml in both diet groups, and serum immunoreactive PTH (iPTH) was modestly increased one- to twofold in the restricted group compared to the control group. In contrast, young rats (3 months old) fed the deficient diet for 1 month had a fourfold increase in renal 1,25(OH)2D3 production and a 71% decrease in 24,25(OH)2D3 production. Feeding the deficient diet also produced a 43% reduction in serum calcium and a 13-fold increase in serum iPTH. These findings demonstrate that middle aged rats do alter their 25(OH)D metabolism in response to long-term vitamin D and calcium restriction. However, both the rapidity and the magnitude of the response is decreased compared to that seen in the young rat. This blunted vitamin D response in the middle aged rat reflects the lack of a decrease in serum calcium and the marginal increase in serum iPTH in response to vitamin D and calcium restriction.  相似文献   

11.
Since osteocalcin has been suggested to play a role in calcium homeostasis, we investigated its serum levels in 6 healthy subjects during a rapid calcium infusion. Serum levels of intact parathyroid hormone (PTH), 25-hydroxyvitamin D [25-(OH) D3] and 1,25-dihydroxyvitamin D [1,25-(OH)2 D3] were also determined. The calcium infusion increased plasma-ionized calcium levels from 1.25 +/- 0.04 to 1.54 +/- 0.07 mmol/l at 30 min (p less than 0.05). Concomitantly, serum levels of intact PTH declined from 2.1 +/- 0.9 to 0.2 +/- 0.3 mmol/l (p less than 0.05). In contrast, serum osteocalcin levels did not change. Further, during calcium infusion, serum levels of 1,25-(OH)2 D3 decreased from 81 +/- 17 to 75 +/- 15 pmol/l (p less than 0.05) whereas serum levels of 25-(OH) D3 did not change. The results therefore suggest that calcium per se does not influence osteocalcin secretion.  相似文献   

12.
The in vivo regulation of circulating 1,25(OH)2D3 concentrations by vitamin D status and by dietary calcium and phosphate deficiency was studied. Adult rats were cannulated in the jugular vein and the clearance of physiological doses of 1,25(OH)2D3 monitored. In vitamin D-replete rats we investigated the effects of dietary calcium and phosphate deficiency on the elimination half life of 1,25(OH)2D3 The results showed no effect of dietary phosphate deficiency on the elimination half life of 1,25(OH)2D3. Dietary calcium deficiency resulted in a small increase of the 1,25(OH)2D3 elimination half life (P = 0.04) (normal diet: 16.3 +/- 1.8 hrs, n = 6; -Ca diet: 18.6 +/- 1.1 hrs, n = 5; -P diet: 16.0 +/- 1.4 hrs, n = 6; mean +/- SD). The experiments with the vitamin D deficient rats showed a marked increase in the elimination half life of 1,25(OH)2D3 (36.4 +/- 6.8 hrs, n = 7), when compared to the rats on the normal diet (P = 0.001). From the experiments in the vitamin D replete rats one can infer that regulation of circulating 1,25(OH)2D3 concentrations by dietary calcium or phosphate takes place at the production site and not by changes in elimination rate. However, vitamin D status appears to regulate circulating 1,25(OH)2D3 concentrations also through an effect on the elimination rate.  相似文献   

13.
To understand further the mechanism of action of parathyroid hormone (PTH) in the stimulation of the number of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) binding sites in UMR 106-01 cells we studied the role of cAMP and calcium. In addition to PTH other agents known to act via the cAMP signal pathway, prostaglandin E2, forskolin and dibutyryl cAMP, caused an increase in 1,25(OH)2D3 binding. Addition of the adenylate cyclase inhibitor 9-(tetrahydro-2-furyl)adenine resulted in a marked decrease of PTH-stimulated cAMP production but this was not followed by a reduction of 1,25(OH)2D3 receptor up-regulation by PTH. Increasing the intracellular calcium concentration by Bay K 8644 and A23817 independent of an activation of the cAMP signal pathway did not result in an increased 1,25(OH)2D3 binding. The calcium channel blockers nitrendipine and verapamil and chelating extracellular calcium with EGTA all reduced cAMP-mediated stimulation of 1,25(OH)2D3 binding. This reduction was not due to a reduce cAMP production as verapamil even potentiated PTH- and forskolin-stimulated cAMP production in a dose-dependent manner. The present study provides evidence for an interrelated action of calcium and cAMP in the heterologous up-regulation of the 1,25(OH)2D3 receptor. The current data show an interaction between the cAMP and calcium signal pathway at (1) the level of cAMP generation/degradation, and (2) a level located distal in the cascade leading to 1,25(OH)2D3 receptor up-regulation.  相似文献   

14.
The metabolism of [3H]vitamin D3 was studied in cultured human keratinocytes (CHK). Intact CHK were incubated for 1, 6, 12, 24 and 48 h with [3H]vitamin D3 and the lipid soluble fractions from the media and cells were extracted by high-performance liquid chromatography (HPLC). Vitamin D3 and its metabolites, 25-OH-D3, 24,25(OH)2D3 and 1,25(OH)2D3 were added to the extracts, as markers, prior to HPLC. HPLC analysis of the lipid extracts did not reveal any monohydroxylated metabolites. CHK incubated for one hour with [3H]25-OH-D3 showed a 10 +/- 4% conversion to [3H]1,25(OH)2D3 whereas no conversion to [3H]1,25(OH)2D3 was observed in control CHKs that were boiled prior to incubation with [3H]25-OH-D3. These findings suggest that cultured neonatal keratinocytes are incapable of metabolizing vitamin D3 to 25-OH-D3.  相似文献   

15.
16.
A group of growing dogs supplemented with cholecalciferol (vitamin D(3); HVitD) was studied vs. a control group (CVitD; 54,000 vs. 470 IU vitamin D(3)/kg diet, respectively) from 3 to 21 wk of age. There were no differences in plasma levels of P(i) and growth-regulating hormones between groups and no signs of vitamin D(3) intoxication in HVitD. For the duration of the study in HVitD vs. CVitD, plasma 25-hydroxycholecalciferol levels increased 30- to 75-fold; plasma 24,25-dihydroxycholecalciferol levels increased 12- to 16-fold and were accompanied by increased renal 24-hydroxylase gene expression, indicating increased renal 24-hydroxylase activity. Although the synthesis of 1,25-dihydroxycholecalciferol [1,25(OH)(2)D(3)] was increased in HVitD vs. CVitD (demonstrated by [(3)H]1,25(OH)(2)D(3) and increased renal 1alpha-hydroxylase gene expression), plasma 1,25(OH)(2)D(3) levels decreased by 40% as a result of the even more increased metabolic clearance of 1,25(OH)(2)D(3) (demonstrated by [(3)H]1,25(OH)(2)D(3) and increased gene expression of intestinal and renal 24-hydroxylase). A shift of the Ca set point for parathyroid hormone to the left indicated increased sensitivity of the chief cells. Effective counterbalance was provided by hypoparathyroidism, hypercalcitoninism, and the key regulator 24-hydroxylase, preventing the development of vitamin D(3) toxicosis.  相似文献   

17.
The relationship of the metabolism of vitamin D3 and calcium-binding protein (CaBP) to calcium transport by the eggshell gland (ESG) was assessed in chickens. Plasma or ESG 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) and ESG CaBP were no different between periods of ESG inactivity and of shell calcification. A severe dietary calcium deficiency resulted in increased kidney 25-hydroxycholecalciferol-1-hydroxylase activity (542%), plasma and ESG 1,25(OH)2D3 concentrations (193 and 274%, respectively), but in decreased ESG CaBP (34%), associated with the production of poorly calcified eggs. Significant correlations were found between 25 hydroxycholecalciferol-1-hydroxylase, plasma 1,25(OH)2D3 and ESG 1,25(OH)2D3, but not between ESG 1,25(OH)2D3 and CaBP. Hens with a low shell density had a significantly lower (55%) ESG CaBP than those with high shell density, without any significant change in ESG 1,25(OH)2D3. Significant correlations were found between ESG CaBP and shell calcium. Total receptors for 1,25(OH)2D3 were lower in ESG than in the intestine. The results suggest that CaBP level and calcium transport in the ESG are not regulated by 1,25(OH)2D3.  相似文献   

18.
OBJECTIVE: The purpose of this study was to examine the effects of vitamin K2 administration on calcium balance and bone mass in young rats fed a normal or low calcium diet. METHODS: Forty female Sprague-Dawley rats, 6 weeks of age, were randomized by stratified weight method into four groups with 10 rats in each group: 0.5% (normal) calcium diet, 0.1% (low) calcium diet, 0.5% calcium diet + vitamin K2 (menatetrenone, 30 mg/100 g chow diet), and 0.1% calcium diet + vitamin K2. After 10 weeks of feeding, serum calcium and calciotropic hormone levels were measured, and intestinal calcium absorption and renal calcium reabsorption were evaluated. Bone histomorphometric analyses were performed on cortical bone of the tibial shaft and cancellous bone of the proximal tibia. RESULTS: Feeding a low calcium diet induced hypocalcemia, increased serum parathyroid hormone (PTH) and 1,25-dihydroxyvitamin D [1,25(OH)2D] levels with decreased serum 25-hydrovyvitamin D [25(OH)D] level, stimulated intestinal calcium absorption and renal calcium reabsorption, and reduced cortical bone mass as a result of decreased periosteal bone gain and enlarged marrow cavity, but did not significantly influence cancellous bone mass. Vitamin K2 administration in rats fed a low calcium diet stimulated renal calcium reabsorption, retarded the abnormal elevation of serum PTH level, increased cancellous bone mass, and retarded cortical bone loss, while vitamin K2 administration in rats fed a normal calcium diet stimulated intestinal calcium absorption by increasing serum 1,25(OH)2D level, and increased cortical bone mass. CONCLUSION: This study clearly shows the differential response of calcium balance and bone mass to vitamin K2 administration in rats fed a normal or low calcium diet.  相似文献   

19.
Besides its role in regulating serum levels of calcium and phosphorus, 1alpha, 25-dihydroxyvitamin D3 (1,25-(OH)2D3) has potent effects on the immune system and suppresses disease in several animal models of autoimmune disorders including experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. While the amount of 1,25-(OH)2D3 needed to prevent EAE is dependent on the gender of the mouse and amount of calcium available in the diet, the minimum levels of 1,25-(OH)2D3 sufficient to prevent disease cause hypercalcemia. To test if hypercalcemia independent of high levels of 1,25-(OH)2D3 can suppress EAE, we used a 25-hydroxyvitamin D3-1alpha-hydroxylase (1alpha-hydroxylase) knockout mouse strain. Because these 1alpha-hydroxylase knockout mice lack the parathyroid hormone (PTH)-regulated enzyme that synthesizes 1,25-(OH)2D3, hypercalcemia from increased bone turnover was created by continuous administration of PTH without changing the circulating levels of 1,25-(OH)2D3. This PTH-mediated hypercalcemia generated after EAE induction prevented disease in female mice but not male mice. When hypercalcemia was prevented by diet manipulation, PTH administration no longer prevented EAE. We conclude that hypercalcemia is able to prevent EAE after disease induction in female mice.  相似文献   

20.
CYP24A1 is the cytochrome P450 component of the 25-hydroxyvitamin D(3)-24-hydroxylase enzyme that catalyzes the conversion of 25-hydroxyvitamin D(3) (25-OH-D(3)) and 1,25-dihydroxyvitamin D(3) (1,25-(OH)(2)D(3)) into 24-hydroxylated products, which constitute the degradation of the vitamin D molecule. This review focuses on recent data in the CYP24A1 field, including biochemical, physiological and clinical developments. Notable among these are: the first crystal structure for rat CYP24A1; mutagenesis studies which change the regioselectivity of the enzyme; and the finding that natural inactivating mutations of CYP24A1 cause the genetic disease idiopathic infantile hypercalcemia (IIH). The review also discusses the emerging correlation between rising serum phosphate/FGF-23 levels and increased CYP24A1 expression in chronic kidney disease, which in turn underlies accelerated degradation of both serum 25-OH-D(3) and 1,25-(OH)(2)D(3) in this condition. This review concludes by evaluating the potential clinical utility of blocking this enzyme with CYP24A1 inhibitors in various disease states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号